
Numerical methods in physics

Marc Wagner

Goethe-Universität Frankfurt am Main – winter semester 2023/24

Version: February 5, 2024

1

Contents

1 Introduction 6

2 Representation of numbers in computers, roundoff errors 8

2.1 Integers . 8

2.2 Real numbers, floating point numbers . 8

2.3 Roundoff errors . 9

2.3.1 Simple examples . 9

2.3.2 Another example: numerical derivative via finite difference 10

3 Ordinary differential equations (ODEs), initial value problems 13

3.1 Physics motivation . 13

3.2 Euler’s method . 13

3.3 Runge-Kutta (RK) method . 14

3.3.1 Estimation of errors . 16

3.3.2 Adaptive step size . 18

4 Dimensionful quantities on a computer 23

4.1 Method 1: define units for your computation . 23

4.2 Method 2: use exclusively dimensionless quantities 23

5 Root finding, solving systems of non-linear equations 25

5.1 Physics motivation . 25

5.2 Bisection (only for N = 1) . 25

5.3 Secant method (only for N = 1) . 26

5.4 Newton-Raphson method (for N = 1) . 27

5.5 Newton-Raphson method (for N > 1) . 28

6 Ordinary differential equations, boundary value problems 30

6.1 Physics motivation . 30

6.2 Shooting method . 30

6.2.1 Example: QM, 1 dimension, infinite potential well 32

6.2.2 Example: QM, 1 dimension, harmonic oscillator 34

6.2.3 Example: QM, 3 dimensions, spherically symmetric potential 38

6.3 Relaxation methods . 39

2

7 Solving systems of linear equations 41

7.1 Problem definition, general remarks . 41

7.2 Gauss-Jordan elimination (a direct method) . 41

7.2.1 Pivoting . 43

7.3 Gauss elimination with backward substitution (a direct method) 44

7.4 LU decomposition (a direct method) . 47

7.4.1 Crout’s algorithm . 47

7.4.2 Computation of the solution of Ax = b 48

7.4.3 Computation of det(A) . 49

7.5 QR decomposition (a direct method) . 49

7.6 Iterative refinement of the solution of Ax = b (for direct methods) 49

7.7 Conjugate gradient method (an iterative method) 50

7.7.1 Symmetric positive definite A . 50

7.7.2 Example: static electric charge inside a grounded box in 2 dimensions . . 52

7.7.3 Generalizations . 55

7.7.4 Condition number, preconditioning . 55

8 Numerical integration 57

8.1 Numerical integration in 1 dimension . 57

8.1.1 Newton-Cotes formulas . 57

8.1.2 Gaussian integration . 60

8.2 Numerical integration in D ≥ 2 dimensions . 61

8.2.1 Nested 1-dimensional integration . 61

8.2.2 Monte Carlo integration . 62

8.2.3 When to use which method? . 63

9 Eigenvalues and eigenvectors 65

9.1 Problem definition, general remarks . 65

9.2 Basic principle of numerical methods for eigenvalue problems 66

9.3 Jacobi method . 67

9.4 Example: molecule oscillations inside a crystal 69

10 Interpolation, extrapolation, approximation 74

10.1 Polynomial interpolation . 74

3

10.2 Cubic spline interpolation . 75

10.3 Method of least squares . 77

10.4 χ2 minimizing fits . 79

10.4.1 Error estimates for fit parameters aj (“basics of data analysis”) 80

11 Function minimization, optimization 85

11.1 Problem definition, general remarks . 85

11.2 Golden section search in D = 1 dimension . 86

11.3 Function minimization using quadratic interpolation in D = 1 dimension 90

11.4 Function minimization using derivatives in D = 1 dimension 90

11.5 Function minimization in D ≥ 2 dimensions by repeated minimization in 1 di-
mension . 90

11.6 Downhill simplex method (D ≥ 2 dimensions) . 93

11.7 Simulated annealing . 95

11.7.1 Discrete minimization . 95

11.7.2 Continuous minimization . 97

12 Monte Carlo simulations of partition functions 99

12.1 Ising model . 99

12.2 Basic principle of Monte Carlo simulations . 100

12.3 Examples of common Monte Carlo algorithms . 102

12.3.1 Metropolis algorithm . 102

12.3.2 Heatbath algorithm . 103

12.4 Monte Carlo simulation of the Ising model . 104

13 Partial differential equations (PDEs) 107

13.1 Introduction . 107

13.2 Initial value problems . 108

13.2.1 Stability analysis in the context of a simple example 108

13.2.2 Parabolic PDEs: heat equation and Schrödinger equation 114

13.3 Boundary value problems . 121

A C Code: trajectories for the HO with the RK method 122

B C Code: trajectories for the anharmonic oscillator with the RK method with
adaptive step size 125

4

C C Code: energy eigenvalues and wave functions of the infinite potential well
with the shooting method 130

D C Code: Gauss elimination with backward substitution, different pivoting
strategies 136

E C Code: solving the discretized Poisson equation with the conjugate gradient
method 141

F C Code: eigenvalues and eigenvectors of a 10 × 10 stiffness matrix with the
Jacobi method 145

G Python Code: solving the heat equation with the Crank-Nicolson method 149

5

***** October 17, 2023 (1st lecture) *****

1 Introduction

� “Numerical analysis is the study of algorithms that use numerical approximation (as op-
posed to general symbolic manipulations) for the problems of mathematical analysis (as
distinguished from discrete mathematics).” (Wiki)

� “Die numerische Mathematik, auch kurz Numerik genannt, beschäftigt sich als Teilgebiet
der Mathematik mit der Konstruktion und Analyse von Algorithmen für kontinuierliche
mathematische Probleme. Hauptanwendung ist dabei die näherungsweise ... Berechnung
von Lösungen mit Hilfe von Computern.” (Wiki)

� Almost no modern physics without computers.

� Even analytical calculations

– often require computer algebra systems (Mathematica, Maple, ...),

– are not fully analytical, but “numerically exact calculations” (e.g. mainly analytically,
at the end simple 1-dimensional numerical integrations, which can be carried out up
to arbitrary precision).

� Goal of this lecture: Learn, how to use computers in an efficient and purposeful way.

– Implement numerical algorithms, e.g. in C or Fortran, ...

– ... write program code specifically for your physics problems ...

– ... use floating point numbers appropriately (understand roundoff errors, why and to
what extent accuracy is limited, ...) ...

– ... quite often computations run several days, weeks or even months, i.e. decide for
most efficient algorithms ...

– ... in practice, parts of your code have to be written from scratch, other parts use
existing numerical libraries (e.g. GSL, LAPACK, ARPACK, ...), i.e. learn to use such
libraries.

� Typical problems in physics, which can be solved numerically:

– Linear systems.

– Eigenvalue and eigenvector problems.

– Integration in 1 or more dimensions.

– Differential equations.

– Root finding (Nullstellensuche), optimization (finding minima or maxima).

– ...

� Computer algebra systems will not be discussed in this lecture:

– E.g. Mathematica, Maple, ...

6

– Complement numerical calculations.

– Automated analytical calculations, e.g.

* solve standard integrals (find the antiderivative [Stammfunktion]),

* simplify lengthy expressions,

* transform coordinates (e.g. Cartesian coordinates to spherical coordinates),

* ...

7

2 Representation of numbers in computers, roundoff errors

2.1 Integers

� Computer memory can store 0’s and 1’s, so-called bits, bj ∈ {0, 1}.

� Integer: z = bN−1 . . . b2b1b0 (stored in this way in computer memory, i.e. in the binary
numeral system),

z =

N−1∑
j=0

bj2
j (for positive integers). (1)

� Typically N = 32 (sometimes also N = 8, 16, 64, 128)
→ 0 ≤ z ≤ 232 − 1 = 4 294 967 295.

� Negative integers: very similar (homework: study Wiki,
https://en.wikipedia.org/wiki/Integer (computer science),
https://en.wikipedia.org/wiki/Signed number representations).

� Many arithmetic operations are exact; exceptions:

– if range is exceeded,

– division, square root, ... yields another integer obtained by rounding down (Nachkom-
mastellen abschneiden), e.g. 7/3 = 2.

2.2 Real numbers, floating point numbers

� Real numbers are approximated in computers by floating point numbers,

z = S ×M × 2E−e. (2)

– Sign: S = ±1.

– Mantissa:

M =

NM∑
j=0

mj

(
1

2

)j

, (3)

m0 = 1 (phantom bit, i.e. M = 1.???, “normalized”), mj ∈ {0, 1} for j ≥ 1 (repre-
sentation analogous to representation of integers).

– Exponent: E is integer, e is integer constant.

� Two frequently used data types: float (32 bits), double (64 bits) 1.

– float:

* S: 1 bit.

* E: 8 bits.
1float and double are C data types. In Fortran real and double precision.

8

* M : NM = 23 bits.

* Range:
M = 1, 1 + ϵ, 1 + 2ϵ, . . . , 2− 2ϵ, 2− ϵ, where ϵ = (1/2)23 ≈ 1.19× 10−7.
ϵ is relative precision.
e = 127, E = 1, . . . , 254, i.e. 2E−e = 2−126 . . . 2+127 ≈ 10−38 . . . 10+38.
10−38 is smallest numbers, 10+38 is largest number.

– double:

* S: 1 bit.

* E: 11 bits.

* M : NM = 52 bits.

* Range:
ϵ = (1/2)52 ≈ 2.22× 10−16.
2E−e ≈ 10−308 . . . 10+308.

– Homework: Study Ref. [1], section 1.1.1. “Floating-Point Representation”.

2.3 Roundoff errors

� Due to the finite number of bits of the mantissaM , real numbers cannot be stored exactly.
They are approximated by the closest foating point numbers.

� Equation (2):

z = S ×M × 2E−e, (4)

i.e. relative precision ϵ ≈ 10−7 for float and ϵ ≈ 10−16 for double.

2.3.1 Simple examples

� 1 + ϵ̃ = 1, if |ϵ̃| < ϵ.

� Difference of similar numbers z1 and z2 (i.e. the first n decimal digits of z1 and z2 are
identical, they differ in the n+ 1-th digit):

z1 − z2 = α1︸︷︷︸
≈1.???

10β − α2︸︷︷︸
1.???

10β =
(
α1 − α2

)
︸ ︷︷ ︸

O(10−n)

10β. (5)

– When α1 − α2 is computed, the first n digits cancel each other
→ resulting mantissa has accuracy 10−(7−n) (float) or 10−(16−n) (double).

– E.g. difference of two floats, which differ relatively by 10−6, is accurate only up to
1 digit.

9

2.3.2 Another example: numerical derivative via finite difference

� Starting point: function f(x) can be evaluated, f ′(x) not (e.g. expression is very long and
complicated or can only be calculated numerically).

� Common approach: approximate f ′(x) numerically by finite difference, e.g.

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +O(h3) (6)

→ f ′(x) =
f(x+ h)− f(x)

h
+O(h) (asymmetric) (7)

→ f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (symmetric). (8)

***** October 19, 2023 (2nd lecture) *****

� Problems:

– If h is large
→ O(h),O(h2) large.

– If h is small
→ f(x + h) − f(x), f(x + h) − f(x − h) are differences of similar numbers (see sec-
tion 2.3.1).

� Optimal choice h = hopt for asymmetric finite difference (7):

– Relative error due to O(h):

δf ′(x) = f ′(x)− f ′finite difference(x) = f ′(x)− f(x+ h)− f(x)

h
=

= −1

2
f ′′(x)h+O(h2)

→ δf ′(x)

f ′(x)
=

−f ′′(x)h/2
f ′(x)

∼ f ′′(x)h

f ′(x)
(9)

(∼ indicates “of the same order as”).

– Relative error due to f(x+ h)− f(x):

f(x+ h)− f(x) ≈ f ′(x)h

f(x+ h) ≈ f(x)

→ relative loss of accuracy =
f(x)

f(x+ h)− f(x)
≈ f(x)

f ′(x)h

(e.g. ≈ 103 implies that 3 digits are lost)

→ δf ′(x)

f ′(x)
= relative precision× relative loss of accuracy ∼ ϵ

f(x)

f ′(x)h
. (10)

– For h = hopt both errors are similar:

f ′′(x)hopt
f ′(x)

∼ ϵ
f(x)

f ′(x)hopt

10

→ hopt ∼
(
f(x)

f ′′(x)
ϵ

)1/2

∼ ϵ1/2

→ δf ′(x)

f ′(x)

∣∣∣∣
opt

∼ f ′′(x)hopt
f ′(x)

∼ ϵ1/2. (11)

� Optimal choice h = hopt for symmetric finite difference (8): analogous analysis yields

hopt ∼ ϵ1/3 ,
δf ′(x)

f ′(x)

∣∣∣∣
opt

∼ ϵ2/3, (12)

i.e. symmetric derivative superior to asymmetric derivative.

� In practice:

– Estimate errors analytically as sketched above ...

– ... and test the stability of your results with respect to numerical parameters (h in
the derivative example).

� Above estimates are confirmed by the following example program 2.

// derivative of sin(x) at x = 1.0 via finite differences

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv)

{

int j;

// *****

printf("h rel_err_asym rel_err_sym\n");

for(j = 1; j <= 15; j++)

{

double h = pow(10.0, -(double)j);

double df_exact = cos(1.0);

double df_asym = (sin(1.0+h) - sin(1.0)) / h;

double df_sym = (sin(1.0+h) - sin(1.0-h)) / (2.0 * h);

double rel_err_asym = fabs((df_exact - df_asym) / df_exact);

double rel_err_sym = fabs((df_exact - df_sym) / df_exact);

printf("%.1e %.3e %.3e\n", h, rel_err_asym, rel_err_sym);

}

// *****

2Throughout this lecture I use C.

11

return EXIT_SUCCESS;

}

h rel_err_asym rel_err_sym

1.0e-01 7.947e-02 1.666e-03

1.0e-02 7.804e-03 1.667e-05

1.0e-03 7.789e-04 1.667e-07

1.0e-04 7.787e-05 1.667e-09

1.0e-05 7.787e-06 2.062e-11

1.0e-06 7.787e-07 5.130e-11

1.0e-07 7.742e-08 3.597e-10

1.0e-08 5.497e-09 4.777e-09

1.0e-09 9.724e-08 5.497e-09

1.0e-10 1.082e-07 1.082e-07

1.0e-11 2.163e-06 2.163e-06

1.0e-12 8.003e-05 2.271e-05

1.0e-13 1.358e-03 3.309e-04

1.0e-14 6.861e-03 6.861e-03

1.0e-15 2.741e-02 2.741e-02

12

3 Ordinary differential equations (ODEs), initial value problems

3.1 Physics motivation

� Newton’s equations of motion (EOMs), N point masses mj ,

mj r̈j(t) = Fj(r1(t), . . . , rN (t), ṙ1(t), . . . , ṙN (t), t) , j = 1, . . . , N, (13)

initial conditions

rj(t = 0) = rj,0 , ṙj(t = 0) = vj,0. (14)

� Calculate trajectories rj(t).

� Cannot be done analytically in the majority of cases, e.g. three-body problem “sun and
two planets”.

� For boundary value problems see section 6 (e.g. quantum mechanics [QM], Schrödinger
equation, ψ(x1) = 0, ψ(x2) = 0).

3.2 Euler’s method

� Preparatory step: rewrite ODEs to system of first order ODEs.

– Newton’s EOMs equivalent to

ṙj(t) = vj(t) , v̇j(t) =
Fj(r1(t), . . . , rN (t), ṙ1(t), . . . , ṙN (t), t)

mj
. (15)

– Define

y(t) = (r1(t), . . . , rN (t),v1(t), . . . ,vN (t)) (16)

f(y(t), t) =

(
v1(t), . . . ,vN (t)︸ ︷︷ ︸

∈y(t)

,
F1(y(t), t)

m1
, . . . ,

FN (y(t), t)

mN

)
. (17)

– Then

ẏ(t) = f(y(t), t) (18)

(left hand side (lhs) can be evaluated in a straightforward way for given t and y(t)).

– Always possible to rewrite a system of ODEs according to (18).

� Solve (18) by iteration, i.e. perform many small steps in time, step size τ :

y(t+ τ) = y(t) + ẏ(t)τ +O(τ2) = y(t) + f(y(t), t)τ +O(τ2). (19)

13

� τ can be positive (→ computation of future) or negative (→ computation of past).

� Problem: method inefficient, because of large discretization errors.

– O(τ2) error per step.

– Time evolution from t = 0 (initial conditions) to t = T
→ T/τ steps
→ O((T/τ)τ2) = O(τ) total error (very inefficient).

– Total error might be underestimated (e.g. chaotic systems are highly sensitive to
initial conditions and, thus, to the error per step).

***** October 24, 2023 (3rd lecture) *****

3.3 Runge-Kutta (RK) method

� Same idea as in section 3.2, but improved discretization (stronger suppression of errors
with respect to τ).

� “2nd-order RK”:

k1 = f(y(t), t)τ → “full Euler step” (20)

k2 = f
(
y(t) + (1/2)k1, t+ (1/2)τ︸ ︷︷ ︸

→ “half Euler step”

)
τ (21)

y(t+ τ) = y(t) + k2 +O(τ3). (22)

– f(y(t) + (1/2)k1, t + (1/2)τ) in (21): estimated derivative ẏ(t + τ/2), i.e. after half
step.

– (22): 2nd order RK step (a full “Euler-like” step using the derivative after a half
step).

14

� Proof of (22), i.e. that error per step is O(τ3):

k2 = f
(
y + (1/2)fτ, t+ (1/2)τ

)
τ =

= fτ +

(
∂f

∂y

1

2
fτ +

∂f

∂t

1

2
τ

)
τ +O(τ3) = fτ +

1

2

(
∂f

∂y
ẏ +

∂f

∂t

)
τ2 +O(τ3) =

= fτ +
1

2
ḟτ2 +O(τ3) (23)

y(t+ τ) = y + ẏτ +
1

2
ÿτ2 +O(τ3) = y + fτ +

1

2
ḟτ2 +O(τ3) =

= y + k2 +O(τ3) (24)

(no arguments imply time t, e.g. y ≡ y(t), f ≡ f(y(t), t)).

� Discretization not unique, e.g. for O(τ3) error per step there are many possible RK ex-
pressions (an example is discussed in the tutorials).

� Straightforward to derive discretizations with O(τ4), O(τ5), ... error per step:

– “3rd-order RK”:

k1 = f(y(t), t)τ (25)

k2 = f
(
y(t) + k1, t+ τ

)
τ (26)

k3 = f
(
y(t) + (1/4)

(
k1 + k2

)
, t+ (1/2)τ

)
τ (27)

y(t+ τ) = y(t) +
1

6

(
k1 + k2 + 4k3

)
+O(τ4). (28)

– “4th-order RK”:

k1 = f(y(t), t)τ (29)

k2 = f
(
y(t) + (1/2)k1, t+ (1/2)τ

)
τ (30)

k3 = f
(
y(t) + (1/2)k2, t+ (1/2)τ

)
τ (31)

k4 = f
(
y(t) + k3, t+ τ

)
τ (32)

y(t+ τ) = y(t) +
1

6

(
k1 + 2k2 + 2k3 + k4

)
+O(τ5). (33)

15

– ...

� Common choice is 4th-order RK.

� Even better: numerical tests with different order RKs (higher orders allow larger step sizes
τ [which is good], require larger numbers of arithmetic operations per step [which is bad]).

� Example: Compute the trajectory of the 1-dimensional harmonic oszillator (HO).

– Lagrangian:

L =
m

2
ẋ2 − mω2

2
x2. (34)

– EOMs:

mẍ(t) = −mω2x(t), (35)

i.e.

ẏ(t) = f(y(t), t) (36)

with

y(t) = (x(t), v(t)) , f(y(t), t) = (v(t),−ω2x(t)). (37)

– Initial conditions: x(t = 0) = x0, ẋ(t = 0) = 0, i.e. y(t = 0) = (x0, 0).

– ω = 1.0, x0 = 1.0, step size τ = 0.1 3.

– Resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK are
shown in Figure 1.

– Errors of the trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK
are shown in Figure 2.

– Corresponding C code: see appendix A.

3.3.1 Estimation of errors

� Error per step for n-th order RK can be estimated in the following way:

– RK step with step size τ
→ yτ (t+ τ)
→ δ⃗τ ≈ cτn+1.

– 2 RK steps with step size τ/2
→ y2×τ/2(t+ τ)

→ δ⃗2×τ/2 ≈ 2c(τ/2)n+1.

3Assigning dimensionless numbers to dimensionful quantities, e.g. ω = 1.0 or x0 = 1.0, is not always rec-
ommended. Usually it is advantageous to define and exclusively use equivalent dimensionless quantities (see
section 4).

16

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

x

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

Euler

2nd order RK

3rd order RK

4th order RK

analytical solution

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 90 92 94 96 98 100

x

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

Euler

2nd order RK

3rd order RK

4th order RK

analytical solution

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 990 992 994 996 998 1000

x

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

Euler

2nd order RK

3rd order RK

4th order RK

analytical solution

Figure 1: HO, resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK.

***** October 26, 2023 (4th lecture) *****

– Estimated absolute error for y2×τ/2(t+ τ):

δabs =
|y2×τ/2(t+ τ)− yτ (t+ τ)|

2n − 1
, (38)

where | . . . | can be e.g. Euclidean norm, maximum norm (might be a better choice
for many degrees of freedom [dof’s]), ...

17

-150

-100

-50

 0

 50

 100

 150

 0 20 40 60 80 100

(x
n
u
m

e
ri
c
a
lly

 -
 x

a
n
a
ly

ti
c
a
lly

)

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

error Euler

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

(x
n
u
m

e
ri
c
a
lly

 -
 x

a
n
a
ly

ti
c
a
lly

)

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

error 2nd order RK

-0.004

-0.002

 0

 0.002

 0.004

 0 20 40 60 80 100

(x
n
u
m

e
ri
c
a
lly

 -
 x

a
n
a
ly

ti
c
a
lly

)

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

error 3rd order RK

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0 20 40 60 80 100

(x
n
u
m

e
ri
c
a
lly

 -
 x

a
n
a
ly

ti
c
a
lly

)

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

error 4th order RK

Figure 2: HO, errors of the trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order
RK.

– Estimated relative error for y2×τ/2(t + τ) (might be more relevant than estimated
absolute error):

δrel =
δabs
|y(t)|

. (39)

� Estimated error allows local extrapolation:

– Correct by estimated error:

y2×τ/2(t+ τ) → y2×τ/2(t+ τ) +
y2×τ/2(t+ τ)− yτ (t+ τ)

2n − 1
. (40)

– However, no estimation of errors, when using (40).

3.3.2 Adaptive step size

� Small step size τ
→ small errors, computation slow.

� Large step size τ
→ large errors, computation fast.

18

� Compromise needed: large τ in regions, where y(t) is smooth, small τ otherwise.

� For given maximum tolerable error δabs,max or δrel,max, estimated error allows to estimate
corresponding step size τmax:

δX,max

δX
=

(τmax)
n+1

τn+1
→ τmax = τ

(
δX,max

δX

)1/(n+1)

, X ∈ {abs, rel}. (41)

� Use e.g. the following algorithm to adapt τ in each RK step:

– Input:

* Initial conditions y(t = 0).

* Maximum tolerable error δabs,max.

* Initial step size τ (can be coarse).

– t = 0.

(1) RK steps:

y(t) →τ yτ (t+ τ) (42)

y(t) →τ/2→τ/2 y2×τ/2(t+ τ). (43)

– Estimated error:

δabs =
|y2×τ/2(t+ τ)− yτ (t+ τ)|

2n − 1
. (44)

– Change step size:

τnew = 0.9× τ

(
δabs,max

δabs

)1/(n+1)

(45)

(“0.9” reduces number of RK steps, which have to be repeated with smaller step size).

– Clamp τnew to [0.2×τ, 5.0×τ] (avoid tiny/huge step size, which might cause breakdown
of algorithm).

– If δabs ≤ δabs,max:

→ Accept y2×τ/2(t+ τ) (e.g. output to file).
t = t+ τ (i.e. continue at time t+ τ).
τ = τnew (i.e. continue with estimated optimal step size).
Go to (1).

19

Else:

→ τ = τnew (i.e. reduce step size).
Go to (1) (i.e. repeat RK steps with smaller step size).

� Modifications possible, e.g. estimate error and τnew by performing RK steps of n-th and
n+ 1-th order instead of RK steps with step sizes τ and τ/2.

� Example: 1-dimensional anharmonic oszillator.

– Lagrangian:

L =
m

2
ẋ2 −mαxn , n ∈ {2, 20}. (46)

– EOMs:

mẍ(t) = −mαn(x(t))n−1, (47)

i.e.

ẏ(t) = f(y(t), t) (48)

with

y(t) = (x(t), v(t)) , f(y(t), t) = (v(t),−αn(x(t))n−1). (49)

– Initial conditions: x(t = 0) = x0, ẋ(t = 0) = 0, i.e. y(t = 0) = (x0, 0).

– α = 0.5 , 1.0 for n = 2 , 20, x0 = 1.0, maximum tolerable error δabs,max = 0.001,
initial step size τ = 1.0.

– Resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK are
shown in Figure 3 (for n = 2) and Figure 4 (for n = 20).

– Corresponding C code: see appendix B.

20

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

x

t

HO: V(x) = mαx
2
, α = 0.5, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, δabs,max = 0.001, τinitial = 1.0

Euler

analytical solution

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

x

t

HO: V(x) = mαx
2
, α = 0.5, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, δabs,max = 0.001, τinitial = 1.0

2nd order RK

analytical solution

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

x

t

HO: V(x) = mαx
2
, α = 0.5, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, δabs,max = 0.001, τinitial = 1.0

3rd order RK

analytical solution

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

x

t

HO: V(x) = mαx
2
, α = 0.5, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, δabs,max = 0.001, τinitial = 1.0

4th order RK

analytical solution

Figure 3: Harmonic oscillator, V (x) = mαx2, resulting trajectories for Euler, 2nd-order RK,
3rd-order RK and 4th-order RK using adaptive step size.

21

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

x

t

AHO: V(x) = mαx
20

, α = 1.0, ic’s x(t=0.0) = 0.0, v(t=0.0) = 0.0, δabs,max = 0.001, τinitial = 1.0

Euler

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

x

t

AHO: V(x) = mαx
20

, α = 1.0, ic’s x(t=0.0) = 0.0, v(t=0.0) = 0.0, δabs,max = 0.001, τinitial = 1.0

2nd order RK

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

x

t

AHO: V(x) = mαx
20

, α = 1.0, ic’s x(t=0.0) = 0.0, v(t=0.0) = 0.0, δabs,max = 0.001, τinitial = 1.0

3rd order RK

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

x

t

AHO: V(x) = mαx
20

, α = 1.0, ic’s x(t=0.0) = 0.0, v(t=0.0) = 0.0, δabs,max = 0.001, τinitial = 1.0

4th order RK

Figure 4: Anharmonic oscillator, V (x) = mαx20, resulting trajectories for Euler, 2nd-order RK,
3rd-order RK and 4th-order RK using adaptive step size.

22

4 Dimensionful quantities on a computer

� Computers work with dimensionless numbers ...

