ADVANCED QUANTUM MECHANICS

SS 2019 - Prof. Dr. Marc Wagner

Organization: Room GSC 0|21

CHRISTIAN REISINGER: reisinger@th.physik.uni-frankfurt.de

Exercise sheet 6

To be handed in before 30.05.19, 11:00 by e-mail or in office 2.107.

To be discussed in the week of 03.06.19.

23.05.19

Exercise 1 [Higher partial waves]

(2+3+3=8 pts.)

In the lecture we calculated the contribution of the partial wave with l=0 for a scattering process in the potential of a hard sphere

$$V(r) = \begin{cases} +\infty & \text{if } r \le R \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- (a) Consider the cases kR = 2 and kR = 0.2. Is the partial wave contribution σ_0 a good approximation of the total cross-section, i.e. $\sigma \approx \sigma_0$?
- (b) Calculate the contributions of the partial waves with l=1 and l=2. Determine both the phase shift $\delta_l(E)$ and the contribution to the total cross-section σ_l . Do you find convergence with increasing l? Note that the equation to determine the phase shift can only be solved analytically for l=0. To find the solution, use a computer, or determine the solution graphically.
- (c) Plot the differential cross-section, including contributions of the partial waves with

$$-l = 0$$

$$- l = 0 \text{ and } l = 1$$

$$-l = 0, l = 1 \text{ and } l = 2.$$

For which of the cases is the scattering isotropic? Do you observe convergence in the calculations and plots for the three cases?

Exercise 2 [Yukawa potential, Born approximation] (4+4+4=12 pts.)
Consider scattering at a Yukawa-potential

$$V(r) = A \frac{e^{-\lambda r}}{r} , \ \lambda > 0, \tag{2}$$

which is frequently used in physics, e.g. to describe forces between neutrons and protons due to pion exchange.

- (a) Using the Born approximation, calculate the scattering amplitude $f(\vartheta).$
- (b) Using your result from (a), show that the differential cross-section is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\vartheta) = \frac{A^2}{(4E_k(\sin(\vartheta/2))^2 + \hbar^2\lambda^2/2m)^2}.$$
 (3)

(c) Calculate the potential and differential cross-section in the limit $\lambda \to 0$. Are the Born approximation and the assumptions used to derive scattering theory in the lecture applicable in this limit? Compare your result for the differential cross-section with the correct result from the literature.