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Exercise 1 [A simple model for a crystal ]

Consider a system of M = N1 × N2 identical point-like particles located on a 2-dimensional regular lattice.
Each particle has mass m and is connected to its nearest neighbours by identical springs of stiffness k as shown
in the following figure. The displacements x0(t), . . . , xM−1(t) from the rest positions are constrained to one
dimension.
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First part

In this problem, focus exclusively on the situation in which the mass on a corner of the lattice is brought out
of equilibrium at t = 0, i.e.{

xj(t = 0) = δj,0 L

ẋj(t = 0) = 0
where

j ≡ N1 j2 + j1 ∈ [0,M − 1] ⊂ N
(j1, j2) ∈ I ≡ [0, N1 − 1]× [0, N2 − 1] ⊂ N2

,

where L can be used as typical length scale of the problem.

(i) Imagine the above sketched lattice to be placed onto a torus in a way such that the points on the boundaries
of the system are connected with additional springs and they have as well four nearest neighbours. In this
case the problem can be solved analytically.

(a) Write down the Lagrangian of the system and derive the equations of motion in terms of dimensionless
quantities.

(b) A first step valid in general to simplify the equations of motion is to make an ansatz about the form
of the time dependence of the solution. As already discussed in the lecture, this can be assumed to
be

xj1,j2(t̂) = vn1,n2

j1,j2
exp
(
ı ω̂n1,n2 t̂

)
,

where it has been taken into account with the indices (n1, n2) ∈ I that there are N1 ·N2 modes in the
system and therefore N1 ·N2 possible values of ω̂. To be precise, the general solution of the problem
is a linear combination of all possible modes, but this is a known fact and it can be considered just
before imposing the initial conditions. Rewrite the equations of motions in terms of v.
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(c) The following step depends on the problem and it consists in making an ansatz on the functions v.
Use the assumption

vn1,n2

j1,j2
= exp

[
2πı
(j1 n1
N1

+
j2 n2
N2

)]
to obtain ω̂n1,n2

.

(d) Write down all the ω̂ in the case N1 = N2 = 4. Consider the general solution of the problem
combining all the 16 modes and impose the previously mentioned initial conditions.

(ii) Prepare the problem to be addressed numerically. Start again from the equations of motions written in
terms of v obtained in task (i-b) and combine them using a vector notation into the following form,

K · vn1,n2 = ω̂n1,n2 v
n1,n2 with v =


v0,0
v1,0

...
vN1,N2

 .

Determine the stiffness matrix K analogously to what was done in the lecture in the 1-dimensional case.
Which are, in particular, the non-zero entries?

(iii) In a preliminary program implement the Jacobi algorithm to find out the eigenvalues and the eigenvectors
of a matrix. Test it properly to be sure it works.

Second part

(iv) Write a program to solve the equations of motions of the problem considered in task (i). Compare your
numerical solution with the analytical one for N1 = N2 = 4.

(v) Change now the boundary conditions of the system, considering exactly the situation sketched in the
figure, where the mass points on the boundaries have only three or two nearest neighbours (the so-called
free boundary conditions). Solve again the problem numerically in the case N1 = N2 = 4. Can you explain
the differences in the result, for example comparing x15(t̂) = x3,3(t̂) in both situations?

(vi) In the following, set N1 = N2 = 7, use free boundary conditions and consider 0 6 t̂ 6 30.

(a) Solve the problem for the given initial conditions and plot xj(t̂) for j ∈ {0, 6, 24, 48}.
(b) From your plot you should be able to estimate the time needed to make the initial perturbation

propagate through the lattice, e.g. compare x0(t̂) and x48(t̂), and you should then be able to estimate
the stiffness k of iron. Typical values for the speed of sound, the mass and the lattice spacing of an
iron crystal are, respectively, cs ≈ 5 km/s, m ≈ 10−25 kg and a ≈ 3 · 10−10 m.

(c) Solve again the problem changing the stiffness of the springs connected to the points in the middle
row, j ∈ [21, 27] ⊂ N, reducing it to k′ = 0.2 k. Have a look again to xj(t̂) for j ∈ {0, 6, 24, 48} and
try to understand which kind of physical situation is reproduced.

(d) Repeat again task (vi-a), but connect the crystal to the origin via a different spring of stiffness k′ = 5k
attached to the central point of the lattice, i.e. the potential in the Lagrangian has an additional
term

V ′ =
1

2
k′
[
x24(t̂)

]2
=

5

2
k
[
x3,3(t̂)

]2
.

Do you notice any characteristic difference in the eigenvalues? Why is there no zero mode any more
(i.e. a vanishing eigenvalue)?
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