� ... but the majority of quantities in physics is dimensionful (e.g. lengths, time differences,
energies) ...?

4.1 Method 1: define units for your computation

� Define units for your computation, e.g. all lengths are measured in meters, i.e. a length
3.77 in computer memory corresponds to 3.77m.

– All lengths have to be measured in meters, otherwise results are nonsense.

– Choose units appropriately (very small and very large numbers should be avoided,
e.g. use fm in particle physics and ly in cosmology).

� Advantage: easy to understand.

4.2 Method 2: use exclusively dimensionless quantities

� Reformulate the problem using exclusively dimensionless quantities.

� Example: compute the trajectory of the 1-dimensional harmonic oszillator (same example
as in section 3.3).

– Lagrangian:

L =
m

2
ẋ2 − mω2

2
x2. (50)

– EOMs:

mẍ(t) = −mω2x(t) → ẍ(t) = −ω2x(t), (51)

i.e. m irrelevant.

– Measure time in units of 1/ω:

t̂ = ωt → d2

dt̂2
x(t̂) = −x(t̂). (52)

– Moreover, initial conditions introduce length scale, e.g. x(t = 0) = x0, ẋ(t = 0) = 0
→ measure x in units of x0:

x̂ =
x

x0
→ d2

dt̂2
x̂(t̂) = −x̂(t̂). (53)

– Now only dimensionless quantities in (53), i.e. straightforward to treat numerically.

– Figure 5 showing trajectory x̂(t̂) is analog of Figure 1 (left top).

***** October 31, 2023 (5th lecture) *****

� Advantage: a single computation for different parameter sets (above example: trajectory
x̂(t̂) shown in Figure 5 valid for arbitrary m, ω and x0).

23

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

x
/x

0

ωt

HO: V(x) = mω
2
x

2
/2, ic’s x(t=0.0)/x0 = 1.0, v(t=0.0) = 0.0, ωτ = 0.1

Euler

2nd order RK

3rd order RK

4th order RK

analytical solution

Figure 5: HO, resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK
(same data as in Figure 1 [left top], but coordinate axes correspond to dimensionless quantities
t̂ = ωt and x̂ = x/x0).

24

5 Root finding, solving systems of non-linear equations

5.1 Physics motivation

� N non-linear equations with N unknowns,

fj(x1, . . . , xN) = 0 , j = 1, . . . , N, (54)

or equivalently written in a more compact way

f(x) = 0. (55)

� Find solutions x of (55), i.e. find roots of f(x).

� Standard problem in physics, e.g. needed to solve the Schrödinger equation (see section 6).

� For systems of linear equations see section 7.

5.2 Bisection (only for N = 1)

� Starting point: x1, x2 fulfilling f(x1) < 0 and f(x2) > 0 (e.g. plot f(x), then read off
appropriate values for x1 and x2).

� Bisection always finds a root of f(x), somewhere between x1 and x2.

� Algorithm:

(1) x̄ = (x1 + x2)/2.

– If f(x1)f(x) < 0:

→ x2 = x.

Else:

→ x1 = x.

– If |x1 − x2| sufficiently small:

→ x1 ≈ x2 is approximate root.
End of algorithm.

Else:

→ Go to (1).

� Convergence:

– Error of approximate root δ defined via f(x1 + δ) = 0.

– After n iterations

δn ≤ |x1 − x2|
2n

, (56)

i.e. error decreases exponentially (after 3 to 4 iterations 1 decimal digit more accu-
rate).

25

– δn+1 ≈ δn/2 is called linear convergence (δn+1 linear in δn).

� Advantages and disadvantages:

(+) Always finds a root.

(−) Linear convergence rather slow (evaluating f(x) might be expensive, can take weeks
on HPC systems, when e.g. lattice QCD simulations are necessary).

5.3 Secant method (only for N = 1)

� Starting point: x1, x2 fulfilling |f(x2)| < |f(x1)|.

� Secant method might find a root of f(x), not necessarily between x1 and x2.

� Basic principle:

– Iteration.

– Each step as sketched below.

� Algorithm:

– n = 2.

(1)

∆x = −f(xn)
xn − xn−1

f(xn)− f(xn−1)
, xn+1 = xn +∆x. (57)

– If |∆x| sufficiently small:

→ xn+1 is approximate root.
End of algorithm.

Else:

→ n = n+ 1.
Go to (1).

26

� Convergence: δn+1 ≈ c(δn)
1.618... (can be shown), i.e. better than linear convergence, better

than bisection.

� Advantages and disadvantages:

(+) Converges faster than bisection.

(−) Does not always find a root.

5.4 Newton-Raphson method (for N = 1)

� Starting point: arbitrary x1.

� Newton-Raphson method might find a root of f(x).

� Basic principle:

– Similar to secant method (see section 5.3).

– Use derivative f ′(xn) instead of secant
→ f ′ has to be known analytically/must be cheap to evaluate numerically.

– Each step as sketched below.

� Algorithm:

27

– n = 1.

(1)

∆x = − 1

f ′(xn)
f(xn) , xn+1 = xn +∆x. (58)

– If |∆x| sufficiently small:

→ xn+1 is approximate root.
End of algorithm.

Else:

→ n = n+ 1.
Go to (1).

� Convergence: δn+1 ≈ (f ′′(xn)/2f
′(xn))(δn)

2 (can be shown), i.e. quadratic convergence,
i.e. even better than secant method.

� Advantages and disadvantages:

(+) Converges faster than bisection and secant method.

(−) Does not always find a root.

(−) f ′ has to be known analytically/must be cheap to evaluate numerically.

5.5 Newton-Raphson method (for N > 1)

� For N > 1 root finding is extremely difficult.

– N = 2:
f1(x1, x2) = 0, f2(x1, x2) = 0.
One has to find intersections of isolines f1(x1, x2) = 0 and f2(x1, x2) = 0.

***** November 02, 2023 (6th lecture) *****

– N > 2:
One has to find intersections of N − 1-dimensional isosurfaces fj(x1, . . . , xN) = 0,
j = 1, . . . , N .

28

� Method very successful, if one has a crude estimate of a root (e.g. from a plot, or an
approximate analytical calculation).

� Starting point: x1 (should be close to a root).

� Basic principle:

–

0 = fj(xn + δ⃗) = fj(xn) +
∂fj(x)

∂xk︸ ︷︷ ︸
Jjk(x)

∣∣∣∣
x=xn

δk +O(δ2) , j = 1, . . . , N (59)

(Jjk(x): Jacobian matrix) or equivalently

0 = f(xn) + J(xn)δ⃗ +O(δ2). (60)

– Neglect O(δ2):

0 = f(xn) + J(xn)∆x (61)

or equivalently

∆x = −
(
J(xn)

)−1
f(xn) (62)

(∆x ≈ δ⃗, i.e. approximate difference between root and xn).

– (61) is system of linear equations (solve analytically for N = 2, 3 or numerically as
discussed in section 7).

– N = 1: J(xn) = f ′(xn) and (62) becomes

∆x = − 1

f ′(xn)
f(xn), (63)

which is identical to (58), left equation, i.e. the N > 1 Newton-Raphson method is a
generalization of the the N = 1 Newton-Raphson method discussed in section 5.4.

� Algorithm:

– n = 1.

(1)

∆x = −
(
J(xn)

)−1
f(xn) , xn+1 = xn +∆x. (64)

– If |∆x| sufficiently small:

→ xn+1 is approximate root.
End of algorithm.

Else:

→ n = n+ 1.
Go to (1).

29

6 Ordinary differential equations, boundary value problems

6.1 Physics motivation

� Newton’s EOMs, N point masses mj ,

mj r̈j(t) = Fj(r1(t), . . . , rN (t), ṙ1(t), . . . , ṙN (t), t) , j = 1, . . . , N, (65)

boundary conditions

rj(t1) = rj,1 , rj(t2) = rj,2 (66)

(“Compute trajectory of a particle, which is at r1 at time t1 and at r2 at time t2.”).

� QM, Schrödinger equation in 1 dimension,

− ℏ2

2m
ψ′′(x) + V (x)ψ(x) = Eψ(x), (67)

boundary conditions

ψ(x1) = ψ(x2) = 0 (68)

(i.e. “V (x) = ∞ at x = x1, x2”, e.g. infinite potential well).

– Example appropriate? E is unknown, i.e. (67) and (68) is rather an eigenvalue prob-
lem, not an ordinary boundary value problem ...?

– Yes, can be reformulated:

* Consider E as a function of x, i.e. E = E(x).

* Add another ODE: E′(x) = 0.

→ System of ODEs,

− ℏ2

2m
ψ′′(x) + V (x)ψ(x) = E(x)ψ(x) , E′(x) = 0, (69)

where each solution fulfills E(x) = const.

6.2 Shooting method

� Preparatory step as in section 3.2: rewrite ODEs to system of first order ODEs,

y′(x) = f(y(x), x) (70)

(both y and f have N components) and boundary conditions

gj(y(x1)) = 0 , j = 1, . . . , n < N (71)

hj(y(x2)) = 0 , j = 1, . . . , N − n. (72)

� Basic principle:

30

– Choose/guess initial conditions y(x1) such that

* boundary conditions gj(y(x1)) = 0, j = 1, . . . , n < N are fulfilled,

* boundary conditions hj(y(x2)) = 0, j = 1, . . . , N − n are approximately fulfilled
(y(x2) can be computed using e.g. a RK method from section 3.3).

– Use root finding methods from section 5 (e.g. Newton-Raphson method) to iteratively
improve initial conditions y(x1), i.e. such that hj(y(x2)) = 0.

� Example: mechanics, mẍ(t) = F (x(t)) with x(t1) = a, x(t2) = b.

– y(t) = (x(t), v(t)), f(y(t), t) = (v(t), F (x(t))/m) (as in section 3.2).

– g(y(t1)) = x(t1)− a = 0, h(y(t2)) = x(t2)− b = 0.

– Choose initial conditions y(t1) = (a, λ).

* a in 1st component → g(y(t1)) = 0 fulfilled.

* λ in 2nd component should lead to h(y(t2)) ≈ 0.

– RK computation of y(t) from t = t1 to t = t2.

– Improve initial conditions, i.e. tune λ, using the Newton-Raphson method (see sec-
tion 5.4):

* Interpret h(y(t2)) = x(t2)−b as function of λ (x(t2) depends on initial conditions
y(t1), i.e. on λ).

* Compute derivative dh(y(t2))/dλ (needed by the Newton-Raphson method) nu-
merically (see section 2.3.2).

* Newton-Raphson step to improve λ:

λ → λ− h(y(t2))

dh(y(t2))/dλ
. (73)

– Repeat RK computation and Newton-Raphson step, until h(y(t2)) = 0 (numerically
0, e.g. up to 6 digits).

***** November 07, 2023 (7th lecture) *****

31

6.2.1 Example: QM, 1 dimension, infinite potential well

� Infinite potential well:

V (x) =

{
0 if 0 ≤ x ≤ L
∞ otherwise

. (74)

� Schrödinger equation and boundary conditions:

− ℏ2

2m
ψ′′(x) = Eψ(x) , ψ(x = 0) = ψ(x = L) = 0. (75)

� Reformulate equations using exclusively dimensionless quantities:

x̂ =
x

L
(76)

→ d

dx̂
= L

d

dx
(77)

→ − d2

dx̂2
ψ(x̂) =

2mEL2

ℏ2︸ ︷︷ ︸
=Ê

ψ(x̂) (78)

(Ê is “dimensionless energy”), i.e.

− d2

dx̂2
ψ(x̂) = Êψ(x̂) , ψ(x̂ = 0) = ψ(x̂ = 1) = 0. (79)

� Analytical solution (to check numerical results):

ψ(x̂) =
√
2 sin(nπx̂) , Ê = π2n2 , n = 1, 2, . . . (80)

� Numerical solution:

– Rewrite Schrödinger equation to system of first order ODEs:

ψ′(x̂) = ϕ(x̂) , ϕ′(x̂) = −Ê(x̂)ψ(x̂) , Ê′(x̂) = 0, (81)

(′ denotes d/dx̂) i.e.

y(x) =
(
ψ(x̂), ϕ(x̂), Ê(x̂)

)
, f(y(x), x) =

(
ϕ(x̂),−Ê(x̂)ψ(x̂), 0

)
. (82)

– Initial conditions for RK/shooting method:

* ψ(x̂ = 0.0) = 0.0
(boundary condition at x̂ = 0),

* ϕ(x̂ = 0.0) = 1.0
(must be ̸= 0, apart from that arbitrary; different choices result in differently
normalized wavefunctions),

32

* Ê(x̂ = 0.0) = E
(will be tuned by Newton-Raphson method such that boundary condition
ψ(x̂ = 1) = 0 is fulfilled).

– C code: see appendix C.

– Crude “graphical determination” of energy eigenvalues (necessary to choose appro-
priate initial condition for the shooting method):

* Figure 6 shows ψ(x̂ = 1.0) as a function of E computed with 4th order RK; roots
indicate energy eigenvalues.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

ψ
(x

=
1
.0

)

E

potential well: graphical determination of energy eigenvalues

Figure 6: Infinite potential well, crude graphical determination of energy eigenvalues.

* There are 3 eigenvalues in the range 0.0 < Ê < 100.0:
Ê0 ≈ 10.0, Ê1 ≈ 40.0, Ê2 ≈ 90.0.

– Shooting method with E ∈ {10.0, 40.0, 90.0}.
* Figure 7 (top) illustrates the first Newton-Raphson step for the second excitation
(4th order RK).

* Figure 7 (bottom) shows the resulting non-normalized wave functions of the three
lowest states (4th order RK).

* Convergence after three Newton-Raphson steps (4th order RK, 7 digits of accu-
racy); see program output below.

ground state:

E_num = +10.000000 .

E_num = +9.868296 , E_ana = +9.869604 , \psi(x=1) = -0.006541 .

E_num = +9.869604 , E_ana = +9.869604 , \psi(x=1) = +0.000066 .

E_num = +9.869604 , E_ana = +9.869604 , \psi(x=1) = +0.000000 .

1st excitation:

E_num = +40.000000 .

E_num = +39.472958 , E_ana = +39.478418 , \psi(x=1) = +0.006539 .

E_num = +39.478417 , E_ana = +39.478418 , \psi(x=1) = -0.000069 .

E_num = +39.478418 , E_ana = +39.478418 , \psi(x=1) = -0.000000 .

33

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0 0.2 0.4 0.6 0.8 1

ψ

x

potential well: RK/shooting method for the 2nd excitation

before 1st Newton-Raphson step

after 1st Newton-Raphson step

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.95 0.96 0.97 0.98 0.99 1

ψ

x

potential well: RK/shooting method for the 2nd excitation

before 1st Newton-Raphson step

after 1st Newton-Raphson step

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

ψ

x

potential well: wave functions of the lowest states (not normalized)

ground state

1st excitation

2nd excitation

Figure 7: Infinite potential well. (top) First Newton-Raphson step for the second excitation.
(bottom) Non-normalized wave functions of the three lowest states.

2nd excitation:

E_num = +90.000000 .

E_num = +88.813303 , E_ana = +88.826440 , \psi(x=1) = -0.006537 .

E_num = +88.826438 , E_ana = +88.826440 , \psi(x=1) = +0.000074 .

E_num = +88.826440 , E_ana = +88.826440 , \psi(x=1) = +0.000000 .

6.2.2 Example: QM, 1 dimension, harmonic oscillator

� Schrödinger equation and boundary conditions:

− ℏ2

2m
ψ′′(x) +

mω2

2
x2ψ(x) = Eψ(x) , ψ(x = −∞) = ψ(x = +∞) = 0 (83)

(numerical challenge are boundary conditions at x = ±∞).

� Reformulate equations using exclusively dimensionless quantities:

– Length scale from ℏ, m, ω:
[ℏ] = kgm2/s

34

[m] = kg
[ω] = 1/s
→ length scale a = (ℏ/mω)1/2 .

–

x̂ =
x

a
(84)

→ d

dx̂
= a

d

dx
(85)

→ − d2

dx̂2
ψ(x̂) + x̂2ψ(x̂) =

2E

ℏω︸︷︷︸
=Ê

ψ(x̂) (86)

(Ê is “dimensionless energy”), i.e.

− d2

dx̂2
ψ(x̂) + x̂2ψ(x̂) = Êψ(x̂) , ψ(x̂ = −∞) = ψ(x̂ = +∞) = 0. (87)

� Parity:

– Parity P : spatial reflection, i.e. PxP = −x, Pψ(+x) = ψ(−x).
– Eigenvalues and eigenfunctions of P :

Pψ(x) = λψ(x) → PP︸︷︷︸
=1

ψ(x) = λ2ψ(x) → λ2 = 1 → λ = ±1.

(88)

* Common notation: P = ± (instead of λ = ±).

* P = +: Pψ(x) = ψ(−x) and Pψ(x) = +ψ(x) → ψ(x) = +ψ(−x), i.e. even
eigenfunction.

* P = −: Pψ(x) = ψ(−x) and Pψ(x) = −ψ(x) → ψ(x) = −ψ(−x), i.e. odd
eigenfunction.

– [H,P] = 0, if V (+x) = V (−x), i.e. for symmetric potentials.

→ Eigenfunctions ψ(x) of H can be chosen such that they are also eigenfunctions
of P .

→ P = +

→ ψ(x) = +ψ(−x) → ψ′(x = 0) = 0. (89)

→ P = −
→ ψ(x) = −ψ(−x) → ψ(x = 0) = 0. (90)

***** November 09, 2023 (8th lecture) *****

� Numerical problems with boundary conditions ψ(x̂ = −∞) = ψ(x̂ = +∞) = 0 (eq. (87)).

� Numerical solution, first attempt:

– Use either ψ′(x̂ = 0) = 0 or ψ(x̂ = 0) = 0 ((89) or (90)) instead of ψ(x̂ = −∞) = 0.

– Use ψ(x̂ = L/a) = 0, where x = L is far in the classically forbidden region
(E ≪ V (L)), i.e. where ψ is exponentially suppressed.

35

– Rewrite Schrödinger equation to system of first order ODEs:

ψ′(x̂) = ϕ(x̂) , ϕ′(x̂) =
(
x̂2 − Ê(x̂)

)
ψ(x̂) , Ê′(x̂) = 0, (91)

i.e.

y(x) =
(
ψ(x̂), ϕ(x̂), Ê(x̂)

)
, f(y(x), x) =

(
ϕ(x̂),

(
x̂2 − Ê(x̂)

)
ψ(x̂), 0

)
. (92)

– Initial conditions for P = + for RK/shooting method:

* ψ(x̂ = 0.0) = 1.0
(must be ̸= 0, apart from that arbitrary; different choices result in differently
normalized wavefunctions),

* ϕ(x̂ = 0.0) = 0.0
(boundary condition at x̂ = 0),

* Ê(x̂ = 0.0) = E
(will be tuned by Newton-Raphson method such that boundary condition
ψ(x̂ = L/a) = 0 is fulfilled; has to be close to the energy eigenvalue one is
interested in [e.g. ground state: E = ℏω/2, i.e. Ê = 1, i.e. choose E ≈ 1];
typically E is the result of a crude graphical determination of energy eigenvalues
[see section 6.2.1]).

(For P = − use ψ(x̂ = 0.0) = 0.0, ϕ(x̂ = 0.0) = 1.0.)

– Boundary condition ψ(x̂ = L/a) = 0 numerically hard to implement; a tiny admixture
of the exponentially increasing solution will dominate for large x̂, as shown in Figure 8
(4th order RK).

� Numerical solution, more practical approach:

– Use “... a tiny admixture of the exponentially increasing solution will dominate for
large x̂ ...” to your advantage:

36

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8 9

ψ

x

HO: bc ψ(x>>1) = 0 numerically hard to implement

E = 1 − 10
−6

E = 1 + 10
−6

Figure 8: HO, numerical problems with boundary condition ψ(x̂ = L/a) = 0.

* Start far in the classically forbidden region using arbitrary initial conditions, e.g.
ψ(x̂ = L/a) = 1.0, ϕ(x̂ = L/a) = 0.0, Ê(x̂ = L/a) = E
or
ψ(x̂ = L/a) = 0.0, ϕ(x̂ = L/a) = 1.0, Ê(x̂ = L/a) = E
or
...

* Tune E via the RK/shooting method such that ψ′(x̂ = 0) = 0 for P = + (or
ψ(x̂ = 0) = 0 for P = −).

– From Figure 9 (top) one can read off rough estimates for the energy eigenvalues,
which can be used to intialize E (4th order RK).

– Figure 9 (bottom) shows the resulting wave functions of the four lowest states (4th
order RK).

– For initial values E ∈ {0.9, 2.9, 4.9, 6.9} convergence after three Newton-Raphson
steps (7 digits of accuracy); see program output below.

ground state:

E_num = +0.900000 .

E_num = +0.988598.

E_num = +0.999834.

E_num = +1.000000.

1st excitation:

E_num = +2.900000 .

E_num = +2.988617.

E_num = +2.999835.

E_num = +3.000000.

2nd excitation:

E_num = +4.900000 .

E_num = +4.990699.

E_num = +4.999911.

37

-8e+21

-6e+21

-4e+21

-2e+21

 0

 2e+21

 4e+21

 6e+21

 8e+21

 1e+22

 1.2e+22

 0 2 4 6 8 10 12

b
o
u
n
d
a
ry

 c
o
n
d
it
io

n
 a

t
x
=

0

E

HO: graphical determination of energy eigenvalues

ψ’(x=0)

ψ(x=0)

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

b
o
u
n
d
a
ry

 c
o
n
d
it
io

n
 a

t
x
=

0

E

HO: graphical determination of energy eigenvalues

log(|ψ’(x=0)|+1)

log(|ψ(x=0)|+1)

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

ψ

x

HO: wave functions of the lowest states (not normalized)

ground state

1st excitation

2nd excitation

3rd excitation

Figure 9: HO. (top) Crude graphical determination of energy eigenvalues. (bottom) Wave
functions of the four lowest states.

E_num = +5.000000.

3rd excitation:

E_num = +6.900000 .

E_num = +6.990720.

E_num = +6.999911.

E_num = +7.000000.

6.2.3 Example: QM, 3 dimensions, spherically symmetric potential

� Spherically symmetric potential: V (r) = V (r), where r = |r|.

� Rewrite Schrödinger equation in spherical coordinates ...

� ... angular dependence of wavefunctions proportional to spherical harmonics, i.e.
ψ(r, ϑ, φ) ∝ Ylm(ϑ, φ) ...

� ... remaining radial equation is second order ODE in r, which can be solved using
RK/shooting.

38

� For details see e.g. Ref. [2].

� Solving such radial equations numerically is common in up-to-date research.

– For example [3]:
The potential of two heavy b̄ quarks in the presence of two light u and/or d quarks can
be computed with lattice QCD (a numerical method to study QCD). This potential
can be used in a standard non-relativistic Schrödinger equation to check, whether the
quarks may form a stable b̄b̄ud tetraquark.
“C. Numerical solution of Schrödinger’s equation
To investigate the existence of a bound state rigorously, we numerically solve the
Schrödinger equation with the Hamiltonian (6). The strongest binding is expected in
an s-wave, for which the radial equation is(
− ℏ2

2µ

d2

dr2
+ 2mB + V (r)

)
R(r) = ER(r) (93)

with the wave function ψ(r) = R(r)/r. We impose Dirichlet boundary conditions
R(rmax) = 0 at sufficiently large rmax (we checked that results are stable for
rmax

>∼ 10 fm). The radial equation (9) can be solved by standard methods (e.g. 4th
order Runge-Kutta shooting) up to arbitrary numerical precision.”

– For example [4]:
The potential of a b̄b (quark-antiquark) pair and of a B̄B (meson-antimeson) pair
(a B meson is composed of a b̄ quark and a light u or d quark) can be computed
with lattice QCD. These potentials can be used in a coupled-channel non-relativistic
Schrödinger equation to predict and explore the spectrum and properties of bottomo-
nium (both stable states and resonances; bottomonium = b̄b).
“A. Numerical methods to solve the coupled channel Schrödinger equation and to de-
termine the poles of the T matrix
In Section II C we defined the entries of the T matrix (19) as the a priori unknown
coefficients t... appearing in the r → ∞ boundary conditions (17) and (18). To de-
termine these coefficients, one has to solve the coupled channel Schrödinger equation
(11). To cross check our results, we used two rather different numerical methods. The
first method corresponds to discretizing the radial coordinate by a uniform grid and
solving the resulting system of linear equations using methods from standard textbooks
(for details see Ref. [28]). The second method corresponds to using an ordinary 4th
order Runge-Kutta algorithm.
To find the poles of TJ̃ in the complex energy plane, characterized by at least one of
its eigenvalues approaching infinity, we applied the Newton-Raphson method to find
the roots of 1/det(TJ̃).”

6.3 Relaxation methods

� See e.g. Ref. [1], section 18.0.

� Discretize time, guess solution ...

� ... then iteratively improve the solution, until the ODE is fulfilled.

39

40

7 Solving systems of linear equations

7.1 Problem definition, general remarks

� A: N × N matrix, i.e. a square matrix, with det(A) ̸= 0 (rows and columns are linearly
independent).

� bj , j = 0, . . . ,M − 1: vectors with N components.

� Typical problems:

– Solve Axj = bj (possibly for several vectors bj).

– Compute A−1.
Do not compute A−1 and solve Axj = bj via xj = A−1bj ... roundoff errors
are typically large.

– Compute det(A).

� Two types of methods:

– Direct methods:

* Solution/result after a finite fixed number of arithmetic operations.

* For large N roundoff errors are typically large.

– Iterative methods:

* Iterative improvement of approximate solution/result.

* No problems with roundoff errors.

* Computationally expensive; therefore, only suited for sparse matrices (“dünn
besetzte Matrizen”).

� How large can N be?

– Dense matrices (“dicht besetzte Matrizen”): N >∼O(1000).

– Sparse matrices: N >∼O(106).

� It might be a good idea to check your result, e.g. by computing Axj and comparing to bj ,
e.g. to exclude large roundoff errors.

***** November 14, 2023 (9th lecture) *****

7.2 Gauss-Jordan elimination (a direct method)

� Goal: solve Axj = bj .

� Problem “compute A−1” included: choose bj = ej , then A
−1 = (x1 x2 . . . xN).

� Basic idea: add/subtract multiples of the linear equations, until solution xj is obvious.

41

� Notation

Axj = bj →

a0,0 a0,1 a0,2 . . . b0,0 . . . b0,M−1

a1,0 a1,1 a1,2 . . . b1,0 . . . b1,M−1

a2,0 a2,1 a2,2 . . . b2,0 . . . b2,M−1
...

...
...

...
...

. (94)

� Step 1: elimination of column 0,

a
(1)
0,k =

a0,k
a0,0

, k = 0, . . . , N − 1 (95)

b
(1)
0,k =

b0,k
a0,0

, k = 0, . . . ,M − 1 (96)

a
(1)
j,k = aj,k − aj,0a

(1)
0,k , j = 1, . . . , N − 1 , k = 0, . . . , N − 1 (97)

b
(1)
j,k = bj,k − aj,0b

(1)
0,k , j = 1, . . . , N − 1 , k = 0, . . . ,M − 1 (98)

(assumption: a0,0 ̸= 0), then a
(1)
0,0 = 1 and a

(1)
j,0 = 0, j = 1, . . . , N − 1, i.e.

