Exercise sheet VIII

December 3 [solution: December 12]

Problem 1 [Quantization inside a box] Following the canonical approach, quantize a real scalar field inside a cubic box with edge length L. Impose periodic boundary conditions. Proceed in the following steps:

(i) For $L \to \infty$ the three dimensional Fourier transform can be defined according to

$$\tilde{f}(\mathbf{k}) \equiv \frac{1}{(2\pi)^{3/2}} \int d^3x f(\mathbf{x}) e^{-i\mathbf{k}\mathbf{x}},$$

$$f(\mathbf{x}) \equiv \frac{1}{(2\pi)^{3/2}} \int d^3k \tilde{f}(\mathbf{k}) e^{+i\mathbf{k}\mathbf{x}}.$$

What are the corresponding expressions for finite L?

- (ii) Define suitable creation and annihilation operators using the result of (i).
- (iii) Proceed with the canonical quantization. If $|\psi\rangle$ is an eigenstate of H such that

$$H |\psi\rangle = E_{\psi} |\psi\rangle$$
, $N(\mathbf{k}) |\psi\rangle = n_{\psi}(\mathbf{k}) |\psi\rangle$,

compute, for the case of finite L, the following:

- (a) The commutator $[a(\mathbf{k}_1), a^{\dagger}(\mathbf{k}_2)].$
- (b) The Hamiltonian operator.
- (c) The number operator, $N(\mathbf{k})$.
- (d) The energy eigenvalues.
- (e) $N(\mathbf{k})a^{\dagger}(\mathbf{p})|\psi\rangle$.
- (f) $N(\mathbf{k})a(\mathbf{p})|\psi\rangle$.
- (g) $N(\mathbf{k}) | \mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_j \rangle$, where $| \mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_j \rangle \equiv a^{\dagger}(\mathbf{k}_1) a^{\dagger}(\mathbf{k}_2) \dots a^{\dagger}(\mathbf{k}_j) | 0 \rangle$.

Problem 2 [Ladder operators] Redo the canonical quantization procedure for a real scalar field, ϕ , using the following definition of the creation and annihilation operators

$$a(\mathbf{k}) \equiv \int d^3x \left(\alpha(\mathbf{k})\phi(\mathbf{x}) + i\beta(\mathbf{k})\pi(\mathbf{x})\right) e^{-i\mathbf{k}\mathbf{x}},$$

$$a^{\dagger}(\mathbf{k}) \equiv \int d^3x \left(\alpha(\mathbf{k})\phi(\mathbf{x}) - i\beta(\mathbf{k})\pi(\mathbf{x})\right) e^{+i\mathbf{k}\mathbf{x}}.$$

(i) Express the Hamiltonian, H, in terms of the new a and a^{\dagger} . Obtain the values for α and β that yield

$$H = \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} E(\mathbf{p}) a^{\dagger}(\mathbf{p}) a(\mathbf{p}) (+ E_{\text{vacuum}}).$$

(ii) How does the field operator, ϕ , read in terms of a and a^{\dagger} ? Is this expression invariant under Lorentz transformations?