1 a
(1)
0,1 a

(1)
0,2 . . . b

(1)
0,0 . . . b

(1)
0,M−1

0 a
(1)
1,1 a

(1)
1,2 . . . b

(1)
1,0 . . . b

(1)
1,M−1

0 a
(1)
2,1 a

(1)
2,2 . . . b

(1)
2,0 . . . b

(1)
2,M−1

...
...

...
...

...

. (99)

� Step n (n = 2, . . . , N): elimination of column n− 1,

a
(n)
n−1,k =

a
(n−1)
n−1,k

a
(n−1)
n−1,n−1

, k = n− 1, . . . , N − 1 (100)

b
(n)
n−1,k =

b
(n−1)
n−1,k

a
(n−1)
n−1,n−1

, k = 0, . . . ,M − 1 (101)

a
(n)
j,k = a

(n−1)
j,k − a

(n−1)
j,n−1a

(n)
n−1,k , j ̸= n− 1 , k = n− 1, . . . , N − 1 (102)

b
(n)
j,k = b

(n−1)
j,k − a

(n−1)
j,n−1b

(n)
n−1,k , j ̸= n− 1 , k = 0, . . . ,M − 1 (103)

(assumption: a
(n−1)
n−1,n−1 ̸= 0), then a

(n)
n−1,n−1 = 1 and a

(n)
j,n−1 = 0, j ̸= n−1, i.e. column n−1

contains 0 . . . 0 1 0 . . . 0.

� (95) to (98) are contained in (100) to (103), when defining a
(0)
j,k = aj,k, b

(0)
j,k = bj,k.

� After step N :

1 0 0 . . . b
(N)
0,0 . . . b

(N)
0,M−1

0 1 0 . . . b
(N)
1,0 . . . b

(N)
1,M−1

0 0 1 . . . b
(N)
2,0 . . . b

(N)
2,M−1

...
...

...
...

...

→ 1xj = b
(N)
j (104)

42

i.e. “b columns” are solutions xj .

� Advantages and disadvantages:

(−) Rather slow to solve Axj = bj .

(−) All vectors bj have to be treated at the same time, otherwise even more inefficient.

(+) Quite o.k. to compute A−1.

7.2.1 Pivoting

� Problems, when using the Gauss-Jordan elimination as presented above:

– Assumption a
(n−1)
n−1,n−1 ̸= 0 might not be fulfilled.

– Large roundoff errors, if a
(n−1)
n−1,n−1 ≈ 0.

� Solution: reorder linear equations, i.e. rows of A and bj , in a numerically advantageous
way.

� Partial pivoting:

– Before step n swap row n− 1 and row j, where n− 1 ≤ j ≤ N − 1 and

|a(n−1)
j,n−1 | = max

k
|a(n−1)

k,n−1|. (105)

→ a
(n−1)
n−1,n−1 ̸= 0, because det(A) ̸= 0 (see section 7.1).

→ Significantly smaller roundoff errors.

� Scaled partial pivoting:

– Problem with partial pivoting:

* E.g., if a0,0 = |a(0)0,0| is small, then partial pivoting will swap line 0 with another
line before step 1.

* However, if you multiply line 0 with a huge number, before using the Gauss-
Jordan elimination method, you solve an equivalent system of linear equations,

which has the same solution; a0,0 = |a(0)0,0| is now large and pivoting will not swap
line 0 with another line before step 1; roundoff errors might then be rather large.

– Before step n swap row n− 1 and row j, where n− 1 ≤ j ≤ N − 1 and

|a(n−1)
j,n−1 |

maxl |a
(0)
j,l |

= max
k

|a(n−1)
k,n−1|

maxl |a
(0)
k,l |

(106)

(“the n− 1-th element in line j is large compared to the other elements in the line”).

� There are even better pivoting strategies, e.g. full pivoting, where also columns are
swapped.

43

7.3 Gauss elimination with backward substitution (a direct method)

� Similar to Gauss-Jordan elimination:

– Step n (n = 1, . . . , N − 1):

* Proceed as defined for Gauss-Jordan elimination (section 7.2) ...

* ... but modify only rows below row n − 1, i.e. generate 0’s below a
(n−1)
n−1,n−1, but

not above.

a
(0)
0,0 a

(0)
0,1 a

(0)
0,2 . . . b

(0)
0,0 . . . b

(0)
0,M−1

0 a
(1)
1,1 a

(1)
1,2 . . . b

(1)
1,0 . . . b

(1)
1,M−1

0 0 a
(2)
2,2 . . . b

(2)
2,0 . . . b

(2)
2,M−1

...
...

...
...

...

. (107)

– Then backward substitution, i.e. computation of xn:

* Start with

xN−1,n =
b
(N−1)
N−1,n

a
(N−1)
N−1,N−1

. (108)

* Then

xN−2,n =
b
(N−2)
N−2,n − a

(N−2)
N−2,N−1xN−1,n

a
(N−2)
N−2,N−2

. (109)

* I.e. perform N steps j = N − 1, N − 2, . . . , 0,

xj,n =
b
(j)
j,n −

∑N−1
k=j+1 a

(j)
j,kxk,n

a
(j)
j,j

. (110)

� Advantages and disadvantages:

(−) All vectors bj have to be treated at the same time, otherwise inefficient.

(+) For a small number of vectors bj , i.e. for M ≪ N , Gauss elimination with backward
substitution is ≈ 1.5× faster than Gauss-Jordan elimination.

� Numerical experiment:

– Random matrices and vectors, N ∈ {4, 100}, elements aj,k and bj chosen uniformly
in [−1,+1].

– Gauss elimination with backward substitution using different pivoting strategies.

– Corresponding C code: see appendix D.

N = 4

no pivoting:

+0.68 -0.21 +0.57 +0.60 | +0.82

44

-0.60 -0.33 +0.54 -0.44 | +0.11

-0.05 +0.26 -0.27 +0.03 | +0.90

+0.83 +0.27 +0.43 -0.72 | +0.21

+0.68 -0.21 +0.57 +0.60 | +0.82

+0.00 -0.52 +1.04 +0.09 | +0.84

+0.00 +0.24 -0.23 +0.07 | +0.96

+0.00 +0.53 -0.26 -1.45 | -0.79

+0.68 -0.21 +0.57 +0.60 | +0.82

+0.00 -0.52 +1.04 +0.09 | +0.84

+0.00 +0.00 +0.26 +0.11 | +1.35

+0.00 +0.00 +0.81 -1.36 | +0.07

+0.68 -0.21 +0.57 +0.60 | +0.82

+0.00 -0.52 +1.04 +0.09 | +0.84

+0.00 +0.00 +0.26 +0.11 | +1.35

+0.00 +0.00 +0.00 -1.69 | -4.19

x = (-2.22 +7.31 +4.24 +2.47).

b_check = (+0.82 +0.11 +0.90 +0.21).

b_check - b = (-2.2e-16 +1.5e-16 -1.1e-16 -1.7e-15).

|b_check - b| = +1.74535e-15.

partial pivoting:

+0.68 -0.21 +0.57 +0.60 | +0.82

-0.60 -0.33 +0.54 -0.44 | +0.11

-0.05 +0.26 -0.27 +0.03 | +0.90

+0.83 +0.27 +0.43 -0.72 | +0.21

+0.83 +0.27 +0.43 -0.72 | +0.21

+0.00 -0.13 +0.85 -0.97 | +0.26

+0.00 +0.27 -0.25 -0.01 | +0.92

+0.00 -0.43 +0.21 +1.18 | +0.65

+0.83 +0.27 +0.43 -0.72 | +0.21

+0.00 -0.43 +0.21 +1.18 | +0.65

+0.00 +0.00 -0.11 +0.73 | +1.32

+0.00 +0.00 +0.79 -1.33 | +0.07

+0.83 +0.27 +0.43 -0.72 | +0.21

+0.00 -0.43 +0.21 +1.18 | +0.65

+0.00 +0.00 +0.79 -1.33 | +0.07

+0.00 +0.00 +0.00 +0.54 | +1.33

x = (-2.22 +7.31 +4.24 +2.47).

b_check = (+0.82 +0.11 +0.90 +0.21).

b_check - b = (-1.1e-16 -3.6e-16 -3.3e-16 +1.1e-16).

45

|b_check - b| = +5.15537e-16.

scaled partial pivoting:

+0.68 -0.21 +0.57 +0.60 | +0.82

-0.60 -0.33 +0.54 -0.44 | +0.11

-0.05 +0.26 -0.27 +0.03 | +0.90

+0.83 +0.27 +0.43 -0.72 | +0.21

+0.68 -0.21 +0.57 +0.60 | +0.82

+0.00 -0.52 +1.04 +0.09 | +0.84

+0.00 +0.24 -0.23 +0.07 | +0.96

+0.00 +0.53 -0.26 -1.45 | -0.79

+0.68 -0.21 +0.57 +0.60 | +0.82

+0.00 +0.24 -0.23 +0.07 | +0.96

+0.00 +0.00 +0.55 +0.23 | +2.88

+0.00 +0.00 +0.25 -1.59 | -2.88

+0.68 -0.21 +0.57 +0.60 | +0.82

+0.00 +0.24 -0.23 +0.07 | +0.96

+0.00 +0.00 +0.55 +0.23 | +2.88

+0.00 +0.00 +0.00 -1.69 | -4.19

x = (-2.22 +7.31 +4.24 +2.47).

b_check = (+0.82 +0.11 +0.90 +0.21).

b_check - b = (-2.2e-16 -6.9e-17 +1.1e-16 -1.5e-15).

|b_check - b| = +1.52081e-15.

N = 100

no pivoting:

|b_check - b| = +2.25693e-11.

partial pivoting:

|b_check - b| = +1.46047e-12.

scaled partial pivoting:

|b_check - b| = +3.28886e-13.

***** November 16, 2023 (10th lecture) *****

46

7.4 LU decomposition (a direct method)

� LU decomposition of A:

A = LU (111)

L =


1 0 0 0 . . .
α1,0 1 0 0 . . .
α2,0 α2,1 1 0 . . .
α3,0 α3,1 α3,2 1 . . .
...

...
...

...

 (112)

U =


β0,0 β0,1 β0,2 β0,3 . . .
0 β1,1 β1,2 β1,3 . . .
0 0 β2,2 β2,3 . . .
0 0 0 β3,3 . . .
...

...
...

...

 . (113)

– L: lower triangular matrix.

– U : upper triangular matrix.

– Allows efficient computation of the solution of Ax = b as well as of det(A) (see
section 7.4.2 and section 7.4.3).

7.4.1 Crout’s algorithm

� To compute the LU decomposition of A, one has to solve N2 equations,

aj,k =
N−1∑
l=0

αj,lβl,k, (114)

with respect to αj,k and βj,k.

� Solving these equations is trivial, when considering them in a particular order:

– For k = 0, 1, . . . , N − 1, i.e. for all columns:

* Step 1:

βj,k = aj,k −
j−1∑
l=0

αj,lβl,k , j = 0, 1, . . . , k. (115)

* Step 2:

αj,k =
1

βk,k

(
aj,k −

k−1∑
l=0

αj,lβl,k

)
, j = k + 1, k + 2, . . . , N − 1. (116)

47

� Pivoting as important as for Gauss-Jordan elimination and for Gauss elimination with
backward substitution.

– Proceed as discused in section 7.2.1, e.g. use partial pivoting or scaled partial pivoting.

– For j = k in (115) use “optimal row”, i.e. swap row k with one of the rows
k+1, k+2, . . . , N−1 (the resulting LU decomposition corresponds to a “row-permuted
matrix A”).

– “Optimal” depends on the pivoting strategy, e.g. for partial pivoting the optimal row
has the largest βk,k.

– Optimal row can be determined rather efficiently, because expressions marked in red
in (115) and (116) are identical for j ≥ k
→ first compute all “red expressions”
→ then exchange rows according to pivoting strategy.

7.4.2 Computation of the solution of Ax = b

� Proceed in two steps:

(1) Compute y, defined by

Ax = L Ux︸︷︷︸
=y

= b, (117)

via forward substitution,

yj = bj −
j−1∑
k=0

αj,kyk , j = 0, 1, . . . , N − 1, (118)

48

i.e. solve Ly = b (note that, when pivoting has been used in the computation of
the LU decomposition, the components of b have to be reordered accordingly, i.e.
one has to keep track of and store the permutation of rows, while computing the LU
decomposition).

(2) Compute x via backward substitution (as in section 7.3),

xj =
yj −

∑N−1
k=j+1 βj,kxk

βj,j
, j = N − 1, N − 2, . . . , 0, (119)

i.e. solve Ux = y.

� Advantages and disadvantages:

(+) LU decomposition independent of vectors bj , i.e. corresponding solutions xj do not
have to be computed at the same time.

(+) Not slower than Gauss-Jordan elimination and Gauss elimination with backward
substitution for Axj = bj and for A−1.

(+) Allows computation of det(A) (see section 7.4.3)

7.4.3 Computation of det(A)

�

det(A) = det(LU) = det(L)︸ ︷︷ ︸
=1

det(U) =
N−1∏
j=0

βj,j . (120)

� Pivoting can change the sign of det(A):

det(A) = (−1)sign(row permutation)
N−1∏
j=0

βj,j . (121)

7.5 QR decomposition (a direct method)

� Due to limited time not discussed.

7.6 Iterative refinement of the solution of Ax = b (for direct methods)

� Numerically obtained x (e.g. via LU decomposition) is only approximate solution of
Ax = b, because of roundoff errors, i.e. Ax = b̃ ̸= b

� Refine x as follows:

A
(
x+ δx

)
= b → Aδx = b− Ax︸︷︷︸

=b̃

= δb, (122)

49

i.e. solve

Aδx = δb; (123)

refined solution is x+ δx.

� Several iterations possible.

� Highly recommended:

– Computationally inexpensive, when using the LU decomposition

– Might improve accuracy significantly.

7.7 Conjugate gradient method (an iterative method)

� Problem: storing N ×N matrices for N ≫ 10000 typically exceeds memory limit.

– E.g. a real 10000× 10000 matrix requires (10000)2 × 8 ≈ 1GB.

� Sparse matrices of that size can be stored easily (only elements ̸= 0 need to be stored).

– E.g. a real tridiagonal 10000× 10000 matrix requires 3× 10000× 8 ≪ 1MB.

� Applying direct methods to large sparse matrices still not practicable, because direct
methods “transform sparse matrices into dense matrices”.

� Iterative methods do not transform A, i.e. only use the original A.
→ Iterative methods particularly suited to solve Ax = b, when A is a large sparse matrix.

***** November 21, 2023 (11th lecture) *****

7.7.1 Symmetric positive definite A

� Goal: solve Ax = b (a single vector b, no computation of A−1 or det(A)).

� Basic idea:

– Minimize

f(x) =
1

2
xAx− bx, (124)

which describes an N -dimensional paraboloid, with respect to x.

– The minimum is characterized by

∇f(x) = Ax− b = 0, (125)

i.e. it is the solution of Ax = b.

� Algorithm:

– Guess solution x0, e.g. x0 = 0 (can be far away from the correct solution).

50

– n = 0.

(1) Select direction pn (details below).

– Minimize f(xn + αnpn) with respect to αn.

– xn+1 = xn + αnpn.

– If |b−Axn+1| sufficiently small:

→ xn+1 is approximate solution.
End of algorithm.

Else:

→ n = n+ 1.
Go to (1).

� It is extremely important to chose the directions pn in a clever way. Otherwise the al-
gorithm can be very slow and impractical. A simple example for N = 2 is shown in the
figure below (black ellipsoids are isolines of the paraboloid f(x) = 0).

� Detailed equations:

– r0 = b−Ax0 (“residual”, gradient of the paraboloid at x0), p0 = r0.

– During each iteration:

αn =
rnrn

pnApn
(126)

rn+1 = rn − αnApn (127)

βn =
rn+1rn+1

rnrn
(128)

pn+1 = rn+1 + βnpn (129)

(see Ref. [1], section 2.7.6).

� One can show: after n steps xn is not just minimum with respect to direction pn−1, but
also minimum with respect to all previous directions p0,p1, . . . ,pn−2.
→ Solution of Ax = b after N steps or less.

51

� Typically solution of Ax = b obtained after significantly less than N steps.

7.7.2 Example: static electric charge inside a grounded box in 2 dimensions

� Consider a static electric charge (charge q) in 2 dimensions centered inside a quadratic
grounded box (box length 2R). Compute the electrostatic potential ϕ(x, y) numerically
by solving the Poisson equation

△ϕ(x, y) = qδ(x, y) (130)

with boundary conditions

ϕ(x, y) = 0 if |x| ≥ R or |y| ≥ R. (131)

� Discretize the linear partial differential equation (130) by introducing a uniform lattice
with (2n+ 1)× (2n+ 1) lattice sites and by replacing derivatives by finite differences4,

(x, y) → (xj , yk) = (j, k)× a , j, k = −n,−(n− 1), . . . ,+n , a =
2R

2n
(132)

ϕ(x, y) → ϕj,k ≡ ϕ(xj , yk) (133)

△ϕ(x, y) →
ϕj+1,k + ϕj−1,k + ϕj,k+1 + ϕj,k−1 − 4ϕj,k

a2
≡ △ϕ(x, y)

∣∣∣∣
(x,y)=(xj ,yj)

(134)

δ(x, y) → 1

a2
δj,0δk,0 ≡ δ(xj , yj) (135)

4There might be better ways to treat this partial differential equation numerically (see section 13). The main
intention of this example is to demonstrate the conjugate gradient method in the context of a simple physics
example.

52

(δj,k denotes the Kronecker delta).

� Dimensionless discretized Poisson equation:

△ϕ(x, y) = qδ(x, y) (136)

→ △ϕ(x, y)
∣∣∣∣
(x,y)=(xj ,yj)

= qδ(xj , yj) (137)

→ ϕ̂j+1,k + ϕ̂j−1,k + ϕ̂j,k+1 + ϕ̂j,k−1 − 4ϕ̂j,k = δj,0δk,0 (138)

with ϕ̂ = ϕ/q.

� Discretized boundary conditions:

ϕ̂−n,k = ϕ̂+n,k = ϕ̂j,−n = ϕ̂j,+n = 0, (139)

i.e. the potential on the 8n boundary lattice sites is fixed to ϕ̂ = 0.

� The potential ϕ̂j,k, j, k = −(n−1),−(n−2), . . . ,+(n−1) on the remaining N = (2n−1)2

lattice sites inside the quadratic box has to be determined by solving the linear equations
(138), ϕ̂j,k, j, k = −(n − 1),−(n − 2), . . . ,+(n − 1) (there are N linear equations for N
unknowns).

� These linear equations can be written in the standard form

A(j,k),(j′,k′)x(j′,k′) = b(j,k) , j, k, j′, k′ = −(n− 1),−(n− 2), . . . ,+(n− 1) (140)

by defining

A(j,k),(j′,k′) = δj+1,j′δk,k′ + δj−1,j′δk,k′ + δj,j′δk+1,k′ + δj,j′δk−1,k′ − 4δj,j′δk,k′ (141)

x(j,k) = ϕ̂j,k (142)

b(j,k) = δj,0δk,0. (143)

***** November 23, 2023 (12th lecture) *****

� In the program code it is convenient to replace indices (j, k) by superindices r via

r = (2n− 1)
(
k + (n− 1)

)
+
(
j + (n− 1)

)
, r = 0, 1, . . . , N − 1, (144)

which is equivalent to

j = (r mod (2n− 1))− (n− 1) , k = ⌊r/(2n− 1)⌋ − (n− 1) (145)

(see corresponding C code in appendix E).

� A is a sparse symmetric matrix (entries “−4” on the diagonal, “+1” on four off-diagonals,
two below and two above the diagonal). One can show that A is negative definite (which
is as good as the requirement “positive definite” [see title of section 7.7.1]; one just has to
multiply all linear equations by −1, to obtain the positive definite matrix −A).

53

� In the program code the matrix A should not be stored as an array (this would unneces-
sarily occupy a huge amount of memory and prevent computations with a large number
of lattice sites). A can conveniently be implemented as a function (see corresponding C
code in appendix E).

� Comparison of several lattice sizes:

– n = 100 → 420 iterations, 0.7 sec,

– n = 400 → 1598 iterations, 40.5 sec,

– n = 1000 → 3958 iterations, 10 min 14 sec

(CPU time on a standard laptop, stopping criterion |Ax− b| < 10−10).

� Note that n = 1000 corresponds to a matrix A with N ≈ 4× 106 rows and columns.
Using a direct method would require around (4× 106)2 × 8 byte = 128 000GB.

� Figure 10:

– Shows ϕ/q for n = 100 plotted along one of the axes (red dots) and along one of the
diagonals (green dots).

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-1 -0.5 0 0.5 1

φ/
q

r/R

on axis
diagonal

no box (analytical solution)

potential of a static charge centered inside a grounded box (n = 100)

Figure 10: Numerically computed electrostatic potential ϕ for a static charge q centered inside
a grounded cubic box as a function of r (red points: along the x axis; green points: along a
diagonal). The blue curve represents the potential in absence of the grounded box, which can
be calculated analytically.

54

– The blue curve represents the potential in absence of the grounded box, which can
be calculated analytically:

△ϕno box(x, y) = qδ(x, y)

→
∫
d2r△ϕno box(x, y) =

∮
dn ∇ϕno box(x, y)︸ ︷︷ ︸

=E(x,y)

= 2πrEr(r) = q

→ Er(r) =
q

2πr

→ ϕno box(r) =

∫
dr Er(r) =

q

2π
ln(r/R). (146)

A constant has been added such that ϕno box matches the numerical on-axis result at
r/R = 0.5.

– The grounded quadratic box breaks rotational symmetry and causes distortions com-
pared to ϕno box, which are rather pronounced close to the boundary.
(this is expected)

– For intermediate r/R the red and green data points and the blue curve are very
similar.
(this is also expected and a valuable cross-check of the numerics)

– For very small r/R (if r/a ≫ 1 is not anymore fulfilled), there are also strong dis-
crepancies between the numerical solutions and ϕno box (hardly visible in the plot).
The reason for these discrepancies are discretization errors. To study small r/R one
has to work with large lattices, i.e. use large n.
(this is typical for lattice computations)

7.7.3 Generalizations

� For non-symmetric and/or non-positive definite matrices A:

– Biconjugate gradient method.

– Minimum residual method.

– Generalized minimum residual method.

– ...

7.7.4 Condition number, preconditioning

� Any N ×N matrix can be decomposed according to

A = U diag(ω0, ω1, . . . , ωN−1) V
T , (147)

where U and V are orthogonal matrices and ωj ≥ 0 are the singular values of A 5.

5For symmetric positive definite matrices A, as discussed in section 7.7.1, singular values are identical to
eigenvalues and the columns of the matrix U = V contain the normalized eigenvectors (mathematically this is
equivalent to the well-known spectral decomposition from quantum mechanics).

55

� Condition number:

cond(A) =
maxj(ωj)

minj(ωj)
. (148)

� If cond(A) is large, the conjugate gradient method is inefficient:

– Many iterations necessary.

– Numerical accuracy limited.

� Illustration for symmetric positive definite A:

– ωj are eigenvalues of A.

– Semi-axes of the ellipsoids f(x) = (1/2)xAx − bx = const are proportional to
(ωj)

−1/2.

– Numerically problematic, if ellipsoids have significantly different semi-axes.

– Numerically ideal, if ellipsoids are spheres (solution obtained after one step; see “Fig-
ure 7.B”).

� Caution:

– If A is not symmetric and positive definite, one could solve ATAx = ATb instead of
Ax = b; then one could use the conjugate gradient method, since ATA is symmetric
and positive definite.

– Do not do that, because cond(ATA) = (cond(A))2, i.e. the conjugate gradient method
applied to ATA is significantly more inefficient than other generalized methods (see
section 7.7.3) applied to A.

***** November 28, 2023 (13th lecture) *****

� Quite often preconditioning is advantageous:

– Select an N ×N matrix Ã with the following properties:

* Ã ≈ A.

* Ãx = b can be solved easily (e.g. analytically).

– Compute Ã−1, solve Ãy = b.

– Solve Ã−1Ax = Ã−1b = y numerically (advantage: cond(Ã−1A) ≈ 1, because
Ã ≈ A).

56

8 Numerical integration

8.1 Numerical integration in 1 dimension

� Goal: Compute the definite integral

I =

∫ b

a
dx f(x). (149)

� Many applications in physics, e.g. normalizing wave functions in quantum mechanics,
solving ODEs by separation of variables, etc.

8.1.1 Newton-Cotes formulas

� Basic principle: Approximate f(x) using a polynomial, integrate the polynomial analyti-
cally.

� In detail:

– Approximate f(x) using Lagrange polynomials:

* Select n+ 1 points xj , j = 0, 1, . . . , n.

* Compute/evaluate samples fj = f(xj).

* Langrange polynomials:

lj(x) =
∏
k ̸=j

x− xk
xj − xk

, (150)

i.e. lj(xk) = δjk.

* Approximation of f(x):

f(x) ≈ g(x) =
n∑

j=0

fjlj(x). (151)

57

– Integrate g(x) instead of f(x) to obtain an approximation of the integral,

I =

∫ b

a
dx f(x) ≈

∫ b

a
dx g(x) =

∫ b

a
dx

n∑
j=0

fjlj(x) =

=

n∑
j=0

fj

∫ b

a
dx lj(x)︸ ︷︷ ︸
=wj

=

n∑
j=0

fjwj . (152)

– Error estimates (valid for a ≤ xj ≤ b):

* Even n:

∆I =

∣∣∣∣ ∫ b

a
dx

(
f(x)− g(x)

)∣∣∣∣ =
1

(n+ 2)!

(∫ b

a
dxx

n∏
j=0

(x− xj)

)
︸ ︷︷ ︸

∼(b−a)n+3

f (n+2)(ξ)

(153)

with a < ξ < b (f (n+2) denotes the n + 2-th derivative, i.e. the integration of
degree n+ 1 polynomials is exact).

* Odd n:

∆I =

∣∣∣∣ ∫ b

a
dx

(
f(x)− g(x)

)∣∣∣∣ =
1

(n+ 1)!

(∫ b

a
dx

n∏
j=0

(x− xj)

)
︸ ︷︷ ︸

∼(b−a)n+2

f (n+1)(ξ)

(154)

with a < ξ < b (f (n+1) denotes the n + 1-th derivative, i.e. the integration of
degree n polynomials is exact).

* Error estimates ∆I are only useful, if derivatives f (n+2) and f (n+1) are bounded
(not the case, if f has singularities).

* For a derivation of these error estimates see e.g. Ref. [5].

� Trapezoidal rule (n = 1): x0 = a, x1 = b,

I =

∫ b

a
dx f(x) ≈

(
1

2
f0 +

1

2
f1

)
h (155)

∆I =
1

2

(∫ b

a
dx

(x− a)(x− b)

2

)
f ′′(ξ) = −h

3

12
f ′′(ξ) = O(h3) (156)

(h = (b− a)/n).

� Simpson’s rule (n = 2): x0 = a, x1 = a+ h, x2 = a+ 2h = b, i.e. equidistant points,

I =

∫ b

a
dx f(x) ≈

(
1

3
f0 +

4

3
f1 +

1

3
f2

)
h (157)

∆I = . . . = −h
5

90
f (4)(ξ) = O(h5) (158)

(coefficients 1/3, 4/3 and 1/3 can be obtained in a straightforward way from (152)).

58

� There are further common “integration rules”, e.g. Simpson’s 3/8 rule or Boole’s rule.

� Examples (see Ref. [5]):

–

I1 =

∫ 1

0
dx

1

1 + x2
=

π

4
. (159)

* I1 = +0.7853 . . . (analytically).

* I1 = +0.7500 . . ., ∆I1 = +0.0353 . . . (Trapezoidal rule).

* I1 = +0.7833 . . ., ∆I1 = +0.0020 . . . (Simpson’s rule).

–

I2 =

∫ 1

0
dx ex = e− 1. (160)

* I2 = +1.7182 . . . (analytically).

* I2 = +1.8591 . . ., ∆I2 = −0.1408 . . . (Trapezoidal rule).

* I2 = +1.7188 . . ., ∆I2 = −0.0005 . . . (Simpson’s rule).

� Iterated trapezoidal rule:

– Split the interval [a, b] into N sub-intervals of the same size and apply the trapezoidal
rule for each sub-interval:

I =

∫ b

a
dx f(x) ≈

(
1

2
f0 + f1 + f2 + . . .+ fN−1 +

1

2
fN

)
h = TN (161)

∆I = N ×O(h3) = O(1/N2). (162)

(h = (b− a)/N).

– Iteratively increase the number of sub-intervals by a factor of 2 in each step, i.e.
N → 2N , until the approximation of I is sufficiently accurate (error is reduced by a
factor of around 4 in each step).

59

***** November 30, 2023 (14th lecture) *****

� Iterated Simpson’s rule:

– Approximate I according to

I =

∫ b

a
dx f(x) ≈ 4

3
T2N − 1

3
TN . (163)

– Naive expectation: ∆I = O(1/N2).

– Closer inspection shows that ∆ is much smaller:

4

3
T2N − 1

3
TN =

(
1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 + . . .+

2

3
f2N−2 +

4

3
f2N−1 +

1

3
f2N

)
h

(164)

(h = (b− a)/2N), which is the iterated Simpson’s rule, i.e. ∆I = O(1/N4).

� Algorithm:

(1) Compute TN (eq. (161)).

(2) Compute T2N (eq. (161)), reuse even samples f0, f1, f2, . . . , fN from step (1) as “even
samples” f0, f2, f4, . . . , f2N (evaluating f(x) might be expensive).

– Approximate I according to (4/3)T2N − (1/3)TN , to reduce the error from O(1/N2)
to O(1/N4).

– If the approximation of I is sufficiently accurate:

→ End of algorithm.

Else:

→ N → 2N .
Go to (1).

8.1.2 Gaussian integration

� Due to limited time not discussed.

60

8.2 Numerical integration in D ≥ 2 dimensions

� Goal: Compute the definite integral

I =

∫
R
dDx f(x), (165)

where x = (x1, x2, . . . , xD) and R ⊂ RD is the domain of integration.

� More difficult than in 1 dimension, because:

– Number of samples fj = f(xj) can be very large (N samples in 1 dimension → ND

samples in D dimensions).

– R might be “complicated”.

8.2.1 Nested 1-dimensional integration

� D = 3 in the following (generalization to arbitrary D obvious).

� Notation: x = (x, y, z).

� Determine x1 (minimal x in R) and x2 (maximal x in R).

� Determine y1(x) (minimal y in R ∪ S(x), where S(x) is a plane parallel to the y-z plane
containing x) and y2(x) (maximal y in R ∪ S(x)).

� Determine z1(x, y) (minimal z in R ∪ S(x, y), where S(x, y) is a straight line parallel to
the z axis containing x and y) and z2(x, y) (maximal z in R ∪ S(x, y)).

� I can be written as nested integrals in 1 dimension,

I =

∫
R
d3x f(x, y, z) =

∫ x2

x1

dx

∫ y2(x)

y1(x)
dy

∫ z2(x,y)

z1(x,y)
dz f(x, y, z)︸ ︷︷ ︸

=I(x,y)︸ ︷︷ ︸
=I(x)

. (166)

61

� Nested integrals might be more complicated, if R is not convex. e.g.∫ y2(x)

y1(x)
dy . . . →

∫ y2(x)

y1(x)
dy . . .+

∫ y4(x)

y3(x)
dy . . . (167)

� Step 1:
Compute samples of I(x, y) (typically N2 samples) using e.g. techniques from section 8.1.

� Step 2:
Compute samples of I(x) (typically N samples) using e.g. techniques from section 8.1.

� Step 3:
Compute I using e.g. techniques from section 8.1.

8.2.2 Monte Carlo integration

� Statistical approximation of I using random numbers; similar to an experimental measure-
ment the result has an error bar.

� Select N points x1,x2, . . . ,xN ∈ R randomly and uniformly.

�

I =

∫
R
dDx f(x) = V (R)⟨f⟩︸ ︷︷ ︸

=I≈I

±V (R)

(
⟨(f − ⟨f⟩)2⟩
N − 1

)1/2

︸ ︷︷ ︸
=∆I

, (168)

where V (R) is the volume of R, ⟨(f − ⟨f⟩)2⟩ = ⟨f2⟩ − ⟨f⟩2 and

⟨f⟩ =
1

N

N∑
j=1

f(xj) (169)

⟨f2⟩ =
1

N

N∑
j=1

(
f(xj)

)2
. (170)

62

� Error ∆I: probability for I ∈ [I −∆I, I +∆I] is ≈ 68%.

� Major disadvantage: slow convergence, i.e. ∆I ∝ 1/
√
N (“to reduce the error by a factor

of around 2 you need 4 times as many samples”).

� Advantages:

– Very large D possible, e.g. D = 103 or D = 106 (quite efficient, if f(x) is “smooth”;
very inefficient, if f(x) has strongly localized peaks).

***** December 05, 2023 (15th lecture) *****

– “Complicated domains” R possible, if R can be defined by a function

g(x) =

{
1 if x ∈ R
0 otherwise

. (171)

* Define “simple domain” R̃ ⊃ R, e.g. a D-dimensional box.

*

I =

∫
R̃
dDx f(x)g(x). (172)

* Right hand side of (172) can be evaluated in a straightforward way using Monte
Carlo integration.

8.2.3 When to use which method?

� For very precise computations (many digits of accuracy)
→ nested 1-dimensional integration
(convergence of Monte Carlo integration too slow, ∆I ∝ 1/

√
N).

� Complicated domain easy for Monte Carlo integration, more difficult for nested 1-dimensional
integration.

� Nested 1-dimensional integration requires smooth integrands, otherwise error estimates
useless.

� Monte Carlo integration requires integrands, which are not strongly peaked, otherwise
huge statistical errors.

63

� Complicated domain, integrand, which is not strongly peaked, limited accuracy o.k.
→ Monte Carlo integration.

� Simple domain, integrand smooth
→ nested 1-dimensional integration.

� Strongly oscillating or discontinuous integrand
→ Monte Carlo integration.

64

9 Eigenvalues and eigenvectors

9.1 Problem definition, general remarks

� Eigenvalue problem: Find eigenvalues λj and eigenvectors vj ̸= 0, j = 1, . . . , N fulfilling

Avj = λjvj (173)

(A: N ×N matrix).

� Eigenvalues are roots of the characteristic polynomial det(A− λj), i.e. solutions of

det
(
A− λj

)
= 0. (174)

� The characteristic polynomial is a degree-N polynomial, i.e.

– N roots (= eigenvalues) λj (might be complex, not necessarily different),

– N eigenvectors vj (might be complex, not necessarily linearly independent).

� Properties of eigenvalues and eigenvectors for specific classes of matrices:

– A real, symmetric (AT = A):
λj real, vj can be chosen real.

– A complex, hermitian (A† = A):
λj real.

– A not symmetric/not hermitian:
λj and vj typically complex.

– A normal (AA† = A†A):

* λj pairwise distinct:
vj orthogonal.

* λj degenerate:
can be chosen orthogonal (e.g. using Gram-Schmidt orthogonalization).

� Generalized eigenvalue problem: find eigenvalues λj and eigenvectors vj ̸= 0,
j = 1, . . . , N fulfilling

Avj = λjBvj (175)

(A, B: N ×N matrices).

– Can be rewritten as a standard eigenvalue problem:

B−1Avj = λjvj . (176)

– If A symmetric and B symmetric and positive definite, use the following method:

* Choelesky decomposition (“square root of a matrix”; see e.g. Ref. [1]): B = LLT ,
where L is a lower triangular matrix.

65

* Then

Avj = λjLL
Tvj (177)

L−1A(LT)−1︸ ︷︷ ︸
=A′

LTvj︸ ︷︷ ︸
=v′

j

= λj L
Tvj︸ ︷︷ ︸
=v′

j

, (178)

which is a standard eigenvalue problem with a symmetric matrix A′

((L−1)T = (LT)−1 can be shown in a straightforward way). Note that B−1A in
(176) is typically not symmetric.

* Computing L−1 and solving LTvj = v′
j simple, because L is a lower triangular

matrix (see e.g. section 7.3 and section 7.4.2).

9.2 Basic principle of numerical methods for eigenvalue problems

� Iterative procedure: apply similarity transformations

A →
→ (P1)

−1AP1 →
→ (P2)

−1(P1)
−1AP1P2 →

. . .

→ (Pn)
−1 . . . (P2)

−1(P1)
−1︸ ︷︷ ︸

=Q−1

AP1P2 . . . Pn︸ ︷︷ ︸
=Q

= Q−1AQ (179)

such that Q−1AQ is diagonal.

� In practice: stop iteration, as soon as Q−1AQ is “almost a diagonal matrix” (e.g. absolute
values of off-diagonal elements < ϵ = 10−6).

� Matrix Q−1AQ = diag(λ1, λ2, . . . , λN):

– Eigenvalues λj .

– Eigenvectors ej .

***** December 07, 2023 (16th lecture) *****

� Matrix A:

– Eigenvalues λj , because

det(A− λj) = det(Q−1) det
(
A− λj

)
det(Q) = det

(
Q−1

(
A− λj

)
Q
)

=

= det
(
Q−1AQ− λj

)
, (180)

i.e. A and Q−1AQ have the same characteristic polynomial and, consequently, the
same eigenvalues λj .

– Eigenvectors Qej , i.e. the columns of Q are the eigenvectors, because

Q−1AQej = λjej (181)

→ A(Qej) = λj(Qej). (182)

66

� Summary:

(1) Iteratively apply similarity transformations, until Q−1AQ is diagonal.

(2) Eigenvalues are the diagonal elements of Q−1AQ.

(3) If eigenvectors are needed, Q = P1P2 . . . Pn has to be computed; eigenvectors are
columns of Q.

9.3 Jacobi method

� A must be real and symmetric:

→ A is normal.

→ λj real, vj can be chosen real and orthogonal.

→ Eigenvectors form an orthogonal matrix,

Q =
(
v1 v2 . . . vn

)
→ Q−1 = QT =


(v1)

T

(v2)
T

. . .
(vn)

T

 , (183)

which diagonalizes A, i.e.

QTAQ = diag(λ1, λ2, . . . , λN). (184)

� Advantages and disadvantages:

(+) Simple.

(−) Somewhat slower than other methods, e.g. the QR method (see e.g. Ref. [1]).

� Pj : rotation in p-q plane,

A → A′ = (Pj)
TAPj , (185)

such that A′
p,q = A′

q,p = 0.

–

Pj =



1
1

+c +s
1

1
−s +c

1
1


, (186)

where c = cos(φ) and s = sin(φ).

–

A′
kl = ((Pj)

T)k,m︸ ︷︷ ︸
=(Pj)m,k

Am,n(Pj)n,l. (187)

67

* A′
p,p = (Pj)m,pAm,n(Pj)n,p = c2Ap,p + s2Aq,q − 2csAp,q.

* A′
q,q = c2Aq,q + s2Ap,p + 2csAp,q.

* A′
p,q = A′

q,p = (c2 − s2)Ap,q + sc(Ap,p −Aq,q).

* k ̸= p, q: A′
k,p = A′

p,k = cAk,p − sAk,q.

* k ̸= p, q: A′
k,q = A′

q,k = cAk,q + sAk,p.

* k, l ̸= p, q: A′
k,l = Ak,l.

– Choose φ such that A′
p,q = A′

q,p = 0, i.e.

c2 − s2

2sc
=

Aq,q −Ap,p

2Ap,q
(188)

and after defining θ = (Aq,q −Ap,p)/2Ap,q and using (c2 − s2)/2sc = (1/t− t)/2

t2 + 2θt− 1 = 0

→ t = −θ ±
(
θ2 + 1

)1/2
, (189)

where t = tan(φ); numerical tests have shown that it is advantageous to choose the
smaller |t|, i.e.

t =
sign(θ)

|θ|+ (θ2 + 1)1/2
, (190)

implying |φ| ≤ π/4.

� Using (188) the above equations can be implemented in the following equivalent, more
convenient form:

– A′
p,p = Ap,p − tAp,q.

– A′
q,q = Aq,q + tAp,q.

– A′
p,q = A′

q,p = 0.

– k ̸= p, q: A′
k,p = A′

p,k = Ak,p − s(Ak,q + τAk,p), where τ = tan(φ/2) = s/(1 + c).

– k ̸= p, q: A′
k,q = A′

q,k = Ak,q + s(Ak,p − τAk,q).

– k, l ̸= p, q: A′
k,l = Ak,l.

� Convergence of the Jacobi method:

– Applying the Jacobi rotation (185) results in A′
p,q = A′

q,p = 0, but other off-diagonal
elements might become larger.

– Is convergence guaranteed?

– Define “deviation from diagonal matrix”: S =
∑

k ̸=l(Ak,l)
2.

– One can show: S′ = S−2(Ap,q)
2, i.e. S will approach 0, if “large off-diagonal elements

Ap,q are rotated to 0”.

� How to choose p and q?

– Jacobi 1846: “rotate the largest off-diagonal elements |Ap,q| = |Aq,p| to 0”.

– Jacobi’s strategy is numerically too expensive (finding the largest off-diagonal ele-
ments is O(N2), while a Jacobi rotation is only O(N)).

68

– Nowadays: cyclic Jacobi method, pick off-diagonal elements in a fixed order, e.g. A0,1,
A0,2, ..., A0,N−1, A1,2, A1,3, ..., A1,N−1, A2,3, ...

� Eigenvectors, if needed, are columns of Q = P1P2 . . . Pn:

– Initialize Q = 1.

– After each Jacobi rotation (185): Q→ Q′ = QPj :

* Q′
k,p = cQk,p − sQk,q.

* Q′
k,q = cQk,q + sQk,p.

* l ̸= p, q: Q′
k,l = Qk,l.

9.4 Example: molecule oscillations inside a crystal

� N point masses, nearest neighbors coupled by springs (a simple model to study molecule
oscillations inside a 1-dimensional crystal):

L =
N∑
j=1

1

2
mẋ2j −

N−1∑
j=1

1

2
k(xj − xj+1)

2. (191)

� Since the Langrangian is quadratic in ẋj and xj , the EOMs are linear,

mẍ1 = +k(x2 − x1) (192)

mẍ2 = +k(x3 − x2) + k(x1 − x2) (193)

. . . , (194)

i.e. can be written in matrix form,

M ẍ = −Kx (195)

M =


m

m
m

. . .

 (mass matrix) (196)

K =


+k −k
−k +2k −k

−k +2k . . .
.

 (stiffness matrix), (197)

where x = (x1, x2, . . . , xN).

69

� EOMs reformulated using dimensionless quantities:

d2

dt̂2
x̂ = −K̂x̂ (198)

K̂ =


+1 −1
−1 +2 −1

−1 +2 . . .
.

 , (199)

where t̂ =
√
k/mt, x̂ = (x1, x2, . . . , xN)/L and L is a length scale, e.g. from the initial

conditions.

� The ansatz

x̂ = vje
iω̂j t̂ (200)

reduces the system of second order ODEs (198) to an eigenvalue problem,

−ω̂2
jvj = −K̂vj . (201)

***** December 12, 2023 (17th lecture) *****

� Since K̂ is real and symmetric, the Jacobi method can be used to solve the eigenvalue
problem.

� Computation for N = 10:

– C code to compute eigenvalues and eigenvectors of K̂: see appendix F.

N = 10

initial matrix

+1.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

-1.00 +2.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

+0.00 -1.00 +2.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

+0.00 +0.00 -1.00 +2.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.00

+0.00 +0.00 +0.00 -1.00 +2.00 -1.00 +0.00 +0.00 +0.00 +0.00

+0.00 +0.00 +0.00 +0.00 -1.00 +2.00 -1.00 +0.00 +0.00 +0.00

+0.00 +0.00 +0.00 +0.00 +0.00 -1.00 +2.00 -1.00 +0.00 +0.00

+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -1.00 +2.00 -1.00 +0.00

+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -1.00 +2.00 -1.00

+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -1.00 +1.00

S = 1.80000e+01.

sweep 1 ...

70

+0.16 -0.11 -0.22 +0.09 +0.11 -0.05 -0.04 +0.03 +0.01 +0.02

-0.11 +3.63 -0.11 +0.33 +0.09 -0.13 -0.06 +0.04 +0.04 +0.02

-0.22 -0.11 +0.48 -0.08 -0.36 +0.14 +0.15 +0.02 -0.12 +0.01

+0.09 +0.33 -0.08 +3.40 -0.08 +0.40 +0.07 -0.14 -0.03 -0.07

+0.11 +0.09 -0.36 -0.08 +0.63 +0.01 -0.38 +0.31 -0.14 +0.23

-0.05 -0.13 +0.14 +0.40 +0.01 +3.23 -0.05 +0.34 +0.20 +0.03

-0.04 -0.06 +0.15 +0.07 -0.38 -0.05 +0.72 +0.17 -0.50 -0.27

+0.03 +0.04 +0.02 -0.14 +0.31 +0.34 +0.17 +2.86 -0.09 -0.04

+0.01 +0.04 -0.12 -0.03 -0.14 +0.20 -0.50 -0.09 +1.89 +0.00

+0.02 +0.02 +0.01 -0.07 +0.23 +0.03 -0.27 -0.04 +0.00 +0.99

S = 2.91374e+00.

sweep 2 ...

+0.03 -0.04 -0.05 +0.01 -0.00 +0.01 +0.01 -0.02 +0.01 -0.01

-0.04 +3.89 -0.03 +0.03 +0.02 +0.05 +0.01 -0.04 +0.02 -0.02

-0.05 -0.03 +0.13 -0.03 -0.06 -0.04 -0.10 +0.01 -0.01 +0.08

+0.01 +0.03 -0.03 +2.58 -0.01 +0.05 +0.26 -0.01 -0.05 -0.09

-0.00 +0.02 -0.06 -0.01 +1.39 -0.08 -0.01 +0.04 +0.05 +0.00

+0.01 +0.05 -0.04 +0.05 -0.08 +3.62 +0.02 +0.00 -0.00 -0.01

+0.01 +0.01 -0.10 +0.26 -0.01 +0.02 +0.37 +0.01 +0.03 -0.00

-0.02 -0.04 +0.01 -0.01 +0.04 +0.00 +0.01 +3.18 +0.00 -0.00

+0.01 +0.02 -0.01 -0.05 +0.05 -0.00 +0.03 +0.00 +2.00 +0.00

-0.01 -0.02 +0.08 -0.09 +0.00 -0.01 -0.00 -0.00 +0.00 +0.82

S = 2.53839e-01.

sweep 3 ...

...

S = 2.12206e-02.

sweep 4 ...

...

S = 7.26279e-06.

sweep 5 ...

...

S = 2.26242e-10.

71

sweep 6 ...

...

S = 1.12777e-32.

lambda_00 = +0.000000.

v_00 = (+0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32).

lambda_01 = +3.902113.

v_01 = (-0.07 , +0.20 , -0.32 , +0.40 , -0.44 , +0.44 , -0.40 , +0.32 , -0.20 , +0.07).

lambda_02 = +0.097887.

v_02 = (-0.44 , -0.40 , -0.32 , -0.20 , -0.07 , +0.07 , +0.20 , +0.32 , +0.40 , +0.44).

lambda_03 = +2.618034.

v_03 = (+0.26 , -0.43 , -0.00 , +0.43 , -0.26 , -0.26 , +0.43 , +0.00 , -0.43 , +0.26).

lambda_04 = +1.381966.

v_04 = (+0.36 , -0.14 , -0.45 , -0.14 , +0.36 , +0.36 , -0.14 , -0.45 , -0.14 , +0.36).

lambda_05 = +3.618034.

v_05 = (+0.14 , -0.36 , +0.45 , -0.36 , +0.14 , +0.14 , -0.36 , +0.45 , -0.36 , +0.14).

lambda_06 = +0.381966.

v_06 = (+0.43 , +0.26 , +0.00 , -0.26 , -0.43 , -0.43 , -0.26 , -0.00 , +0.26 , +0.43).

lambda_07 = +3.175571.

v_07 = (-0.20 , +0.44 , -0.32 , -0.07 , +0.40 , -0.40 , +0.07 , +0.32 , -0.44 , +0.20).

lambda_08 = +2.000000.

v_08 = (+0.32 , -0.32 , -0.32 , +0.32 , +0.32 , -0.32 , -0.32 , +0.32 , +0.32 , -0.32).

lambda_09 = +0.824429.

v_09 = (-0.40 , -0.07 , +0.32 , +0.44 , +0.20 , -0.20 , -0.44 , -0.32 , +0.07 , +0.40).

– General solution:

x̂ =

N∑
j=1

vj−1

(
Aj cos(ω̂j t̂) +Bj sin(ω̂j t̂)

)
︸ ︷︷ ︸

normal modes

, (202)

where ω̂2
j = λj−1.

– Solve EOMs for initial conditions: x1(t = 0) = L, xj(t = 0) = 0 for j = 2, . . . , N ,
ẋ(t = 0) = 0 for j = 1, . . . , N .

*

˙̂x(t̂ = 0) =

N∑
j=1

vj−1Bjω̂j = 0 → Bj = 0, (203)

because eigenvectors vj are orthogonal and, thus, linearly independent.

72

*

x̂(t̂ = 0) =
N∑
j=1

vj−1Aj = (1, 0, . . . , 0) → Aj = vj−1,1 (204)

(first index of vj−1,1 is eigenvector index, second index is component index),
where vjvk = δj,k has been used.

* Solution:

x̂ =
N∑
j=1

vj−1vj−1,1 cos(ω̂j t̂) (205)

(see Figure 11, from which e.g. the speed of sound can be read off).

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

x
/L

(k/m)
1/2

 t

N = 10

x1
x2
x3

x10

Figure 11: “Molecule oscillations in a 1-dimensional crystal” (N = 10 molecules).

� Can be generalized in a straightforward way to study small oscillations of any system of
N point masses (after first order Taylor expansion, EOMs are of the form M ẍ = −Kx).

73

10 Interpolation, extrapolation, approximation

� Problem definition:

– Starting point: fj = f(xj), j = 0, . . . , N (“data points”) for x0 < x1 < . . . < xN ,
where f(x) is not known.

– Goals:

* Determine g(x) ≈ f(x) approximately for xmin ≤ x ≤ xmax.

* Determine g(y) ≈ f(y) for fixed y ̸= x0, x1, . . . , xN .

– x0 ≤ xmin ≤ xmax ≤ xN or x0 < y < xN
→ interpolation,
otherwise
→ extrapolation.

– g(xj) = fj = f(xj), j = 0, . . . , N
→ interpolation

– otherwise (i.e. g(xj) ≈ fj = f(xj))
→ approximation.

� Basic principle: approximate f(x) using a specific ansatz for g(x), e.g. simple (typically
polynomials) or physically motivated.

� Physics motivation:

– fj : experimental measurements (e.g. fj ≡ V (r) [a potential] or fj ≡ (dσ/dΩ)(Ω) [a
differential cross section], ...).

– fj : are results from a time consuming numerical computation or simulation.

→ Approximation g(x) ≈ f(x) often needed, e.g. for a subsequent analytical calculation.

– For example [3]:
The potential of two heavy b̄ quarks in the presence of two light u and/or d quarks
can be computed with lattice QCD (a numerical method to solve QCD) for discrete
b̄b̄ separations r = na (n = 1, 2, . . .; a: lattice spacing). To use this potential in a
standard non-relativistic Schrödinger equation (see also section 6.2.3), the lattice data
points need to be parameterized by a continuous function. A physically motivated
ansatz is

V (r) = −α
r
exp

(
−

(
r

d

)2)
(206)

(1/r, because of 1-gluon-exchange at small r [leading order perturbation theory; see
lectures on quantum field theory]; exp(−r2/d2), because of color screening at large
r). One has to fit this ansatz to the lattice data points, i.e. one has to determine the
optimal values for α and d.

10.1 Polynomial interpolation

� Find a degree-N polynomial g(x), which interpolates fj , j = 0, . . . , N , i.e. g(xj) = fj .

74

� Unique solution (easy to show).

� g(x) can be obtained e.g. using Lagrange polynomials (see section 8.1.1):

lj(x) =
∏
k ̸=j

x− xk
xj − xk

(207)

g(x) =

n∑
j=0

fjlj(x). (208)

� Polynomial interpolation for N >∼ 4 not recommended:

– For large N polynomials exhibit strong oscillations.

– Even though g(xj) = fj , g(x) and f(x) are most likely quite different.

– Examples for N = 3 and N = 9 are shown in Figure 12.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 0 1 2 3 4

polynomial interpolation, N = 3

g(x) (interpolating polynomial, degree N = 3)

N+1 = 4 data points
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 0 1 2 3 4

polynomial interpolation, N = 9

g(x) (interpolating polynomial, degree N = 3)

N+1 = 10 data points

Figure 12: Polynomial interpolation of N + 1 data points fj for N = 3 and N = 9. While
the data points are consistent with a constant, i.e. f(x) = const, the interpolating degree-N
polynomials g(x) are oscillating, in particular for the larger N = 9.

***** December 14, 2023 (18th lecture) *****

10.2 Cubic spline interpolation

� Connect N degree-3 polynomials yj(x), j = 0, . . . , N − 1,

g(x) = yj(x) for xj ≤ x ≤ xj+1, (209)

such that

– yj(xj) = fj and yj(xj+1) = fj+1 (two polynomials yj(x) and yj+1(x) are connected
at data point (xj+1, fj+1)),

75

– y′j(xj+1) = y′j+1(xj+1) and y′′j (xj+1) = y′′j+1(xj+1) (the piecewise defined function

g(x) is C2 continuous).

Such a piecewise defined polynomial is called “cubic spline”.

� Advantage (compared to polynomial interpolation discussed in section 10.1): only degree-
3 polynomials, i.e. polynomial degree is small, even though the number of data points
(N + 1) might be large; thus, no unnecessary oscillations.

� Construction of a cubic spline:

– To interpolate data points fj , j = 0, . . . , N , degree-1 polynomials are sufficient:

yj(x) = fjA(x) + fj+1B(x), (210)

where

A(x) =
xj+1 − x

xj+1 − xj
(211)

B(x) =
x− xj

xj+1 − xj
(212)

are the Lagrange polynomials (207) for N = 1.

– If the second derivatives f ′′j = f ′′(xj), j = 0, . . . , N are given (in addition to the data
points fj),

yj(x) = fjA(x) + fj+1B(x) + f ′′j C(x) + f ′′j+1D(x), (213)

where

C(x) =
1

6

(
A(x)3 −A(x)

)
(xj+1 − xj)

2 (214)

D(x) =
1

6

(
B(x)3 −B(x)

)
(xj+1 − xj)

2. (215)

– Determine f ′′j , j = 0, . . . , N such that the resulting spline g(x) is C2 continuous:

* Impose y′j−1(xj) = y′j(xj), j = 1, . . . , N − 1.

76

* Insert (213):
xj − xj−1

6
f ′′j−1 +

xj+1 − xj−1

3
f ′′j +

xj+1 − xj
6

f ′′j+1 =

=
fj+1 − fj
xj+1 − xj

− fj − fj−1

xj − xj−1
. (216)

* To determine f ′′j , j = 1, . . . , N − 1, one has to solve this system of N − 1 linear
equations (use one of the methods discussed in section 7).

* f ′′0 and f ′′N can be set to arbitrary values (a common choice is f ′′0 = f ′′N = 0, the
so-called “natural spline”).

� Figure 13 shows a cubic spline interpolating the data points already used in Figure 12,
right (N = 9 example). In contrast to the degree-9 polynomial from Figure 12, the cubic
spline does not exhibit any unnecessary oscillations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 0 1 2 3 4

cubic spline interpolation, N = 9

g(x) (natural cubic spline)

g(x) (interpolating polynomial, degree N = 9)

N+1 = 10 data points

Figure 13: Cubic spline interpolation of N + 1 = 10 data points fj .

� Splines and related topics form a huge field of research (CAGD = Computer Aided Geo-
metric Design):

– Goal: Describe and parameterize curves and surfaces in a mathematical way.

– Useful e.g. in engineering [ships, cars, etc.], scientific or medical visualization, ani-
mated movies, computer games, ...

10.3 Method of least squares

� Data points fj often exhibit statistical fluctuations (e.g. fj can be experimental measure-
ments, results of Monte Carlo integrations or simulations, ...).

� g(x) should not reflect these statistical fluctuations, i.e. in such cases approximation more
suited than interpolation.

� Select an ansatz g(x;a) (a = (a0, . . . , aM) are parameters, which will be determined such
that g(x;a) approximates the data points in an optimal way).

77

– E.g. a low degree polynomial, g(x;a) = a0 + a1x+ a2x
2 ...

– ... or g(x;a) = a0/x (if fj describe a Coulomb-like potential) ...

– ... or g(x;a) = (a0/x) exp(−a1x) (if fj describe a potential with a limited range) ...

– ...

� Determine a by minimizing

G(a) =
N∑
j=0

(
g(xj ;a)− fj

)2
(217)

with respect to a.

– (g(xj ;a)− fj)
2: squared difference of approximating function and data points

(→ “method of least squares”).

– Minimization equivalent to solving

∇(a)G(a) = 0. (218)

� g(x;a) linear in aj ,

g(x;a) =
M∑
j=0

ajgj(x) (219)

(e.g. gj(x) = xj , if g(x;a) is a degree-M polynomial):

– Insert (219) in (217):

G(a) =
N∑
j=0

(M∑
k=0

akgk(xj)− fj

)(M∑
l=0

algl(xj)− fj

)
=

=
N∑
j=0

(M∑
k=0

Aj,kak − fj

)(M∑
l=0

Aj,lal − fj

)
, (220)

where

A =


g0(x0) g1(x0) . . . gM (x0)
g0(x1) g1(x1) . . . gM (x1)

...
...

...
g0(xN) g1(xN) . . . gM (xN)

 . (221)

– (218):

∂

∂am
G(a) = 2

N∑
j=0

(M∑
k=0

Aj,kak − fj

)
Aj,m = 0

→ ATAa = AT f (222)

i.e. one has to solve a system of linear equations to determine the parameters a (e.g.
by using methods from section 7).

78

� g(x;a) not linear in aj :

– (218) is system of non-linear equations.

– Solving such systems is difficult (see section 5.5).

– Typically a good estimate of the parameters a is needed to solve such systems of
non-linear equations, e.g. by using the Newton-Raphson method.

� Figure 14 shows the least squares approximation of data points already used in Figure 12,
right (N = 9 example) and Figure 13 using degree-0, degree-1 and degree-2 polynomials;
in contrast to Figure 12 and Figure 13, there are no oscillations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 0 1 2 3 4

least squares approximation with degree-0, degree-1 and degree-2 polynomials, N = 9

g(x) (approximating polynomial, degree 0)

g(x) (approximating polynomial, degree 1)

g(x) (approximating polynomial, degree 2)

g(x) (natural cubic spline)

N+1 = 10 data points

Figure 14: Least squares approximation with degree-0, degree-1 and degree-2 polynomials of
N + 1 = 10 data points fj .

***** December 19, 2023 (19th lecture) *****

10.4 χ2 minimizing fits

� Quite often, data points have errors, which have been ignored so far.

� Notation: σj is the error of data point fj (i.e. “value fj ± σj at xj”).

� When approximating data points using an ansatz g(x;a) (as e.g. in section 10.3), data
points with small errors should have a stronger influence on the parameters a than data
points with large errors.

� Replace (217) by

χ2 =
N∑
j=0

(
g(xj ;a)− fj

σj

)2

(223)

to fit g(xj ;a) to the data points fj with errors σj in an optimal way (“if σj is small, g(xj ;a)
must be close to fj ... otherwise χ2 would be large”).

79

� Resulting, i.e. minimal χ2 indicates the quality of the fit:

– “Good fit”
→ each term in (223) should be of order 1
→ “reduced χ2” = χ2/dof = χ2/(N −M) ≈ 1.

– χ2/dof ≫ 1
→ ansatz g(xj ;a) not consistent with data points.

– χ2/dof ≪ 1
→ errors are either overestimated or data points are correlated.

� For details see textbooks on data analysis.

� Simple and common example: χ2 minimizing fit of a constant a.

– Ansatz: g(x;a) = a.

– Minimizing

χ2 =
N∑
j=0

(
a− fj
σj

)2

(224)

is equivalent to solving

0 =
d

da
χ2 = 2

N∑
j=0

a− fj
(σj)2

, (225)

i.e.

a =

N∑
j=0

1/(σj)
2∑N

k=0 1/(σk)
2︸ ︷︷ ︸

=wj

fj =

N∑
j=0

wjfj , (226)

where wj is the “weight of data point fj” (0 ≤ wj ≤ 1,
∑N

j=0wj = 1).

– An example is shown in Figure 15.

10.4.1 Error estimates for fit parameters aj (“basics of data analysis”)

� Since the data points fj have errors σj , the fit parameters aj should have errors as well
(denoted in the following by ∆aj).

� One has to propagate the errors of fj to obtain meaningful errors for aj , i.e. the errors
∆aj depend on the errors σj .

� In the following two simple methods of error propagation: resampling, jackknife method.

� In general, data analysis (e.g. the computation and propagation of errors) can be very
complex (see advanced/specialized articles and textbooks on data analysis, e.g. [6]).

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 0 1 2 3 4

least squares fit of a constant, N = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 0 1 2 3 4

χ
2
 minimizing fit of a constant (χ

2
/dof = 0.97), N = 3

Figure 15: Comparison of a least squares fit (left) and a χ2 minimizing fit (right) of a constant
to N + 1 = 4 data points fj .

Preliminary considerations: data points and samples

� A data point fj and its error σj are typically based on samples f
(1)
j , . . . , f

(S)
j .

� Samples can e.g. be identical experimental measurements or computations based on sta-
tistically fluctuating initial conditions/input.

� Assuming these samples are Gaussian distributed, realistic and mathematically justified
estimates are

fj =
1

S

S∑
s=1

f
(s)
j (227)

σj =

(
1

S(S − 1)

S∑
s=1

(
f
(s)
j − fj

)2
)1/2

. (228)

The probability that the “true unknown value” of fj (the mean of the Gaussian distribution
or, equivalently, fj according to (227) for S → ∞) is inside the interval [fj − σj , fj + σj]
is ≈ 68% (see also section 8.2.2).

� Assuming a Gaussian distribution is quite common and often reasonable. For example,
when defining the samples not as results of single measurements, but as averages of many
measurements, the samples will be (almost) Gaussian distributed (central limit theorem:
“infinite sums of random variables are Gaussian distributed”).

Resampling

� Use resampling, if you have the fj and σj , but not the samples f
(s)
j (not ideal, but often

the case, e.g. when using results from the literature).

81

� Basic idea of resampling: Generate artificial data/samples f
′(1)
j , . . . , f

′(S′)
j (S′ ̸= S in

general) according to the Gaussian distribution

1√
2πσj

exp

(
−

(f
′(s)
j − fj)

2

2σ2j

)
. (229)

Note that these artificial samples have the same mean, but a smaller variance than the
original samples (smaller by the factor 1/

√
S).

� A conceptually simple (not very efficient) method to generate such a sample f
′(s)
j is the

following:

(step 1) Select a random number f
′(s)
j inside the interval [fj − λσj , fj + λσj] according to a

uniform distribution.

(step 2) Select a random number x inside the interval [0, 1] according to a uniform distribution.

If x ≤ e−(f
′(s)
j −fj)

2/2σ2
j , use f

′(s)
j as sample, otherwise go back to (step 1).

λ ≈ 6 might be a good choice (larger values of λ lead to samples f
(s)
j with a distribution

closer to (229); however, for larger values of λ the method is less efficient, i.e. (step 1)
needs to be repeated more often).

� Once the samples f
′(s)
j , j = 1, . . . , N , s = 1, . . . , S′ are generated, one has to carry out

a χ2 minimizing fit for each s to the “data points” f
′(s)
j ± σj (as discussed above). The

resulting fit parameters are denoted as a
(s)
j .

� The errors for the fit parameters are then estimated according to

∆aj =

(
1

S′

S′∑
s=1

(
a
(s)
j − aj

)2
)1/2

. (230)

Note that there is an important difference, when comparing this equation e.g. to (228),
the prefactor 1/S′ in (230) compared to 1/S(S − 1) in (228):

– 1/S(S − 1) in (228):
σj should not correspond to the standard deviation, i.e. the fluctuations of the original
samples. It is an uncertainty, which should decrease ∝ 1/

√
S, when the number of

samples is increased.

– 1/S′ in (230):
∆aj should represent the fluctuations of the generated samples, which reflect the
errors σj . Thus, (230) is an ordinary standard deviation, which approaches a constant
for large S′. S′ should be chosen sufficiently large such that the resulting ∆aj are
close to these constants.

� Possible problem: original samples f
(s)
j might be correlated.

82

– For example f
(s)
1 and f

(s)
2 might be measurements taken at the same time (indicated

by the identical index (s)) of related quantities, e.g. the temperature at two nearby

spatial points, T (x) and T (x+ ϵ). If f
(s)
1 is larger than than its mean, there is a high

probability that also f
(s)
2 is larger than its mean.

– Such correlations are not considered, because artificial samples f
′(s)
j are generated

independently, i.e. are uncorrelated.

***** December 21, 2023 (20th lecture) *****

Jackknife method

� Literature: [6, 7].

� Use the jackknife method, if you have the fj and the samples f
(s)
j (and, consequently, also

σj via (228)).

� Compute S reduced samples (also called jackknife samples)

f
(s),red
j =

1

S − 1

∑
r ̸=s

f
(r)
j . (231)

� Carry out a χ2 minimizing fit for each s to the “data points” f
(s),red
j ± σj (as discussed

above). The resulting fit parameters are denoted as a
(s),red
j .

� The errors for the fit parameters are then estimated according to

∆aj =

(
S − 1

S

S∑
s=1

(
a
(s),red
j − aj

)2
)1/2

. (232)

Note that the prefactor is different from both (228) and (230) ((S−1)/S versus 1/S(S−1)
and 1/S′).

– Since the variance of the reduced samples (231) is small compared to the original
samples, there must be a larger prefactor for a realistic error estimate.

� The jackknife method takes correlations between the original samples f
(s)
j into account.

The reason is that correlations are also present in the reduced samples. This is in contrast
e.g. to resampling, where correlations are unknown and, thus, not present in the generated
artificial samples.

Generalization of resampling and the jackknife method

� Resampling and the jackknife method are not limited to fitting. Both methods can be used
to propagate errors for “arbitrary complicated mathematical or numerical operations” on
data points with errors.

83

� Just replace the χ square minimizing fit by any operation O leading to results a, i.e. an
operation a = O(f).

� For example one can compute the error of the logarithm of a quantity f with error σ or
samples f (s) using a = O(f) = ln(f).

� Homework and consistency check: Show that computing the error of a quantity f with
samples f (s) via the jackknife method (i.e. a = O(f) = f) results in the well-known
expression (228), i.e. the jackknife error ∆aj in that particular case is identical to the
error σj .

84

11 Function minimization, optimization

11.1 Problem definition, general remarks

� f(x): real valued function (x = (x1, . . . , xD)).

� Problem: find a local or the global minimum of f(x), i.e. a value x minimizing f(x) locally
or globally.

� Function maximization is equivalent to function minimization, because maximum of f(x)
is minimum of −f(x).

� Algorithms for function minimization should be

– fast (i.e. the number of evaluations of f(x) should be reduced to a minimum),

– able to find the global minimum.

� Finding the global minimum is extremely difficult, in particular in D ≥ 2 dimensions;
typical strategies are

– repeated function minimization starting at different x,

– minimize function, add a random perturbation to the (possibly local) minimum, min-
imize again, add another random perturbation, minimize again, ...

� Notation, classification of function values x of f(x) in D = 1 dimension:

– A, B, C: local maxima.

– D: global maximum (f ′(x) ̸= 0 possible on the boundary of the domain).

– E, F : local minima.

– G: global minimum (f ′(x) = 0 inside the domain).

– a, b, c: enclose minimum (see section 11.2).

85

� Root finding versus function minimization:

– At first glance problems seem to be very similar: f(x) = 0 versus ∇f(x) = 0.

– There are, however, significant differences:

* Root finding:
f1(x), f2(x), ... are independent functions.
Function minimization:
(∇f)1(x), (∇f)2(x), ... are related via f(x).

* Root finding:
Not obvious, “which direction one has to follow”, to find fj(x) = 0 for all j.
Function minimization:
“Simply follow the negative gradient” to find a minimum, i.e. ∇f(x) = 0.

* Root finding:
Very hard, if number of dimensions D is large.
Function minimization:
Comparatively simple, even if number of dimensions D is large.

� Since function minimization is easier than root finding, one could be tempted to reformulate
root finding f(x) = 0 as function minimization:

– Roots of f(x) are global minima of F (x) =
∑D

j=1(fj(x))
2.

– Do not do that, i.e. do not try to find roots of f(x) by searching minima of F (x).

– Function minimization algorithms typically find local minima of F (x), which do not
correspond to roots of f(x).

***** January 09, 2024 (21th lecture) *****

11.2 Golden section search in D = 1 dimension

� Similar to bisection for root finding.

86

� Starting point: minimum localized inside interval [a, c] via f(a) > f(b) < f(c), where
a < b < c (minimum can be left or right of b).

� Evaluate f(y):

– b < y < c:

* If f(y) > f(b) (case 1):
→ Replace (a, b, c) by (a′, b′, c′) = (a, b, y), i.e. minimum now localized inside

interval [a, y].

* If f(y) < f(b) (case 2):
→ Replace (a, b, c) by (a′, b′, c′) = (b, y, c), i.e. minimum now localized inside

interval [b, c].

– a < y < b:

* Analogous to b < y < c.

– Iterate this step, until c− a is sufficiently small.

� How to choose y, to reduce the size of the interval [a, c] as quickly as possible?

– Define relative sizes of subintervals:

* w = (b− a)/(c− a).

* 1− w = (c− b)/(c− a).

87

* z = (y − b)/(c− a).

– Relative size of “new interval” [a′, c′]:

* Case 1: w + z.

* Case 2: 1− w.

– Determine z (and thereby y) via w + z = 1− w
→ z = 1− 2w = (1− w)− w, i.e. z is chosen such that the reduction of the size of

[a, b] is in both cases the same (“no bad case”).
(“It does not matter, whether we get rid of the left interval [a, b] or the right interval
[y, c], because both have relative size w.”)

� Rate of covergence:

– How to choose w in the first place such that it stays constant throughout the algo-
rithm?

88

* Case 1: w′ = z, c′ − a′ = w + z
w/1 = w′/(c′ − a′) = z/(w + z).

* Case 2: w′ = z, c′ − a′ = 1− w
w/1 = w′/(c′ − a′) = z/(1− w).

* Inserting z = 1− 2w yields w2 − 3w + 1 = 0 in both cases.

* Solutions:

· w = (3 +
√
5)/2 = 2.618 . . . (excluded, because > 1).

· w = (3−
√
5)/2 = 0.381 . . . (allowed),

· “Golden section”: (1 +
√
5)/2.

(“If we have w = (a− b)/(a− c) = 0.381 . . . and carry out one step, we obtain three
points with the same ratio, either a, b and y with (y − b)/(y − a) = 0.381 . . . [case 1]
or b, y and c with (y − b)/(c − b) = 0.381 . . . The interval [b, y] is in both cases the
new short interval, the new y′ has to be chosen in the new long interval, either in
[a, b] [case 1] or in [y, c] [case 2]).”

– w = (3 −
√
5)/2 is a stable fixed point (can be shown), i.e. even when starting with

w ̸= (3 −
√
5)/2, w will quickly approach (3 −

√
5)/2, when choosing z according to

z/(1 − w) = 0.381 . . . (“when dividing the larger interval according to the Golden
section”).

– Consequently,

c′ − a′ =

(
1− 3−

√
5

2

)
︸ ︷︷ ︸

0.618...

(c− a), (233)

i.e. linear convergence (slightly slower than root finding with bisection [see sec-
tion 5.2]).

� Accuracy:

89

– For x ≈ xmin

f(x) ≈ fmin +
f ′′(xmin)

2
(x− xmin)

2. (234)

((xmin, fmin) is the minimum).

– When represented as floating point numbers f(x) and fmin are different, only if

(f ′′(xmin)/2)(x− xmin)
2

fmin
> ϵ, (235)

where ϵ = O(10−7) for float and ϵ = O(10−16) for double (ϵ is the relative precision
discussed in section 2.2).

– Consequently, the accuracy of golden section search (and many other minimization
algorithms), characterized by x− xmin in (235), is limited,

xmin,numerically − xmin
>∼

(
2fmin

f ′′(xmin)

)1/2√
ϵ ∼

√
ϵ. (236)

11.3 Function minimization using quadratic interpolation in D = 1 dimension

� Due to limited time not discussed.

11.4 Function minimization using derivatives in D = 1 dimension

� Due to limited time not discussed.

***** January 11, 2024 (22th lecture) *****

11.5 Function minimization in D ≥ 2 dimensions by repeated minimization
in 1 dimension

� Problem in D ≥ 2 dimensions: localizing a minimum not as easy as in D = 1 dimension,
where three points a, b, c with f(a) > f(b) < f(c) are sufficient.

� Algorithm for function minimization in D ≥ 2 dimensions by repeated minimization in 1
dimension (has already been used for the conjugate gradient method; see section 7.7.1):

– Guess minimum x0, e.g. x0 = 0 (can be far away from any minimum).

– n = 0.

(1) Select direction pn (details below).

– Minimize f(xn + αnpn) with respect to αn.

– xn+1 = xn + αnpn.

– If xn+1 is sufficiently close to a minimum (e.g. |xn+1 − xn| < ϵ):

→ xn+1 is approximate minimum.
End of algorithm.

90

Else:

→ n = n+ 1.
Go to (1).

� Efficiency of the algorithm strongly depends, on how the directions pn are chosen.

– Simple example:

* D = 2 dimensions.

* f(x1, x2): a paraboloid, which is “wide in (+1,+1)/
√
2 direction and narrow in

(−1,+1)/
√
2 direction”,

f(x1, x2) =
x2 + y2 + 2xy

2a2
+
x2 + y2 − 2xy

2b2
(237)

with a≫ b.

* Directions for minimization pn: e1, e2, e1, e2, ...
→ Many minimizations in 1 dimension required, algorithm quite inefficient.

* Directions for minimization pn: (+1,+1)/
√
2, (−1,+1)/

√
2.

→ Only two minimizations in 1 dimension required, algorithm very efficient.

* See also Ref. [1], Figure 10.7.1 and section 7.7.1.

* It might seem to be a good strategy to select pn = ∇f(xn), i.e. to minimize along
the direction of steepest descent.
→ Many minimizations in 1 dimension required, almost as inefficient as selecting

e1, e2, e1, e2, ...

91

* See also Ref. [1], Figure 10.8.1.

� Efficient way to select directions pn are “conjugate directions”:

– Basic idea:

* Select pn such that minimization with respect to previous directions pj ,
j = 0, . . . , n−1 is preserved (then pn and pj , j = 0, . . . , n−1 are called conjugate
directions).

* Minimum found within D minimizations in 1 dimension.

– Mathematical details:

* x1 is minimum of f(x) along direction p0, i.e. p0∇f(x1) = 0.

* Select a conjugate direction p1 such that the gradient of f(x) in p0 direction
vanishes along direction p1, i.e. p0∇f(x1 + λp1) = 0 for all λ.

· In general not possible.

· It is possible, if f(x) is quadratic, i.e. describes a paraboloid,

f(x) = c− bx+
1

2
xAx. (238)

· Then

∇f(x) = −b+Ax. (239)

· p0∇f(x1) = 0 becomes

p0

(
− b+Ax1

)
= 0. (240)

· The condition for conjugate directions p0∇f(x1 + λp1) = 0 becomes

p0

(
− b+A(x1 + λp1)

)
= p0Aλp1 = 0, (241)

i.e. p0 and p1 are conjugate, if

p0Ap1 = 0. (242)

· If f(x) is not quadratic, select “approximate conjugate direction” via Taylor
expansion of f(x),

f(x) = f(x1)︸ ︷︷ ︸
=c

+

D∑
j=1

∂jf(x)
∣∣∣
x=x1︸ ︷︷ ︸

=bj

(xj − x1,j)

92

+
1

2

D∑
j,k=1

∂j∂kf(x)
∣∣∣
x=x1︸ ︷︷ ︸

=Aj,k

(xj − x1,j)(xk − x1,k) + . . . , (243)

i.e. use A from (243) in (242).

· Then minimum found approximately within D minimizations in 1 dimension.

· In practice: Repeat minimization in 1 dimension, until xn is approximate
minimum; converges typically fast, in particular, if f(x) is similar to a
paraboloid.

· If f(x) is quite different from a paraboloid, other methods might be more
efficient.

– For more details, e.g. concrete methods to construct conjugate directions, see Ref.
[1], section 10.7 and section 10.8.

***** January 16, 2024 (23th lecture), January 17, 2024 (24th lecture) *****

11.6 Downhill simplex method (D ≥ 2 dimensions)

� Downhill simplex method: simple algorithm for function minimization in D ≥ 2 dimen-
sions, however, not very efficient.
→ Suited for rather simple optimization problems.

� Simplex:

– Defined by D + 1 points pj .

* D = 2: triangle.

* D = 3: tetrahedron.

* ...

– Exclusively consider non-degenerate simplexes, i.e. p1 − p0, p2 − p1, ..., pD − p0 are
linearly independent.

� Basic principle: simplex moves “downhill”, deforms according to the “terrain” defined by
f(x), stops at a local minimum.

� Initial simplex:

– p0: estimate of minimum, i.e. an input parameter.

– pj = p0+λjej , where λj is a typical length scale in j direction, i.e. an input parameter.

� Sketch of deformation steps (for D = 2):

(1) Relabel points pj such that f(p0) ≤ f(p1) ≤ . . . ≤ f(pD).

– Step 1: reflection (“move the point, where f is largest”).
p2 → p′

2.

– If f(p′
2) < f(p0):

93

* Step 2: expansion (“expand the simplex to take larger steps”).
p′
2 → p′′

2.

* Replace p2 by the better of the two points p′
2 and p′′

2.

* Goto (1).

– If f(p′
2) < f(p1):

* Replace p2 by p′
2.

* Goto (1).

– Step 3: contraction (“contract the simplex in a valley floor to ooze down the valley”).
p̃ → p′′′

2 , where p̃ is the better of the two points p2 and p′
2.

– If f(p′′′
2) < f(p2):

* Replace p2 by p′′′
2 .

* Goto (1).

– Step 4: multiple contraction (“contract the simplex in all directions to pass through
the eye of a needle”).
p1 → p′′′′

1 and p′′′
2 → p′′′′

2

– Goto (1).

– For details see Ref. [1], section 10.5.

� Stopping criteria:

94

– Less obvious than in D = 1 dimension.

– E.g. if |pD − p0| < ϵ (where f(pD) > f(pj), j = 0, . . . , D − 1 and f(p0) < f(pj),
j = 1, . . . , D) ...

– ... or if deformation of simplex is almost negligible.

– As a cross-check one should start the downhill simplex method again at the found
minimum with a large initial simplex.

11.7 Simulated annealing

� Previously discussed methods typically find a local minimum inside a given interval (golden
section search) or close to, where the minimization is started (“conjugate directions”,
downhill simplex method).

� How to find the global minimum of a function f(x)?

– Repeated function minimization starting at different x.

* If only a small number of different minima is found, the global minimum might
be among them.

* Quite often, however, there is a very large number of minima and f(x) is “com-
plicated” (i.e. no idea, where the global minimum is).

– A promising method to find the global minimum is simulated annealing.

11.7.1 Discrete minimization

� Instead of a continuous domain parameterized by x consider an extremely large number
of discrete configurations S = {s1, s2, . . . , sN} and a function f(s), where s ∈ S.

� E.g. N ≈ 10100, i.e. impossible to evaluate f(s) for all s ∈ S.

� Goal: Find that sj minimizing f(s).

� Basic idea is realized in nature:

– Cooling of a liquid, e.g. steel (annealing = Ausglühen).

– Fast cooling: not enough time for atoms/molecules to form a uniform crystalline
structure corresponding to the energetic minimum; the resulting steel is fragile.

– Slow cooling: atoms/molecules will form a uniform crystal, which is very stable.

95

� Application of this idea to the minimization of f(s):

– Move step by step through the space of configurations, s(0) → s(1) → s(2) → . . .,
where s(n) and s(n+1) are similar.

– Steps s(n) → s(n+1), where f(s(n)) > f(s(n+1)) (“downhill”), are preferred ...

– ... but also steps s(n) → s(n+1), where f(s(n)) ≤ f(s(n+1)) (“uphill”), are allowed
(“quite often one has to overcome a couple of mountains to reach the global mini-
mum”).

– Slowly decrease the probability to perform uphill steps during the simulated anneal-
ing.

* Similar to annealing of steel.

* At the beginning, when the steel is hot, the structure of atoms/molecules readily
changes, because the energy of a configuration is less important.

* Later, when the temperature is getting lower, atoms/molecules freeze in a crys-
talline configuration with small energy.

� Simulated annealing algorithm:

– Start at arbitrary s(0) ∈ S and large temperature T .

– n = 0.

(1) Randomly select s(n+1) ∈ S, where “s(n+1) ≈ s(n)”, i.e. a similar configuration (see
example below).

– If f(s(n+1)) ≤ f(s(n)):

→ Do nothing (“accept s(n+1)”).

Else:

→ Either accept s(n+1) with probability e−(f(s(n+1))−f(s(n)))/T ...
...or replace s(n+1) by s(n) (i.e. “keep previous configuration”) with inverse prob-

ability 1− e−(f(s(n+1))−f(s(n)))/T .

– Slowly reduce T (typically not after every step, but after a fixed number of steps).

– Go to (1).

96

� Example: traveling salesperson problem.

– N cities on a 2 dimensional map, i.e. (xj , yj), j = 1, . . . , N .

– Problem: find the shortest loop connecting all cities.

– Configurations: S is the set of all permutations of (1, 2, . . . , N) (i.e. N ! different
configurations, typically a huge number).

– The function f(s) is the length of the loop:

f(sj) =
N∑
k=1

((
xpj(k) − xpj(k−1)

)2
+
(
ypj(k) − ypj(k−1)

)2
)1/2

(244)

((x0, y0) ≡ (xN , yN); configurations sj are permutations pj).

– Simulated annealing:

* Selecting a similar next configuration:

· Reverse a randomly chosen subsequence, e.g.
s(n) = . . .− 17− 3− 9− 6− 14− . . .
→ s(n+1) = . . .− 17− 6− 9− 3− 14− . . .

· Randomly move a randomly chosen subsequence, e.g.
s(n) = . . .− 5− 3− 9− 1− 16− 14− 21− . . .
→ s(n+1) = . . .− 5− 16− 14− 3− 9− 1− 21− . . .

· There are many other possibilities.

* Reducing the temperature:

· Select initial T larger than typical |f(s(n+1))− f(s(n))|.
· Reduce T by 10% after 100×N iterations or after 10×N “successful updates”.

· Stop simulated annealing, when the algorithm freezes, i.e. the configuration
does not change anymore.

– Possible variant of the traveling salesperson problem:

f(sj) → f(sj) + λ
N∑
k=1

(
µp(k) − µp(k−1)

)2
, (245)

where µj = +1, if city j is “east of the river”, and µj = −1, if city j is “west of the
river”.

* λ > 0: crossing the river is expensive/takes times/etc., i.e. the salesperson wants
to avoid it.

* λ < 0: the salesperson likes to cross the river.

* See Ref. [1], Figure 10.12.1.

11.7.2 Continuous minimization

� Simulated annealing can also be applied to minimize functions f(x) with a continuous
domain.

� Selecting a “similar next configuration” x(n+1) might be more difficult than for a discrete
set of configurations:

97

– Typical problem: too few downhill steps x(n) → x(n+1).

– See Ref. [1], section 10.12.2.

98

12 Monte Carlo simulations of partition functions

12.1 Ising model

� A commonly used simple model to understand magnetism.

� Spins sj = ±1 on the sites of a D-dimensional cubic lattice.

� A particular state (= spin configuration) can be described via C = (s1, s2, . . .).

– N spins → 2N states.

– Example: a tiny magnet with 100 spins in each spatial direction in D = 3 dimensions.
→ N = 1003 = 106 spins.
→ 2N = 2(10

6) ≈ 103×105 possible states.

� Hamilton operator:

H = −λ
∑
⟨j,k⟩

sjsk −B
∑
j

sj . (246)

–
∑

⟨j,k⟩: sum over neighboring spins, i.e. over 2D spins.

– Ferromagnetism for λ > 0.

– B: external magnetic field.

� Partition function:

Z =
∑
C

e−βH(C) (247)

(β = 1/T : inverse temperature [kB = 1]).

� Expectation value (= long-term average) of an observable O(C):〈
O
〉

=
1

Z

∑
C

e−βH(C)O(C) (248)

(e−βH(C)/Z is the probability to find the system in state C).

� In principle a computer can calculate the sums in (248).

99

� In practice, however, this is not possible for interesting/realistic system sizes.

– Consider the above example with N = 106 spins.

– Typical time a computer needs to add two numbers: t = 10−9 s.

– Total estimated time to compute the partition function Z:

2N × t ≈ 103×105 × 10−9 s ≈ 103×105 × 3× 10−17 y ≈ 103×105 y (249)

(1 y ≈ 365× 24× 60× 60 s ≈ 3× 107 s).

� Solution: Do not compute partition functions exactly but compute unbiased statistical
estimates with error bars (similar to experimental results) viaMonte Carlo simulations.

� Techniques discussed in this section can also be used to simulated path integrals in quantum
field theory (lattice field theory).
→ Monte Carlo simulations are useful in many areas of physics, e.g. solid state physics

(Ising-Model, Magnetism, ...) and particle physics (in particular QCD = quantum
chromodynamics).

12.2 Basic principle of Monte Carlo simulations

� Monte Carlo simulations are based on Markov chains:

– In our context, a Markov chain is a random generator for states C̃1, C̃2, . . . , C̃n with
probability

P (C̃j) = e−βH(C̃j)/Z. (250)

– Then〈
O
〉

≈ 1

n

n∑
j=1

O(C̃j). (251)

– The number of generated states n can be significantly smaller than the total number
of states m = 2N , e.g. n = 103 . . . 106 compared to m = 103×105 .

– A Markov chain generates almost exclusively likely/important/representative states,
which have typically small energies.

� A Markov chain is composed of

– states C1, C2, . . . , Cm, which are identical to the states of the system, e.g. in the case
of the Ising model one state for each possible spin configuration,

– transition probabilities Pj→k, j, k = 1, 2, . . . ,m.

100

� Go randomly from one state to the next according to the transition probabilities Pj→k.

– If you are in state Cj go to state Ck with probability Pj→k.

– This implies∑
k

Pj→k = 1 , j = 1, 2, . . . ,m (252)

(a necessary condition for probabilities).

� Pl(C;Ci): probability to find the Markov chain after l steps in state C, when starting in
state Ci.

� Define the transition probabilities Pj→k in such a way that the probability to find the
Markov chain after many steps in state C is P (C) from (250), independent of the initial
state Ci, i.e.

lim
l→∞

Pl(C,Ci) = P (C) (253)

(this is what we need; only then we can use (251)). P (C) is then called the stationary
distribution of the Markov chain.

� A stationary distribution implies∑
j

P (Cj)Pj→k = P (Ck) , k = 1, 2, . . . ,m, (254)

i.e. the transition probabilities Pj→k have to fulfill (254).

� If a set of probabilities P (Cj) fulfills (254), it is not guaranteed that also (253) is fulfilled.
It is, however, often the case.
In the following we assume for simplicity that (254) implies (253).

� Quite often one defines the transition probabilities Pj→k in such a way that detailed
balance is fulfilled,

P (Cj)Pj→k = P (Ck)Pk→j , j, k = 1, 2, . . . ,m. (255)

– Detailed balance (255) is a stronger condition than (254), i.e. (255) implies (254).

101

– Proof:∑
j

eq. (255)

→
∑
j

P (Cj)Pj→k = P (Ck)
∑
j

Pk→j︸ ︷︷ ︸
=1

= P (Ck). (256)

– Typically, it is simpler to find and define transition probabilities Pj→k fulfilling (255)
than just (254).

� In the following we will discuss two typical Monte Carlo algorithms, i.e. suitable ways to
define Pj→k such that (255) and, consequently, (253) are fulfilled.

12.3 Examples of common Monte Carlo algorithms

12.3.1 Metropolis algorithm

� In state C̃l = Cj randomly propose a candidate for the next state Ck with probability
Wj→k.

– The probabilities Wj→k must be defined in such a way that Wj→k =Wk→j . Usually
this is not difficult.

� Accept the proposed state with probability min(1, e−β(H(Ck)−H(Cj))), i.e. C̃l+1 = Ck, oth-
erwise keep the current state, i.e. C̃l+1 = Cj (the current state appears then again in the
sum (251) used to compute ⟨O⟩; it is not discarded).

� Proof that detailed balance (255) is fulfilled:

e−βH(Cj)

Z
Pj→k =

e−βH(Ck)

Z
Pk→j

→ e−βH(Cj)

Z
Wj→kmin(1, e−β(H(Ck)−H(Cj))) =

=
e−βH(Ck)

Z
Wk→jmin(1, e−β(H(Cj)−H(Ck)))

→ min(e−βH(Cj), e−βH(Cj)) = min(e−βH(Ck), e−βH(Cj)). (257)

� In practice it is important that already a rather small number of generated states
C̃1, C̃2, . . . , C̃n forms a representative set of states, i.e. a set such that (251) is a good
approximation (small depends on the system, could e.g. be n = 103). This requires:

(A) The candidate for next state Ck proposed according to the probabilitiesWj→k should
be significantly different from the current state C̃l = Cj .

(B) Ck should not be rejected too often.
→ In practice, acceptance rates of ≈ 50% often turned out to be a good choice.

Note that (A) and (B) counteract each other and it is important to find a compromise.

102

� Advantages/disadvantages of the Metropolis algorithm:

(+) Straightforward to implement.

(+) Very flexible, i.e. can be applied to almost any system/partition function.

(−) Rather slow, i.e. C̃l and C̃l+1 tend to be similar. As a consequence, n must be large,
which implies long computation times.

(−) The efficiency strongly depends on how the probabilities Wj→k are chosen (numerical
experiments and optimizations might be necessary).

� Application of the Metropolis algorithm to the Ising model: To propose a candidate for
the next state, randomly and uniformly select n≪ N spins, then randomly and uniformly
select their orientation, i.e. 50% sj = +1 and 50% sj = −1 (this guarantees
Wj→k =Wk→j).

***** January 23, 2024 (25th lecture) *****

12.3.2 Heatbath algorithm

� Randomly and uniformly select one of the degrees of freedom (in case of the Ising model
one of the spins), then randomly set its value according to the probability distribution
P (C) = e−βH(C)/Z (all other degrees of freedom are kept fixed):

Pj→k =
P (Ck)

σ
, σ =

∑
l′

P (Cl) (258)

(
∑

l′ : sum over all states, which can be reached by changing the selected degree of freedom
[in the case of the Ising model just two states]).

– The probabilities Pj→k in (258) correspond to thermal equilibrium for this particular
degree of freedom, while all others are kept fixed.

– In other words, the selected degree of freedom is connected to a heatbath.

� Proof that detailed balance (255) is fulfilled:

e−βH(Cj)

Z
Pj→k =

e−βH(Ck)

Z
Pk→j

→ e−βH(Cj)

Z

1

N

e−βH(Ck)

Zσ
=

e−βH(Ck)

Z

1

N

e−βH(Cj)

Zσ
.

� Advantages/disadvantages of the heatbath algorithm:

(+) Faster than the Metropolis algorithm.

(−) The transition probabilities Pj→k are quite often difficult to determine/compute.
→ The heatbath algorithm is only applicable for specific, rather simple systems.

� Application of the heatbath algorithm to the Ising model: Randomly and uniformly select
one of the spins, then randomly select its orientation according to the transition probabil-
ities (258) (just two probabilities, which depend on the orientations of the 2D neighboring
spins).

103

12.4 Monte Carlo simulation of the Ising model

� In this subsection:

– D = 2 dimensions, N = 20× 20 spins = 400 spins, periodic boundary conditions.

– B = 0, i.e. no external magnetic field.

– Different temperatures T , numerically realized by different dimensionless tempera-
tures T/λ (see section 4).

– Heatbath algorithm.

� Critical temperature Tc:

– Spontaneous magnetization for T < Tc, i.e. ⟨sj⟩ ≠ 0.

– No magnetization for T > Tc, i.e. ⟨sj⟩ = 0.

– The temperature Tc (= “Curie temperature”) separating the two phases can be cal-
culated analytically,

Tc
λ

=
2

ln(1 +
√
2)

= 2.269 . . . (259)

– Requires infinitely many spins (no phase transition for finite systems).

� Thermalization:

– Run the Monte Carlo simulation for quite some time (= thermalization), such that
the probabilities for the generated states are independent of the initial state (see (253)
and the corresponding text).

– To check, whether the number of thermalization steps is sufficiently large, compare
independent runs with different initial states, typically

* a hot start (select all spins sj randomly),

* a cold start (align all spins, i.e. set sj = +1, j = 1, . . . , N).

If there is no clearly visible systematic difference in the Monte Carlo histories of
selected “important observables” (a typical choice of such observables includes the
dimensionless energy), the number of thermalization steps might be sufficiently large
and one can start to use the now generated states to compute expectation values via
(251).

– Figure 16 shows Monte Carlo histories for H/λN for temperatures
T/λ = {Tc/λ− 1.0 , Tc/λ , Tc/λ+ 1.0} and both hot and cold starts.

* Cold starts need less thermalization steps and are, thus, more efficient.

* The system seems to thermalize particularly slow for T ≈ Tc (Monte Carlo sim-
ulations are typically slow, when simulating close to a phase boundary).

� Crude determination of the critical temperature Tc:

– ⟨sj⟩ is not ideally suited for a simple and straightforward numerical determination of
the critical temperature Tc.

104

Figure 16: Monte Carlo histories for H/λN .

– Other observables like〈
(sj − s)2

〉
, s =

1

N

∑
j

sj (260)

(expectation value of the square of the deviation of a single spin from the spin average
on the current configuration) also indicate the phase transition.
→ Compute ⟨(sj − s)2⟩ as function of the temperature.

– Strong increase of ⟨(sj − s)2⟩ in the region 2.0<∼T/λ<∼ 2.5 (see Figure 17).
Confirmation of the analytical result (259).

Figure 17: ⟨(sj − s)2⟩ as function of the temperature T/λ.

– The statistical errors in Figure 17 were computed using the simple equation (228)
(as samples f (s) one can use f (s) = (sj − s)2 computed on S = n spin configurations
C̃s [notation not ideal: upper index (s) is a sample/spin configuration index; sj and
s denote spins/the spin average]; due to translational invariance one can as well use

105

f (s) = (1/N)
∑

j(sj − s)2, which might be more efficient, i.e. smaller errors for the
same number of spin configurations).

– For more complicated quantities one could e.g. use the jackknife method (see sec-
tion 10.4.1).

– For a precise determination more effort is needed. In particular one needs to study
several system sizes and extrapolate to N → ∞.

� Individual spin configurations also exhibit characteristic features of spontaneous magneti-
zation and the corresponding phase transition:

– T > Tc, hot start, 200 × N Monte Carlo steps: no spontaneous magnetization (see
Figure 18, upper left plot).

– T < Tc, hot start, 200 × N Monte Carlo steps: spontaneous magnetization (see
Figure 18, upper right plot).

– T < Tc, hot start, 50 × N Monte Carlo steps: a metastable state, “Weiß domains”
(see Figure 18, lower plot).

Figure 18: Individual spin configurations (red dot → sj = +1; green cross → sj = −1).

106

***** January 25, 2024 (26th lecture) *****

13 Partial differential equations (PDEs)

� Literature: [1, 8, 9].

13.1 Introduction

� Solving PDEs numerically is a vast subject. In this lecture only a brief introduction and
discussion of selected topics.

� In physics one is often interested in linear second order PDEs,∑
j,k

ajk
∂

∂xj

∂

∂xk
u+

∑
j

bj
∂

∂xj
u+ cu = f. (261)

– ajk, bj , c, f may depend on x1, x2, . . .

– ajk is a symmetric matrix.

– The goal of this section is to compute u = u(x1, x2, . . .) numerically.

� There are linear second order PDEs of particular interest, hyperbolic, parabolic and
elliptic PDEs.

– Classification according to the real eigenvalues λj of ajk.

– λ1 < 0, λj > 0 for all j ̸= 1 (or λ1 > 0, λj < 0 for all j ̸= 1)
→ hyperbolic PDEs.
Example:

* Wave equation,

∂2

∂t2
u(x, t) = v2

∂2

∂x2
u(x, t) (262)

(v = const: propagation speed).

– λ1 = 0, λj > 0 for all j ̸= 1 (or λj < 0 for all j ̸= 1)
→ parabolic PDEs.
Examples:

* Heat equation,

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
(263)

(α > 0; u represents the temperature).

* Time dependent Schrödinger equation

iℏ
∂u(x, t)

∂t
= − ℏ2

2m

∂2u(x, t)

∂x2
+ V (x, t)u(x, t) (264)

(u represents the complex wave function).

– λj > 0 for all j (or λj < 0 for all j)
→ elliptic PDEs.
Example:

107

* Poisson equation,(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = ρ(x, y) (265)

(for example in electrostatics u represents the electric potential).

– There are different sets of methods to solve these types of PDEs. Identifying the type
of a linear second order PDE is a first step to select an appropriate method.

� As in the case of ordinary differential equations, one can distinguish the following two
types of problems:

– Initial value problems:

* Information is given at some initial time t0, i.e. u(x1, x2, . . . , t = t0) and pos-
sibly u̇(x1, x2, . . . , t = t0), together with boundary conditions with respect to
x1, x2,
→ Compute the time evolution starting at time t0.

* Important/problematic: stability of the method (see section 13.2.1).

* For the wave equation (262), the heat equation (263) and the time dependent
Schrödinger equation (264) one typically has to solve initial value problems.

* In some aspects similar to initial value problems for ODEs (see section 3).

– Boundary value problems:

* Information given at the boundary of some x1-x2-. . . region.
→ Solve the PDE consistent with the boundary conditions.

* Stability of the method is typically not a problem. Efficiency (both CPU time
and storage) is the main problem. One cannot just start somewhere and compute
the evolution of the function step by step. One must consider the whole x1-x2-. . .
region at the same time, which leads to a large system of coupled equations.

* For the Poisson equation (265) one typically has to solve boundary value problems
(already discussed in section 7.7.2).

* In some aspects similar to boundary value problems for ODEs (see section 6).

13.2 Initial value problems

13.2.1 Stability analysis in the context of a simple example

� Stability of the method is important/problematic for initial value problems.

� To understand the problem and the basic principle of how to analyze stability for a given
method and PDE, consider the following simple example:

∂u(x, t)

∂t
= −v∂u(x, t)

∂x
(266)

6 with periodic boundary conditions in space, i.e. u(x + L, t) = u(x, t). The solution
is known and can be derived easily, u(x, t) = f(x − vt) (see e.g. standard lectures on
mechanics and electrodynamics and below).

6This PDE belongs to the class of flux-conservative PDEs. If possible, it is usually advantageous to cast a
PDE in flux-conservative form. See e.g. [1, 8] for an extensive discussion.

108

***** January 30, 2024 (27th lecture) *****

� FTCS (forward time centered space) scheme:

– Discretize spacetime by a uniform (Nx + 1) × (Nt + 1) lattice: x → nx∆x (with
∆x = L/Nx), nx = 0, 1, . . . , Nx, and t→ nt∆t, nt = 0, 1, . . . , Nt.

– Thus, u(x, t) → u(nx, nt).

– Approximate the derivatives in (266) by finite differences (see section 2.3.2):

* Use an asymmetric forward difference for the time derivative:
∂u(x, t)

∂t
→ u(nx, nt + 1)− u(nx, nt)

∆t
+O(∆t). (267)

* Use a symmetric difference for the space derivative:
∂u(x, t)

∂x
→ u(nx + 1, nt)− u(nx − 1, nt)

2∆x
+O(∆x2). (268)

– The discretized version of (266) is then

u(nx, nt + 1)− u(nx, nt)

∆t
= −vu(nx + 1, nt)− u(nx − 1, nt)

2∆x
. (269)

This equation can be rearranged in such a way that each u(nx, nt + 1) (u at time
t+∆t) is expressed in terms of a few u(nx, nt) (u at time t),

u(nx, nt + 1) = u(nx, nt)−∆tv
u(nx + 1, nt)− u(nx − 1, nt)

2∆x
. (270)

This allows to compute the time evolution step by step.

– Even though this FTCS method might seem reasonable, it is not stable and does not
work properly (see below).

� Lax method:

– Very similar to the FTCS method.

– Just replace u(nx, nt) in (270) (the first term on the right-hand-side, i.e. one of the
two terms of the asymmetric forward difference for the time derivative) by

u(nx − 1, nt) + u(nx + 1, nt)

2
, (271)

the average over the two neighboring lattice sites in space.

– Thus,

u(nx, nt + 1) =
u(nx − 1, nt) + u(nx + 1, nt)

2
−∆tv

u(nx + 1, nt)− u(nx − 1, nt)

2∆x
.

(272)

– This method is stable and works properly (for suitably chosen ∆t and ∆x; see below).

� Numerical test of the FTCS scheme and the Lax method:

– L = 10.0, Nx = 100, i.e. ∆x = 0.1.

– ∆t = 0.1.

– v = 1.0.

109

– For each method two numerical tests with initial conditions

(A) A box-like shape,

u(x, t = 0) =

{
1 if − 1.0 ≤ x ≤ +1.0
0 otherwise

. (273)

(B) A Gaussian shape,

u(x, t = 0) ≈ exp

(
− x2

2σ2

)
(274)

with σ = 0.5.

– Results are collected in Figure 19. The FTCS scheme fails, while the Lax method
leads to results consistent with the analytical result u(x, t) = f(x−vt) (the excitation
at t = 0.0 should move in positive x direction with velocity 1.0 and keep its shape).

Figure 19: Comparison of the FTCS scheme and the Lax method using a box-like excitation
(top) and a Gaussian excitation (bottom) as initial conditions (L = 10.0, v = 1.0,
∆t = ∆x = 0.1). The curves are slightly shifted along the vertical axis. See text for details.

� Stability analysis:

– Why does the FTCS scheme fail and the Lax method work?

– Solution of the PDE (266) in the continuum:

110

* Find all independent solutions of the PDE (266) using separation of variables,
u(x, t) = X(x)T (t):

∂u(x, t)

∂t
= −v∂u(x, t)

∂x

→ −1

v

Ṫ (t)

T (t)
=

X ′(x)

X(x)
= ik = const

→ X(x) = e+ikx , T (t) = e−ikvt. (275)

* General solution via linear superposition:

u(x, t) =

∫
dk a(k)eik(x−vt) (276)

(the Fourier representation of the previously mentioned solution f(x− vt)).

* Determine a(k) such that initial conditions and boundary conditions are fulfilled.

* Note that, in general, all/many independent solutions eik(x−vt) contribute to
(276), i.e. have non-vanishing coefficients a(k).

– One can carry out similar steps for the FTCS discretized version of the PDE, i.e. for
(269):

* Independent solutions:

u(nx, nt) = ξnteiknx∆x , ξ = 1− i
v∆t sin(k∆x)

∆x
(277)

(in the limit ∆x→ 0, ∆t→ 0 [corresponding to nx → ∞, nt → ∞] the continuum
result is recovered, i.e. (277) becomes eik(x−vt) [to show that,
limn→∞(1 + x/n)n = ex is useful]).

* General solution via linear superposition:

u(nx, nt) =
∑
k

a(k)ξnteiknx∆x. (278)

* Determine a(k) such that initial conditions and boundary conditions are fulfilled.

* Again, all/many independent solutions ξnteiknx∆x contribute to (278), i.e. have
non-vanishing coefficients a(k).

– The reason, why the FTCS scheme is not suited to compute the time evolution is
the term ξnt , because in the FTCS scheme |ξ| > 1. Thus, each of the independent
solutions appearing in (278) is amplified exponentially with increasing time resulting
in the weird and unphysical time evolution shown in the plots in the left column of
Figure 19.

– Note that there is no such exponential amplification in the continuum result (276),
because the the term corresponding to ξnt is e−ikvt = (e−ikv)t and |e−ikv| = 1.

***** February 01, 2024 (28th lecture) *****

– From

ξnt =

(
1− i

v∆t sin(k∆x)

∆x

)nt

=
(
1− ikv∆t+O(∆x2)

)nt

=

=
(
e−ikv∆t +O(∆x2) +O(∆t2)

)nt

(279)

111

one can see that in the FTCS scheme the small discretization errors in ξ, which are
O(∆x2) and O(∆t2), cause the exponential amplifications. Thus, at large nt numer-
ical FTCS solutions of the PDE (266) are completely dominated by discretization
errors.

– This type of stability analysis is called von Neumann stability analysis and ξ is
called amplification factor.

– One can do the same von Neumann stability analysis for the Lax method. The
corresponding amplification factor is

ξ = cos(k∆x)− i
v∆t sin(k∆x)

∆x
. (280)

The important difference is that |ξ| can be less or greater than 1 depending on ∆x
and ∆t:

|ξ|
{

≤ 1 if v∆t/∆x ≤ 1
> 1 otherwise

. (281)

Thus, for v∆t/∆x ≤ 1 one expects the Lax method to be stable, otherwise not.

– For the above example (Figure 19, right column) we used v = 1.0, ∆t = ∆x = 0.1
corresponding to v∆t/∆x = 1.0, i.e. we operated just inside the stable region.

– Numerical experiment:

* Repeat the Lax computation with L = 10.0, v = 1.0, ∆x = 0.1 (as before), but
∆t = 0.11 (i.e. a slightly larger discretization step in t direction). Then |ξ| > 1.

* Numerical results are shown in Figure 20. They are similar to those obtained
with the FTCS scheme, i.e. not useful. This confirms our expectation from the
stability analysis and highlights the importance of having an amplification factor
ξ ≤ 1.

Figure 20: Lax method with parameters outside the stability region using a box-like excitation
(top) and a Gaussian excitation (bottom) as initial conditions (L = 10.0, v = 1.0, ∆t = 0.11,
∆x = 0.1). See text for details.

– What about amplification factors < 1? Isn’t there an exponential suppression and
the numerical solution will quickly approach 0?

112

* We are interested in scales d≫ ∆x, e.g. the intial conditions can exhibit spatial
variations of extent ≫ ∆x, but not of extent <∼∆x (for a given physics problem,
one has to choose a sufficiently small ∆x).

* Consequently, the relevant independent solutions (see e.g. (277)), i.e. those with
large prefactors in (276) or (278), have 1/k >∼ d≫ ∆x, i.e. k∆x≪ 1. Independent
solutions with k∆x>∼ 1 are not important, i.e. have small prefactors in (276) or
(278).

* Amplification factors for the Lax method:

|ξ|2 = 1−
(
1−

(
kv∆t

k∆x

)2)
sin2(k∆x). (282)

· Relevant independent solutions, which have k∆x≪ 1
→ |ξ| rather close to 1 (because sin2(k∆x) ≈ 0).

· Irrelevant independent solutions, which have k∆x>∼ 1
→ |ξ| not close to 1.

· Lax method inside the stability region, i.e. for v∆t/∆x < 1
→ irrelevant independent solutions are strongly suppressed (which is

irrelevant)
→ relevant independent solutions suffer from a much weaker suppression, i.e.

computing the time evolution over a reasonably large period of time is
possible.

· Lax method outside the stability region, i.e. for v∆t/∆x > 1
→ irrelevant independent solutions are strongly enhanced and quickly spoil

the result.

→ |ξ| < 1 is a mild problem, compared to |ξ| > 1.

* From (282) one can see that in addition to k∆x ≪ 1 also v∆t ≈ ∆x favors
amplification factors close to 1.

· One should choose ∆t and ∆x accordingly.

· If not, the solution might exhibit sizable errors due to exponential suppression
already at small t. An example with L = 10.0, v = 1.0 and ∆x = 0.1 (as
before) and ∆t = 0.01, i.e. v∆t/∆x = 0.1 is shown in Figure 21.

� Final remarks and summary:

– The von Neumann stability analysis can be generalized to other more complicated
PDEs. There are also more rigorous methods to carry out stability analyses. See [1].

– The aim of this section is not to provide a comprehensive discussion of the topic, but
rather

* to demonstrate that stability of the method is crucial, when solving PDEs nu-
merically,

* to show that “differencing PDEs is an art as much as a science” [1] (stability
depends both on the method and on the PDE).

– [1], section 20.1.4: “In summary, our recommendation for initial value problems that
can be cast in flux-conservative form, and especially problems related to the wave
equation, is to use the staggered leapfrog method [not discussed in this lecture] when

113

Figure 21: Lax method with parameters inside the stability region but v∆t/∆x = 0.1 using a
box-like excitation as initial conditions (L = 10.0, v = 1.0, ∆t = 0.01, ∆x = 0.1). See text for
details.

possible. We have personally had better success with it than with the two-step Lax-
Wendroff method [not discussed in this lecture] ...”
→ Even for numerics experts choosing an appropriate method does not seem to be

obvious, but might be based on experience, numerical experiments and to some
extent guesswork.

13.2.2 Parabolic PDEs: heat equation and Schrödinger equation

� Consider the PDE

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
+ v(x, t)u(x, t) (283)

with initial conditions u(x, t = 0) = u0(x) and boundary conditions u(x = 0, t) = ũ0(x)
and u(x = L, t) = ũL(t). The goal is to compute the time evolution of u(x, t) for t > 0
and 0 < x < L.

� (283) contains both the heat equation (263) and the time dependent Schrödinger equation
(264).

� A generalization of (283) and this subsection to more than one spatial coordinate, i.e.
x→ x1, x2, . . ., is straightforward.

***** February 06, 2024 (29th lecture) *****

Discretization via an asymmetric forward difference for the time derivative

� Conceptually similar to the FTCS method from section 13.2.1.

114

� The discretized version of (283), when using an asymmetric forward difference for the time
derivative (and a standard symmetric difference for the second space derivative) is

u(nx, nt + 1)− u(nx, nt)

∆t
=

= α
u(nx + 1, nt)− 2u(nx, nt) + u(nx − 1, nt)

∆x2
+ v(nx, nt)u(nx, nt). (284)

� Left hand side:

u(nx, nt + 1)− u(nx, nt)

∆t
=

∂u(x, t)

∂t
+

1

2

∂2u(x, t)

∂t2
∆t+O(∆t2). (285)

� Right hand side:

α
u(nx + 1, nt)− 2u(nx, nt) + u(nx − 1, nt)

∆x2
+ v(nx, nt)u(nx, nt) =

= α
∂2u(x, t)

∂x2
+ v(x, t)u(x, t) +O(∆x2). (286)

� Consequently, the discretization (284) has errors of order ∆t and of order ∆x2.

� (284) can be rearranged in such a way that each u(nx, nt+1) (u at time t+∆t) is expressed
in terms of a few u(nx, nt) (u at time t),

u(nx, nt + 1) =

=

(
1− 2α∆t

∆x2
+∆tv(nx, nt)

)
u(nx, nt) +

α∆t

∆x2

(
u(nx + 1, nt) + u(nx − 1, nt)

)
.

(287)

This allows to compute the time evolution step by step. Such schemes are called fully
explicit.

� Stability analysis (for the case v(x, t) = 0): amplification factor

ξ = 1− 4α∆t

∆x2
sin2

(
k∆x

2

)
, (288)

i.e. the method is stable for |ξ| ≤ 1 corresponding (for real α > 0, as it is the case for the
heat equation) to 2α∆t/∆x2 ≤ 1.

(−) Errors of order ∆t (because of asymmetric forward difference).
(Errors of order ∆x2 appear only quadratically and are, thus, less problematic.)

(−) Stable only for very small ∆t<∼∆x2.

115

Discretization via an asymmetric backward difference for the time derivative

� The discretized version of (283), when using an asymmetric backward difference for the
time derivative (and a standard symmetric difference for the second space derivative) is

u(nx, nt + 1)− u(nx, nt)

∆t
=

= α
u(nx + 1, nt + 1)− 2u(nx, nt + 1) + u(nx − 1, nt + 1)

∆x2
+

+v(nx, nt + 1)u(nx, nt + 1). (289)

(in contrast to (283) the time argument is not t, but t+∆t = (nt+1)∆t; this is irrelevant
in this subsection, but helpful in the context of the Crank-Nicolson method discussed in
the next subsection).

� Left hand side:

u(nx, nt + 1)− u(nx, nt)

∆t
=

∂u(x, t+∆t)

∂t
− 1

2

∂2u(x, t+∆t)

∂t2
∆t+O(∆t2). (290)

� Right hand side:

α
u(nx + 1, nt + 1)− 2u(nx, nt + 1) + u(nx − 1, nt + 1)

∆x2
+ v(nx, nt + 1)u(nx, nt + 1) =

= α
∂2u(x, t+∆t)

∂x2
+ v(x, t+∆t)u(x, t+∆t) +O(∆x2). (291)

� Consequently, the discretization (289) has errors of order ∆t and of order ∆x2.

� Note that (289) cannot be rearranged in a simple way such that each u(nx, nt + 1) (u at
time t+∆t) is expressed in terms of a few u(nx, nt) (u at time t). Such schemes are called
fully implicit or backward time.

� (289) can easily be solved with respect to u(nx, nt),

u(nx, nt) =

(
1 +

2α∆t

∆x2
−∆tv(nx, nt + 1)

)
u(nx, nt + 1)−

−α∆t
∆x2

(
u(nx + 1, nt + 1) + u(nx − 1, nt + 1)

)
. (292)

� This equation can be expressed in matrix-vector form,

u(nx, nt) =
∑
n′
x

A(nx, n
′
x)u(n

′
x, nt + 1) (293)

(u(nx, nt) and u(nx, nt+1) are vectors with Nx− 1 = L/∆x− 1 components, A(nx, n
′
x) is

an (Nx − 1)× (Nx − 1) matrix). The entries of A can be read off from (292).

� To compute u(nx, nt +1), one has to solve the system of linear equations (293), e.g. using
the LU decomposition or a suitable iterative method as discussed in section 7.

116

� Stability analysis (for the case v(x, t) = 0): amplification factor

ξ =

(
1 + 4α sin2

(
k∆x

2

))−1

, (294)

i.e. the method is unconditionally stable (for Re(α) > 0, as it is the case for the heat
equation), because |ξ| ≤ 1 for any stepsize ∆t.

(−) Errors of order ∆t (because of asymmetric forward difference).
(Errors of order ∆x2 appear only quadratically and are, thus, less problematic.)

(+) Unconditionally stable.

Crank-Nicolson method

� Add the PDE (283) at time t and at time t+∆t,

∂u(x, t)

∂t
+
∂u(x, t+∆t)

∂t
=

= α
∂2u(x, t)

∂x2
+ v(x, t)u(x, t) + α

∂2u(x, t+∆t)

∂x2
+ v(x, t+∆t)u(x, t+∆t). (295)

� Discretize (295) using (284) (forward difference for the time derivative) and (289) (back-
ward difference for the time derivative). The left hand side has errors of order ∆t2, because
errors proportional to ∆t cancel (as can be seen from (285) and (290)), while the right
hand side has errors of order ∆x2.

� This discretization can be also be obtained (in a more covenient form) by adding (287)
and (292) (which are equivalent to (284) and (289)):(
2 +

2α∆t

∆x2
−∆tv(nx, nt + 1)

)
u(nx, nt + 1)−

−α∆t
∆x2

(
u(nx + 1, nt + 1) + u(nx − 1, nt + 1)

)
=

=

(
2− 2α∆t

∆x2
+∆tv(nx, nt)

)
u(nx, nt) +

α∆t

∆x2

(
u(nx + 1, nt) + u(nx − 1, nt)

)
︸ ︷︷ ︸
=b(nx) for nx>0 and nx<Nx (for nx=1 and nx=Nx−1 additional contributions from the lhs)

(296)

(nx = 1, 2, . . . , Nx − 1).

� This equation can be expressed in matrix-vector form,∑
n′
x

B(nx, n′x)u(n′x, nt + 1) = b(nx) (297)

(u(nx, nt + 1) and b(nx) are vectors with Nx − 1 = L/∆x− 1 components, B(nx, n′x) is an
(Nx − 1)× (Nx − 1) matrix). The entries of B and b can be read off from (296).

117

� To compute u(nx, nt +1), one has to solve the system of linear equations (297), e.g. using
the LU decomposition or a suitable iterative method as discussed in section 7.

� Stability analysis (for the case v(x, t) = 0): amplification factor

ξ =

(
1− 2α sin2

(
k∆x

2

))(
1 + 2α sin2

(
k∆x

2

))−1

, (298)

i.e. the method is unconditionally stable (for Re(α) > 0, as it is the case for the heat
equation), because |ξ| ≤ 1 for any stepsize ∆t.

(+) Errors only of order ∆t2.
(And errors of order ∆x2, as before, which are also quadratically suppressed.)

(+) Unconditionally stable.

Example: solving the heat equation with the Crank-Nicolson method

� Consider the heat equation (263),

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
, (299)

with initial conditions u(x, t = 0) = u0(x) and boundary conditions u(x = 0, t) = 0 and
u(x = L, t) = T .

� Dimensionless heat equation:

– Dimensionless temperature: û = u/T (in the following û is denoted as u).

– Dimensionless space coordinate: x̂ = x/L.
→ ∂/∂x = (1/L)∂/∂x̂.

– Dimensionless time coordinate: t̂ = αt/L2.
→ ∂/∂t = (α/L2)∂/∂t̂.

– Inserting these definitions in (299) leads to

∂u(x̂, t̂)

∂t̂
=

∂2u(x̂, t̂)

∂x̂2
(300)

and boundary conditions u(x̂ = 0, t̂) = 0 and
u(x̂ = 1, t̂) = 1.

� (300) can be solved analytically using the ansatz u(x̂, t̂) = X(x̂)T (t̂),

u(x̂, t̂) = x̂+
∞∑
n=1

an sin(nπx̂)e
−n2π2 t̂, (301)

where the coefficients an have to be determined such that the initial conditions
u(x̂, t̂ = 0) = u0(x̂) are fulfilled (the boundary conditions are already implemented).

118

� Numerically we consider two concrete examples for the initial conditions u0(x̂):

– Example 1:
u0(x̂) = x̂− (1/2π) sin(2πx̂), i.e. a2 = −1/2π and an = 0 for n ̸= 2
(see Figure 22, left plot).

– Example 2:
u0(x̂) = x̂+ 2 sin(3πx̂), i.e. a3 = 2 and an = 0 for n ̸= 3
(see Figure 22, right plot).

Figure 22: Temperature u0(x̂) at time t̂ = 0. (left) Example 1. (right) Example 2.

� Compute the time evolution with the Crank-Nicolson method using Nx = 40, Nt = 40 and
∆t/∆x = 0.1.

– Python code to solve the heat equation with the Crank-Nicolson method: see ap-
pendix G.

– The numerical solutions are rather close to the analytical solutions (301).

example 1, Nx = 40, Nt = 40, Dt_over_Dx = 0.1

Crank-Nicolson step 0, t = 0.000000 --> err_max = 0.00000e+00

Crank-Nicolson step 1, t = 0.002500 --> err_max = 1.77416e-05

Crank-Nicolson step 2, t = 0.005000 --> err_max = 3.21505e-05

Crank-Nicolson step 3, t = 0.007500 --> err_max = 4.36960e-05

...

Crank-Nicolson step 38, t = 0.095000 --> err_max = 1.75319e-05

Crank-Nicolson step 39, t = 0.097500 --> err_max = 1.63033e-05

Crank-Nicolson step 40, t = 0.100000 --> err_max = 1.51507e-05

example 2, Nx = 40, Nt = 40, Dt_over_Dx = 0.1

Crank-Nicolson step 0, t = 0.000000 --> err_max = 0.00000e+00

Crank-Nicolson step 1, t = 0.002500 --> err_max = 1.90334e-04

Crank-Nicolson step 2, t = 0.005000 --> err_max = 3.04881e-04

Crank-Nicolson step 3, t = 0.007500 --> err_max = 3.66273e-04

...

119

Crank-Nicolson step 38, t = 0.095000 --> err_max = 1.95838e-06

Crank-Nicolson step 39, t = 0.097500 --> err_max = 1.60977e-06

Crank-Nicolson step 40, t = 0.100000 --> err_max = 1.32234e-06

– The numerical solutions are shown as heatmaps in Figure 23

Figure 23: Temperature u(x, t) shown as normalized heatmap (minimal value: black; maxi-
mal value: white; colors on the left and right boundaries correspond to u(x = 0, t) = 0 and
u(x = L, t) = 1, respectively). Nx = 40, Nt = Nx and ∆t/∆x = 0.1. (left) Example 1.
(right) Example 2.

� Vary ∆x and ∆t: Nx ∈ {20, 40, 80}, Nt = Nx and ∆t/∆x = 0.1.

– The discretization errors (i.e. the differences between the numerical solutions and the
analytical solution (301)) become smaller with decreasing ∆x and ∆t as expected.
The suppression of errors seems to be even stronger than quadratically in ∆x and
∆t.

example 1, Nx = 20, Nt = 20, Dt_over_Dx = 0.1

Crank-Nicolson step 0, t = 0.000000 --> err_max = 0.00000e+00

Crank-Nicolson step 1, t = 0.005000 --> err_max = 1.29304e-04

Crank-Nicolson step 2, t = 0.010000 --> err_max = 2.12388e-04

Crank-Nicolson step 3, t = 0.015000 --> err_max = 2.61643e-04

...

Crank-Nicolson step 18, t = 0.090000 --> err_max = 8.18830e-05

Crank-Nicolson step 19, t = 0.095000 --> err_max = 7.09846e-05

Crank-Nicolson step 20, t = 0.100000 --> err_max = 6.13662e-05

example 1, Nx = 40, Nt = 40, Dt_over_Dx = 0.1

Crank-Nicolson step 0, t = 0.000000 --> err_max = 0.00000e+00

Crank-Nicolson step 1, t = 0.002500 --> err_max = 1.77416e-05

Crank-Nicolson step 2, t = 0.005000 --> err_max = 3.21505e-05

Crank-Nicolson step 3, t = 0.007500 --> err_max = 4.36960e-05

120

...

Crank-Nicolson step 38, t = 0.095000 --> err_max = 1.75319e-05

Crank-Nicolson step 39, t = 0.097500 --> err_max = 1.63033e-05

Crank-Nicolson step 40, t = 0.100000 --> err_max = 1.51507e-05

example 1, Nx = 80, Nt = 80, Dt_over_Dx = 0.1

Crank-Nicolson step 0, t = 0.000000 --> err_max = 0.00000e+00

Crank-Nicolson step 1, t = 0.001250 --> err_max = 2.32678e-06

Crank-Nicolson step 2, t = 0.002500 --> err_max = 4.42953e-06

Crank-Nicolson step 3, t = 0.003750 --> err_max = 6.32442e-06

...

Crank-Nicolson step 78, t = 0.097500 --> err_max = 4.06328e-06

Crank-Nicolson step 79, t = 0.098750 --> err_max = 3.91724e-06

Crank-Nicolson step 80, t = 0.100000 --> err_max = 3.77586e-06

– The numerical solutions are shown as heatmaps in Figure 24

Figure 24: Temperature u(x, t) shown as normalized heatmap (minimal value: black; maximal
value: white; colors on the left and right boundaries correspond to u(x = 0, t) = 0 and
u(x = L, t) = 1, respectively) for example 1. Nt = Nx and ∆t/∆x = 0.1. (left) Nx = 20.
(center) Nx = 40. (right) Nx = 80.

� Optional homework:

– Explore ∆x ̸= ∆t.

– Implement the discretization via an asymmetric forward difference for the time deriva-
tive. Confirm that it is not stable, if ∆x and ∆t are not chosen appropriately. Use
stable parameters ∆x and ∆t and compare the accuracy and necessary CPU time to
the Crank-Nicolson method.

– Solve the time dependent Schrödinger equation (264) with the Crank-Nicolson method.

13.3 Boundary value problems

� A possible strategy to solve the Poisson equation numerically (a typical boundary value
problem for an elliptic PDE) has already been discussed in section 7.7.2.

� Due to limited time no further discussion of boundary value problems.

121

A C Code: trajectories for the HO with the RK method

// solve system of ODEs

// \vec{\dot{y}}(t) = \vec{f}(\vec{y}(t),t) ,

// initial conditions

// \vec{y}(t=0) = \vec{y}_0 ,

// HO, potential

// V(x) = m \omega^2 x^2 / 2

// **********

#define __EULER__

// #define __RK_2ND__

// #define __RK_3RD__

// #define __RK_4TH__

// **********

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

// **********

const int N = 2; // number of components of \vec{y} and \vec{f}

const double omega = 1.0; // frequency

const int num_steps = 10000; // number of steps

const double tau = 0.1; // step size

// **********

double y[N][num_steps+1]; // discretized trajectories

double y_0[N] = { 1.0 , 0.0 }; // initial conditions

// **********

int main(int argc, char **argv)

{

int i1, i2;

// *****

// initialize trajectories with initial conditions

for(i1 = 0; i1 < N; i1++)

y[i1][0] = y_0[i1];

// *****

// Euler/RK steps

for(i1 = 1; i1 <= num_steps; i1++)

122

{

// 1D HO:

// y(t) = (x(t) , \dot{x}(t)) ,

// \dot{y}(t) = f(y(t),t) = (\dot{x}(t) , F/m) ,

// where force F = -m \omega^2 x(t)

#ifdef __EULER__

// k1 = f(y(t),t) * tau

double k1[N];

k1[0] = y[1][i1-1] * tau;

k1[1] = -pow(omega, 2.0) * y[0][i1-1] * tau;

// *****

for(i2 = 0; i2 < N; i2++)

y[i2][i1] = y[i2][i1-1] + k1[i2];

#endif

#ifdef __RK_2ND__

// k1 = f(y(t),t) * tau

double k1[N];

k1[0] = y[1][i1-1] * tau;

k1[1] = -pow(omega, 2.0) * y[0][i1-1] * tau;

// *****

// k2 = f(y(t)+(1/2)*k1 , t+(1/2)*tau) * tau

double k2[N];

k2[0] = (y[1][i1-1] + 0.5*k1[1]) * tau;

k2[1] = -pow(omega, 2.0) * (y[0][i1-1] + 0.5*k1[0]) * tau;

// *****

for(i2 = 0; i2 < N; i2++)

y[i2][i1] = y[i2][i1-1] + k2[i2];

#endif

#ifdef __RK_3RD__

...

#endif

#ifdef __RK_4TH__

...

123

#endif

}

// *****

// output

for(i1 = 0; i1 <= num_steps; i1++)

{

double t = i1 * tau;

printf("%9.6lf %9.6lf %9.6lf\n", t, y[0][i1], y[0][i1]-cos(t));

}

// *****

return EXIT_SUCCESS;

}

124

B C Code: trajectories for the anharmonic oscillator with the
RK method with adaptive step size

// solve system of ODEs

// \vec{\dot{y}}(t) = \vec{f}(\vec{y}(t),t) ,

// initial conditions

// \vec{y}(t=0) = \vec{y}_0 ,

// anharmonic oscillator, potential

// V(x) = m \alpha x^n ,

// adaptive stepsize

// **********

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

// **********

// physics parameters and functions

// **********

// anharmonic oscillator, V(x) = m \alpha x^n,

// y = (x , v)

// f = (v , -\alpha n x^n-1)

const int N = 2; // number of components of \vec{y} and \vec{f}

// const int n = 2;

// const double alpha = 0.5;

const int n = 20;

const double alpha = 1.0;

double y_0[N] = { 1.0 , 0.0 }; // initial conditions

// function computing f(y(t),t) * tau

void f_times_tau(double *y_t, double t, double *f_times_tau_, double tau)

{

if(N != 2)

{

fprintf(stderr, "Error: N != 2!\n");

exit(EXIT_FAILURE);

}

f_times_tau_[0] = y_t[1] * tau;

f_times_tau_[1] = -alpha * ((double)n) * pow(y_t[0], ((double)(n-1))) * tau;

}

// **********

// RK parameters

// **********

// #define __EULER__

#define __RK_2ND__

125

// #define __RK_3RD__

// #define __RK_4TH__

#ifdef __EULER__

const int order = 1;

#endif

#ifdef __RK_2ND__

const int order = 2;

#endif

#ifdef __RK_3RD__

const int order = 3;

#endif

#ifdef __RK_4TH__

const int order = 4;

#endif

// maximum number of steps

const int num_steps_max = 10000;

// compute trajectory for 0 <= t <= t_max

const double t_max = 10.0;

// maximum tolerable error

const double delta_abs_max = 0.001;

double tau = 1.0; // initial step size

// **********

double t[num_steps_max+1]; // discretized time

double y[num_steps_max+1][N]; // discretized trajectories

// **********

#ifdef __EULER__

...

#endif

#ifdef __RK_2ND__

// RK step (2nd order), step size tau

void RK_step(double *y_t, double t, double *y_t_plus_tau, double tau)

{

int i1;

// *****

// k1 = f(y(t),t) * tau

double k1[N];

f_times_tau(y_t, t, k1, tau);

126

// *****

// k2 = f(y(t)+(1/2)*k1 , t+(1/2)*tau) * tau

double y_[N];

for(i1 = 0; i1 < N; i1++)

y_[i1] = y_t[i1] + 0.5*k1[i1];

double k2[N];

f_times_tau(y_, t + 0.5*tau, k2, tau);

// *****

for(i1 = 0; i1 < N; i1++)

y_t_plus_tau[i1] = y_t[i1] + k2[i1];

}

#endif

#ifdef __RK_3RD__

...

#endif

#ifdef __RK_4TH__

...

#endif

// **********

int main(int argc, char **argv)

{

double d1;

int i1, i2;

// *****

// initialize trajectories with initial conditions

t[0] = 0.0;

for(i1 = 0; i1 < N; i1++)

y[0][i1] = y_0[i1];

// *****

// RK steps

for(i1 = 0; i1 < num_steps_max; i1++)

{

if(t[i1] >= t_max)

break;

127

// *****

double y_tau[N], y_tmp[N], y_2_x_tau_over_2[N];

// y(t) --> \tau y_{\tau}(t+\tau)

RK_step(y[i1], t[i1], y_tau, tau);

// y(t) --> \tau/2 --> \tau_2 y_{2 * \tau / 2}(t+\tau)

RK_step(y[i1], t[i1], y_tmp, 0.5*tau);

RK_step(y_tmp, t[i1]+0.5*tau, y_2_x_tau_over_2, 0.5*tau);

// *****

// estimate error

double delta_abs = fabs(y_2_x_tau_over_2[0] - y_tau[0]);

for(i2 = 1; i2 < N; i2++)

{

d1 = fabs(y_2_x_tau_over_2[i2] - y_tau[i2]);

if(d1 > delta_abs)

delta_abs = d1;

}

delta_abs /= pow(2.0, (double)order) - 1.0;

// *****

// adjust step size (do not change by more than factor 5.0).

d1 = 0.9 * pow(delta_abs_max / delta_abs, 1.0 / (((double)order)+1.0));

if(d1 < 0.2)

d1 = 0.2;

if(d1 > 5.0)

d1 = 5.0;

double tau_new = d1 * tau;

// *****

if(delta_abs <= delta_abs_max)

{

// accept RK step

for(i2 = 0; i2 < N; i2++)

y[i1+1][i2] = y_2_x_tau_over_2[i2];

t[i1+1] = t[i1] + tau;

tau = tau_new;

}

else

{

128

// repeat RK step with smaller step size

tau = tau_new;

i1--;

}

}

int num_steps = i1;

// *****

// output

for(i1 = 0; i1 <= num_steps; i1++)

{

printf("%9.6lf %9.6lf\n", t[i1], y[i1][0]);

}

// *****

return EXIT_SUCCESS;

}

129

C C Code: energy eigenvalues and wave functions of the infinite
potential well with the shooting method

// compute energy eigenvalues and wave functions of the infinite potential well,

// -\psi’’ = E \psi ,

// with boundary conditions \psi(x=0) = \psi(x=1) = 0

// **********

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

// **********

// physics parameters and functions

// **********

// y = (\psi , \phi , E)

// f = (\phi , -E \psi , 0)

const int N = 3; // number of components of \vec{y} and \vec{f}

double y_0[N] = { 0.0 , 1.0 , 0.0 }; // Anfangsbedingungen y(t=0).

// function computing f(y(t),t) * tau

void f_times_tau(double *y_t, double t, double *f_times_tau_, double tau)

{

if(N != 3)

{

fprintf(stderr, "Error: N != 3!\n");

exit(EXIT_FAILURE);

}

f_times_tau_[0] = y_t[1] * tau;

f_times_tau_[1] = -y_t[2] * y_t[0] * tau;

f_times_tau_[2] = 0.0;

}

// **********

// RK parameters

// **********

// #define __EULER__

// #define __RK_2ND__

// #define __RK_3RD__

#define __RK_4TH__

#ifdef __EULER__

const int order = 1;

#endif

#ifdef __RK_2ND__

const int order = 2;

130

#endif

#ifdef __RK_3RD__

const int order = 3;

#endif

#ifdef __RK_4TH__

const int order = 4;

#endif

// number of steps

const int num_steps = 1000;

// compute trajectory (= wave function) from t = t_0 to T = t_1

const double t_0 = 0.0;

const double t_1 = 1.0;

double tau = (t_1 - t_0) / (double)num_steps; // step size

double h = 0.000001; // finite difference for numerical derivative

double dE_min = 0.0000001; // Newton-Raphson accuracy

// **********

#ifdef __EULER__

...

#endif

#ifdef __RK_2ND__

// RK step (2nd order), step size tau

void RK_step(double *y_t, double t, double *y_t_plus_tau, double tau)

{

int i1;

// *****

// k1 = f(y(t),t) * tau

double k1[N];

f_times_tau(y_t, t, k1, tau);

// *****

// k2 = f(y(t)+(1/2)*k1 , t+(1/2)*tau) * tau

double y_[N];

for(i1 = 0; i1 < N; i1++)

y_[i1] = y_t[i1] + 0.5*k1[i1];

double k2[N];

f_times_tau(y_, t + 0.5*tau, k2, tau);

131

// *****

for(i1 = 0; i1 < N; i1++)

y_t_plus_tau[i1] = y_t[i1] + k2[i1];

}

#endif

#ifdef __RK_3RD__

...

#endif

#ifdef __RK_4TH__

...

#endif

// **********

// RK computation of the trajectory (= wave function)

double t[num_steps+1]; // discretized time

double y[num_steps+1][N]; // discretized trajectories

double RK(bool output = false)

{

double d1;

int i1, i2;

// *****

// RK steps

for(i1 = 0; i1 < num_steps; i1++)

{

// y(t) --> y(t+\tau)

RK_step(y[i1], t[i1], y[i1+1], tau);

t[i1+1] = t[i1] + tau;

}

// *****

if(output == true)

{

// output

for(i1 = 0; i1 <= num_steps; i1++)

{

printf("%9.6lf %9.6lf %9.6lf %9.6lf\n", t[i1], y[i1][0], y[i1][1], y[i1][2]);

}

}

132

// *****

return y[num_steps][0];

}

// **********

int main(int argc, char **argv)

{

int i1;

// *****

// initialize trajectories with initial conditions

t[0] = t_0;

for(i1 = 0; i1 < N; i1++)

y[0][i1] = y_0[i1];

// **********

// **********

// **********

// crude graphical determination of energy eigenvalues

// **********

// **********

// **********

/*

double E_min = 0.0;

double E_max = 100.0;

double E_step = 5.0;

for(double E = E_min; E <= E_max; E += E_step)

{

// set intial condition (energy)

y[0][N-1] = E;

// RK computation of the trajectory (= wave function)

double psi_1 = RK(false);

printf("%+.5e %+.5e.\n", E, psi_1);

}

*/

// **********

// **********

// **********

// **********

// **********

// **********

// shooting method

133

// **********

// **********

// **********

// /*

// intial condition (energy)

// double E = 10.0;

// double E = 40.0;

double E = 90.0;

fprintf(stderr, "E_num = %+10.6lf .\n", E);

while(1)

{

// change initial condition (energy)

y[0][N-1] = E;

// RK computation of the trajectory (= wave function)

double psi_1_E = RK(false);

// *****

// numerical derivative (d/dh) psi(x=1)

y[0][N-1] = E-h;

double psi_1_E_mi_h = RK(false);

y[0][N-1] = E+h;

double psi_1_E_pl_h = RK(false);

double dpsi_1_E = (psi_1_E_pl_h - psi_1_E_mi_h) / (2.0 * h);

// *****

// Newton-Raphson step

double dE = psi_1_E / dpsi_1_E;

if(fabs(dE) < dE_min)

break;

E = E - dE;

// *****

// fprintf(stderr, "E_num = %+10.6lf , E_ana = %+10.6lf , \\psi(x=1) = %+.6lf .\n",

// E, M_PI*M_PI, psi_1_E);

// fprintf(stderr, "E_num = %+10.6lf , E_ana = %+10.6lf , \\psi(x=1) = %+.6lf .\n",

// E, 4.0*M_PI*M_PI, psi_1_E);

fprintf(stderr, "E_num = %+10.6lf , E_ana = %+10.6lf , \\psi(x=1) = %+.6lf .\n",

E, 9.0*M_PI*M_PI, psi_1_E);

}

// output

RK(true);

// */

// **********

// **********

134

// **********

return EXIT_SUCCESS;

}

135

D C Code: Gauss elimination with backward substitution, dif-
ferent pivoting strategies

// solve

// A x = b

// using Gauss elimination with backward substitution and different pivoting strategies

// **********

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

// **********

// #define __PARTIAL_PIVOTING__

#define __SCALED_PARTIAL_PIVOTING__

// **********

// size of A, b and x

// const int N = 4;

const int N = 100;

// matrix A (elements will be modified during computation)

double A[N][N];

// vector (elements will be modified during computation)

double b[N];

// solution

double x[N];

// permutation of rows due to pivoting

int p[N];

// **********

// generates a uniformly distributed random number in [min,max]

double DRand(double min, double max)

{

return min + (max-min) * ((rand() + 0.5) / (RAND_MAX + 1.0));

}

// **********

// print A | b

void Print()

{

int i1, i2;

136

for(i1 = 0; i1 < N; i1++)

{

for(i2 = 0; i2 < N; i2++)

fprintf(stdout, "%+5.2lf ", A[p[i1]][i2]);

fprintf(stdout, "| %+5.2lf\n", b[p[i1]]);

}

fprintf(stdout, "\n");

}

// **********

int main(int argc, char **argv)

{

double d1, d2, d3;

int i1, i2, i3;

srand(0);

// srand((unsigned int)time(NULL));

// *****

// generate random matrix A and vector b, elements in [-1.0,+1.0]

for(i1 = 0; i1 < N; i1++)

{

for(i2 = 0; i2 < N; i2++)

A[i1][i2] = DRand(-1.0, +1.0);

b[i1] = DRand(-1.0, +1.0);

}

// initialize permutation of rows

for(i1 = 0; i1 < N; i1++)

p[i1] = i1;

Print();

// *****

// copy matrix A und vektor b (needed at the end to investigate roundoff errors)

double A_org[N][N];

double b_org[N];

for(i1 = 0; i1 < N; i1++)

{

for(i2 = 0; i2 < N; i2++)

A_org[i1][i2] = A[i1][i2];

b_org[i1] = b[i1];

}

// *****

137

// elimination

#ifdef __SCALED_PARTIAL_PIVOTING__

// store maximum of each row of A, before elements are modified

double A_ij_max[N];

for(i1 = 0; i1 < N; i1++)

{

A_ij_max[i1] = fabs(A[i1][0]);

for(i2 = 1; i2 < N; i2++)

{

if(fabs(A[i1][i2]) > A_ij_max[i1])

A_ij_max[i1] = fabs(A[i1][i2]);

}

}

#endif

for(i1 = 0; i1 < N-1; i1++)

// N-1 elimination steps

{

// determine "optimal row" according to pivoting strategy

int index = i1;

#ifdef __PARTIAL_PIVOTING__

for(i2 = i1+1; i2 < N; i2++)

{

if(fabs(A[p[i2]][i1]) > fabs(A[p[i1]][i1]))

index = i2;

}

#endif

#ifdef __SCALED_PARTIAL_PIVOTING__

d1 = fabs(A[p[i1]][i1]) / A_ij_max[p[i1]];

for(i2 = i1+1; i2 < N; i2++)

{

d2 = fabs(A[p[i2]][i1]) / A_ij_max[p[i2]];

if(d2 > d1)

index = i2;

}

#endif

i2 = p[i1];

p[i1] = p[index];

p[index] = i2;

// ***

138

for(i2 = i1+1; i2 < N; i2++)

// for all remaining rows ...

{

d1 = A[p[i2]][i1] / A[p[i1]][i1];

A[p[i2]][i1] = 0.0;

for(i3 = i1+1; i3 < N; i3++)

A[p[i2]][i3] -= d1 * A[p[i1]][i3];

b[p[i2]] -= d1 * b[p[i1]];

}

Print();

}

// *****

// backward substitution

for(i1 = N-1; i1 >= 0; i1--)

// Für alle Komponenten von x ...

{

x[i1] = b[p[i1]];

for(i2 = i1+1; i2 < N; i2++)

x[i1] -= A[p[i1]][i2] * x[i2];

x[i1] /= A[p[i1]][i1];

}

fprintf(stdout, "x = (");

for(i1 = 0; i1 < N-1; i1++)

{

fprintf(stdout, "%+5.2lf ", x[i1]);

}

fprintf(stdout, "%+5.2lf).\n\n", x[N-1]);

// *****

// check solution, investigate roundoff errors

double b_check[N];

for(i1 = 0; i1 < N; i1++)

{

b_check[i1] = 0.0;

for(i2 = 0; i2 < N; i2++)

b_check[i1] += A_org[i1][i2] * x[i2];

}

fprintf(stdout, "b_check = (");

for(i1 = 0; i1 < N-1; i1++)

139

fprintf(stdout, "%+5.2lf ", b_check[i1]);

fprintf(stdout, "%+5.2lf).\n\n", b_check[N-1]);

fprintf(stdout, "b_check - b = (");

// discrepancy between original b and reconstructed b for each element

for(i1 = 0; i1 < N-1; i1++)

fprintf(stdout, "%+.1e ", b_check[i1] - b_org[i1]);

fprintf(stdout, "%+.1e).\n\n", b_check[N-1] - b_org[N-1]);

// norm of the discrepancy

double norm = 0.0;

for(i1 = 0; i1 < N; i1++)

norm += pow(b_check[i1] - b_org[i1], 2.0);

norm = sqrt(norm);

fprintf(stdout, "|b_check - b| = %+.5e.\n", norm);

// *****

return EXIT_SUCCESS;

}

140

E C Code: solving the discretized Poisson equation with the
conjugate gradient method

// solve the discretized Poisson equation with the conjugate gradient method

// **********

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

// **********

// number of lattice site in each direction is 2*N+1 (boundary included)

const int n = 100;

// dimension of the matrix A and the vectors x and b

const int N = (2*n - 1) * (2*n - 1);

// stop conjugate gradient method as soon as residual is smaller than eps

double eps_eps = 0.0000000001 * 0.0000000001;

// **********

// allocate vector

double *Alloc_Vector()

{

double *v = (double *)malloc(N * sizeof(double));

if(v == NULL)

{

fprintf(stderr, "Error: double *Alloc_Vector(...\n");

exit(EXIT_FAILURE);

}

return v;

}

// **********

// superindex

int Index(int ix, int iy)

{

if(ix <= -n || ix >= +n || iy <= -n || iy >= +n)

return -1;

return (2*n-1)*(iy+(n-1)) + (ix+(n-1));

}

// compute y = A x

void A(double *y, const double *x)

141

{

int ix, iy;

for(ix = -(n-1); ix <= +(n-1); ix++)

{

for(iy = -(n-1); iy <= +(n-1); iy++)

{

y[Index(ix, iy)] = -4.0 * x[Index(ix, iy)];

if(Index(ix-1, iy) != -1)

y[Index(ix, iy)] += x[Index(ix-1, iy)];

if(Index(ix+1, iy) != -1)

y[Index(ix, iy)] += x[Index(ix+1, iy)];

if(Index(ix, iy-1) != -1)

y[Index(ix, iy)] += x[Index(ix, iy-1)];

if(Index(ix, iy+1) != -1)

y[Index(ix, iy)] += x[Index(ix, iy+1)];

}

}

}

// **********

int main(int argc, char **argv)

{

int i1;

double *v1 = Alloc_Vector();

double *x = Alloc_Vector();

double *b = Alloc_Vector();

double *r = Alloc_Vector();

double *p = Alloc_Vector();

// *****

// intitialize right hand side b

for(i1 = 0; i1 < N; i1++)

b[i1] = 0.0;

b[Index(0, 0)] = 1.0;

// *****

// initialize solution x with 0.0

for(i1 = 0; i1 < N; i1++)

x[i1] = 0.0;

// *****

// r = b - A x

142

A(v1, x);

for(i1 = 0; i1 < N; i1++)

r[i1] = b[i1] - v1[i1];

// p = r

for(i1 = 0; i1 < N; i1++)

p[i1] = r[i1];

// *****

// conjugate gradient iteration

int ctr = 0;

double r_r = 0.0;

for(i1 = 0; i1 < N; i1++)

r_r += r[i1] * r[i1];

while(1)

{

ctr++;

fprintf(stderr, "ctr = %4d.\n", ctr);

if(ctr == 1000000)

break;

// ***

// alpha = r^2 / (p A p)

A(v1, p);

double p_A_p = 0.0;

for(i1 = 0; i1 < N; i1++)

p_A_p += p[i1] * v1[i1];

double alpha = r_r / p_A_p;

// x = x + alpha p

for(i1 = 0; i1 < N; i1++)

x[i1] += alpha * p[i1];

// r = r - alpha A p

for(i1 = 0; i1 < N; i1++)

r[i1] -= alpha * v1[i1];

// beta = (r_new)^2 / (r_old)^2

double r_r_old = r_r;

r_r = 0.0;

143

for(i1 = 0; i1 < N; i1++)

r_r += r[i1] * r[i1];

fprintf(stderr, " r_r = %+.5e (%.5e).\n", r_r, r_r_old);

if(r_r < eps_eps)

// Hinreichend genaues x erreicht.

break;

double beta = r_r / r_r_old;

// p = r + beta p

for(i1 = 0; i1 < N; i1++)

p[i1] = r[i1] + beta * p[i1];

}

// *****

// check result by comparing A x to b

double *b_check = Alloc_Vector();

A(b_check, x);

double norm = 0.0;

for(i1 = 0; i1 < N; i1++)

norm += pow(b_check[i1] - b[i1], 2.0);

norm = sqrt(norm);

fprintf(stderr, "\n|b_check - b| = %+.5e.\n", norm);

// *****

// output of electrostatic potential phi = x

for(i1 = -(n-1); i1 <= +(n-1); i1++)

fprintf(stdout, "%+.5e %+.5e\n", ((double)i1) / ((double)n), x[Index(i1, 0)]); // on axis

// fprintf(stdout, "%+.5e %+.5e\n", ((double)i1) / ((double)n) * sqrt(2.0), x[Index(i1, i1)]); // diagonal

// *****

free(v1);

free(b);

free(x);

free(r);

free(p);

free(b_check);

// *****

return EXIT_SUCCESS;

}

144

F C Code: eigenvalues and eigenvectors of a 10 × 10 stiffness
matrix with the Jacobi method

// compute all eigenvalues lambda and eigenvectors v of a real symmetrix matrix A,

// A v = lambda v ,

// using the Jacobi method

// **********

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

// **********

const int N = 10; // size of A

// real symmetric matrix; will be overwritten; diagonal elements will correspond to eigenvalues

double A[N][N];

// matrix of eigenvectors (product of Jacobi rotations); columns will correspond to eigenvectors

double V[N][N];

const double epsilon = 1.0e-20; // stop iterations, if S < epsilion

// **********

int main(int argc, char **argv)

{

FILE *file1;

int i1, i2, i3;

char string1[1000];

// *****

// initialize matrix A

for(i1 = 0; i1 < N; i1++)

{

for(i2 = 0; i2 < N; i2++)

A[i1][i2] = 0.0;

}

for(i1 = 0; i1 < N-1; i1++)

{

A[i1][i1] += 1.0;

A[i1][i1+1] -= 1.0;

A[i1+1][i1] -= 1.0;

A[i1+1][i1+1] += 1.0;

}

// /*

for(i1 = 0; i1 < N; i1++)

{

145

for(i2 = 0; i2 < N; i2++)

fprintf(stderr, "%+4.2lf ", A[i1][i2]);

fprintf(stderr, "\n");

}

// */

// initialize eigenvector matrix

for(i1 = 0; i1 < N; i1++)

{

for(i2 = 0; i2 < N; i2++)

{

if(i1 == i2)

V[i1][i2] = 1.0;

else

V[i1][i2] = 0.0;

}

}

// *****

// Jacobi method

int ctr = 0;

while(1)

{

// deviation from diagonal matrix

double S = 0.0;

for(i1 = 0; i1 < N; i1++)

{

for(i2 = 0; i2 < i1; i2++)

S += pow(A[i1][i2], 2.0);

}

S *= 2.0;

fprintf(stderr, "S = %.5e.\n", S);

if(S <= epsilon)

break;

// *****

ctr++;

fprintf(stderr, "sweep %4d ...\n", ctr);

// sweep over all off-diagonal elements ...

for(i1 = 0; i1 < N; i1++)

{

for(i2 = 0; i2 < i1; i2++)

{

if(fabs(A[i1][i2]) < epsilon / (double)(N*N))

// avoid divison by "almost 0.0"

146

continue;

// theta

double theta = 0.5 * (A[i2][i2] - A[i1][i1]) / A[i1][i2];

// t

double t = 1.0 / (fabs(theta) + sqrt(pow(theta, 2.0) + 1.0));

if(theta < 0.0)

t = -t;

// c, s

double c = 1.0 / sqrt(pow(t, 2.0) + 1.0);

double s = t * c;

// tau

double tau = s / (1.0 + c);

// Jacobi rotation

// matrix A

double A_pp = A[i1][i1] - t * A[i1][i2];

double A_qq = A[i2][i2] + t * A[i1][i2];

double A_rp[N], A_rq[N];

for(i3 = 0; i3 < N; i3++)

{

if(i3 != i1 && i3 != i2)

{

A_rp[i3] = A[i3][i1] - s * (A[i3][i2] + tau * A[i3][i1]);

A_rq[i3] = A[i3][i2] + s * (A[i3][i1] - tau * A[i3][i2]);

}

}

A[i1][i2] = 0.0;

A[i2][i1] = 0.0;

A[i1][i1] = A_pp;

A[i2][i2] = A_qq;

for(i3 = 0; i3 < N; i3++)

{

if(i3 != i1 && i3 != i2)

{

A[i3][i1] = A_rp[i3];

A[i1][i3] = A_rp[i3];

A[i3][i2] = A_rq[i3];

A[i2][i3] = A_rq[i3];

}

}

// eigenvector matrix

double V_rp[N], V_rq[N];

for(i3 = 0; i3 < N; i3++)

{

147

V_rp[i3] = V[i3][i1] - s * (V[i3][i2] + tau * V[i3][i1]);

V_rq[i3] = V[i3][i2] + s * (V[i3][i1] - tau * V[i3][i2]);

}

for(i3 = 0; i3 < N; i3++)

{

V[i3][i1] = V_rp[i3];

V[i3][i2] = V_rq[i3];

}

}

}

// /*

for(i1 = 0; i1 < N; i1++)

{

for(i2 = 0; i2 < N; i2++)

fprintf(stderr, "%+4.2lf ", A[i1][i2]);

fprintf(stderr, "\n");

}

// */

}

// *****

for(i1 = 0; i1 < N; i1++)

{

fprintf(stderr, "\nlambda_%02d = %+10.6lf.\n", i1, A[i1][i1]);

fprintf(stderr, "v_%02d = (", i1);

for(i2 = 0; i2 < N; i2++)

{

fprintf(stderr, "%+5.2lf", V[i2][i1]);

if(i2 < N-1)

fprintf(stderr, " , ");

else

fprintf(stderr, ").\n");

}

}

// *****

return EXIT_SUCCESS;

}

148

G Python Code: solving the heat equation with the Crank-
Nicolson method

heat_eq_CN.py

import math

import numpy as np

import matplotlib.pyplot as plt

input parameters

Nx = 40

Nt = 40

Dt_over_Dx = 0.1 # compute the time evolution from t = 0 to t = Nt * Dt_over_Dx * Dx

u_x_eq_0 = 0.0 # boundary condition at x = 0

u_x_eq_L = 1.0 # boundary condition at x = L

initial conditions u_0(x) = x + \mu sin(n \pi x)

example 1

n = 2

mu = -1.0 / (2.0 * math.pi)

example 2

n = 3

mu = 2.0

Dx = 1.0 / Nx

Dt = Dt_over_Dx * Dx

intialize temperature at t = 0

u = np.zeros((Nt + 1, Nx - 1))

for i1 in range(0, Nx - 1):

x = (i1 + 1) * Dx

u[0][i1] = x + mu * math.sin(n * math.pi * x)

Crank-Nicolson method

alpha_Dt_over_Dx_square = Dt_over_Dx / Dx

initialize matrix B (see lecture notes)

B = np.zeros((Nx - 1, Nx - 1))

for i2 in range(0, Nx - 1):

B[i2][i2] = 2.0 * (1.0 + alpha_Dt_over_Dx_square)

if i2 > 0:

149

B[i2][i2-1] = -alpha_Dt_over_Dx_square

if i2 < Nx-2:

B[i2][i2+1] = -alpha_Dt_over_Dx_square

Nt Crank-Nicolson steps

for i1 in range(0, Nt):

print(’Crank-Nicolson step {} ...’.format(i1+1))

initialize vector b (see lecture notes)

b = np.zeros(Nx - 1)

b[0] = alpha_Dt_over_Dx_square * u_x_eq_0 # "contributions from the lhs", see lecture notes

b[Nx-2] = alpha_Dt_over_Dx_square * u_x_eq_L # "contributions from the lhs", see lecture notes

for i2 in range(0, Nx - 1):

d1 = 0.0

if i2 == 0:

d1 += u_x_eq_0 # boundary condition at x = 0 corresponds to i2 = -1

else:

d1 += u[i1][i2-1]

if i2 == Nx-2:

d1 += u_x_eq_L # boundary condition at x = L corresponds to i2 = Nx-1

else:

d1 += u[i1][i2+1]

b[i2] += 2.0 * (1.0 - alpha_Dt_over_Dx_square) * u[i1][i2] + alpha_Dt_over_Dx_square * d1

solve B u = b

u[i1+1] = np.linalg.solve(B, b)

plot heatmap

u_with_boundary = np.c_[[u_x_eq_0] * (Nt+1), u, [u_x_eq_L] * (Nt+1)]

plt.imshow(u_with_boundary, cmap = ’hot’, interpolation = ’nearest’, origin = ’lower’, extent = (0.0 - 0.5*Dx, 1.0 + 0.5*Dx, 0.0 - 0.5*Dt, Nt * Dt + 0.5*Dt), aspect = ’auto’)

plt.xlabel(’x/L’)

plt.ylabel(’alpha t/L^2’)

plt.show()

compare with analytical solution

for i1 in range(0, Nt+1):

t = i1 * Dt

err_max = 0.0

for i2 in range(0, Nx-1):

x = (i2 + 1) * Dx

u_analytical = x + mu * math.sin(n * math.pi * x) * math.exp(-n**2 * math.pi**2 * t)

d1 = abs(u[i1][i2] - u_analytical)

if d1 > err_max:

err_max = d1

print(’Crank-Nicolson step {:3d}, t = {:9.6f} --> err_max = {:.5e}’.format(i1, t, err_max))

150

References

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, “Numerical recipes 3rd
edition: the art of scientific computing,” Cambridge University Press (2007).

[2] P. C. Chow, “Computer solutions to the Schrödinger equation,” American Journal of
Physics 40, 730 (1972).

[3] P. Bicudo and M. Wagner, “Lattice QCD signal for a bottom-bottom tetraquark,” Phys.
Rev. D 87, no. 11, 114511 (2013) [arXiv:1209.6274 [hep-ph]],
https://arxiv.org/abs/1209.6274.

[4] P. Bicudo, N. Cardoso, L. Müller and M. Wagner, “Study of I = 0 bottomonium bound
states and resonances in S, P , D, and F waves with lattice QCD static-static-light-light
potentials,” Phys. Rev. D 107, no. 9, 094515 (2023) [arXiv:2205.11475 [hep-lat]],
https://arxiv.org/abs/2205.11475.

[5] H. Grabmüller, “Numerik II (für Ingenieure),” lecture notes, Friedrich-Alexander-Univer-
sität Erlangen-Nürnberg (2001).

[6] P. Young, “Everything you wanted to know about data analysis and fitting but were afraid
to ask,” (2012) https://arxiv.org/abs/1210.3781.

[7] https://web.physics.utah.edu/∼detar/phycs6730/handouts/jackknife/jackknife.

[8] L. Rezzolla, “Numerical Methods for Physics,” lecture notes, Goethe-Universität Frankfurt
am Main (WiSe 2022/23).

[9] E. Engel, “Einführung in die Programmierung für Physiker – Teil III: Numerische Mathe-
matik,” lecture notes, Goethe-Universität Frankfurt am Main (SoSe 2023).

151

	Introduction
	Representation of numbers in computers, roundoff errors
	Integers
	Real numbers, floating point numbers
	Roundoff errors
	Simple examples
	Another example: numerical derivative via finite difference

	Ordinary differential equations (ODEs), initial value problems
	Physics motivation
	Euler's method
	Runge-Kutta (RK) method
	Estimation of errors
	Adaptive step size

	Dimensionful quantities on a computer
	Method 1: define units for your computation
	Method 2: use exclusively dimensionless quantities

	Root finding, solving systems of non-linear equations
	Physics motivation
	Bisection (only for N = 1)
	Secant method (only for N = 1)
	Newton-Raphson method (for N = 1)
	Newton-Raphson method (for N > 1)

	Ordinary differential equations, boundary value problems
	Physics motivation
	Shooting method
	Example: QM, 1 dimension, infinite potential well
	Example: QM, 1 dimension, harmonic oscillator
	Example: QM, 3 dimensions, spherically symmetric potential

	Relaxation methods

	Solving systems of linear equations
	Problem definition, general remarks
	Gauss-Jordan elimination (a direct method)
	Pivoting

	Gauss elimination with backward substitution (a direct method)
	L U decomposition (a direct method)
	Crout's algorithm
	Computation of the solution of A x = b
	Computation of det(A)

	Q R decomposition (a direct method)
	Iterative refinement of the solution of A x = b (for direct methods)
	Conjugate gradient method (an iterative method)
	Symmetric positive definite A
	Example: static electric charge inside a grounded box in 2 dimensions
	Generalizations
	Condition number, preconditioning

	Numerical integration
	Numerical integration in 1 dimension
	Newton-Cotes formulas
	Gaussian integration

	Numerical integration in D 2 dimensions
	Nested 1-dimensional integration
	Monte Carlo integration
	When to use which method?

	Eigenvalues and eigenvectors
	Problem definition, general remarks
	Basic principle of numerical methods for eigenvalue problems
	Jacobi method
	Example: molecule oscillations inside a crystal

	Interpolation, extrapolation, approximation
	Polynomial interpolation
	Cubic spline interpolation
	Method of least squares
	2 minimizing fits
	Error estimates for fit parameters aj (``basics of data analysis'')

	Function minimization, optimization
	Problem definition, general remarks
	Golden section search in D = 1 dimension
	Function minimization using quadratic interpolation in D = 1 dimension
	Function minimization using derivatives in D = 1 dimension
	Function minimization in D 2 dimensions by repeated minimization in 1 dimension
	Downhill simplex method (D 2 dimensions)
	Simulated annealing
	Discrete minimization
	Continuous minimization

	Monte Carlo simulations of partition functions
	Ising model
	Basic principle of Monte Carlo simulations
	Examples of common Monte Carlo algorithms
	Metropolis algorithm
	Heatbath algorithm

	Monte Carlo simulation of the Ising model

	Partial differential equations (PDEs)
	Introduction
	Initial value problems
	Stability analysis in the context of a simple example
	Parabolic PDEs: heat equation and Schrödinger equation

	Boundary value problems

	C Code: trajectories for the HO with the RK method
	C Code: trajectories for the anharmonic oscillator with the RK method with adaptive step size
	C Code: energy eigenvalues and wave functions of the infinite potential well with the shooting method
	C Code: Gauss elimination with backward substitution, different pivoting strategies
	C Code: solving the discretized Poisson equation with the conjugate gradient method
	C Code: eigenvalues and eigenvectors of a 10 10 stiffness matrix with the Jacobi method
	Python Code: solving the heat equation with the Crank-Nicolson method

