
Einführung in die Programmierung für Physiker – WS 2019/2020 – Marc Wagner
Author: Laurin Pannullo

Laurin Pannullo: pannullo@th.physik.uni-frankfurt.de

Final Project: The 2D Ising Model
Study of the phase transition via Monte Carlo simulations

1 Introduction
The subject of this project will be the two dimensional Ising model. This model will be used to describe the
interaction of spins (either spin up or spin down) on a two-dimensional lattice e.g. in a ferromagnet. At low
temperatures, the system is ordered (almost all spins are aligned), but if we raise the temperature above a critical
temperature Tc, the temperature fluctuations destroy the order and there is no preferred spin alignment any more
(compare Fig. 1). The task will be to study this phase transition numerically using Monte Carlo simulations. Many
of the techniques you will use are theoretically rather complex in their theory. Therefore they will only be discussed
on a level such that you will be able to implement and use them. The interested reader is therefore encouraged to
inform oneself in detail about these concepts during or after the project.

a) b)

Figure 1: Schematic representation of the spins in the two dimensional Ising model. The arrows represent spin up
or down. a): The system is below Tc and ordered b): The system is above Tc and unordered.

2 Theory
2.1 2D Ising Model
We will assume a square lattice Λ of ’volume’ LˆL “ V and denote the spins at positions i, j as si,j with si,j “ ˘1.
The Hamiltonian H of the system is

HpSq “ ´
J

2

ÿ

i,j P Λ

si,j psi`1,j ` si´1,j ` si,j`1 ` si,j´1q , (1)

where J is the interaction strength of spins, the 1{2 prevents double counting, S “ tsi,ju is a configuration of spins
and we assume periodic boundary conditions in both directions: si`L,j “ si,j , si,j`L “ si,j .

The canonical partition function of the system is then given by

Zpβq “
ÿ

S

exp r´βHpSqs , (2)

where β “ 1{pkBT q with T the temperature, kB Boltzmann’s constant and the sum runs over all possible spin
configurations S of the system. Later, it will be useful to express everything in dimensionless quantities. Therefore

1

mailto:pannullo@th.physik.uni-frankfurt.de
https://en.wikipedia.org/wiki/Ising_model
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)

let us already define β̂ :“ βJ and ˆ̂H :“ Ĥ{J . Then the the Boltzmann weight is expr´β̂ Ĥs. It is easy to see, that
both the dimensionless and the original weight have the same value. We will use these dimensionless quantities
when we talk about the implementation of the code.

Observables are then calculated as

xOy “
1

Zpβq

ÿ

S

OpSq exp r´βHpSqs . (3)

The number of possible states S is Ntotal “ 2L
2 . This renders a direct calculation of Eq. (3) already for quite small

volumes impossible. Therefore, in the following section we will briefly introduce a statistical method to approximate
sums like Eq. (3).

2.2 Monte Carlo simulation
A Monte Carlo method, in general, is a computational algorithm that relies on repeated random samples to obtain
numerical results. For example, integrals can be performed using Monte Carlo techniques. The basic idea is that we
create N samples in our domain of integration A and evaluate our function at these samples. For an infinite number
of samples the true value of the integral is the average of the function samples. For a 1D integral this results in

I “

ż

A

dxfpxq “ lim
NÑ8

1

N

N
ÿ

i“1

fpxiq, (4)

where xi are uniformly distributed randomly chosen samples in A. In practice, as an approximation of the integral,
we can choose N to be large but finite. This method can also be applied to sums as in Eq. (3). For our problem,
however, we would need too many samples for a good approximation of the sum, if we would create uniformly
distributed random samples (a sample of our domain of integration in the context of the ising model is just one
possible spin configuration S).

Although there is a large number of possible states of our system, the Boltzmann weight exp r´βHpSqs of the
majority of spin configurations S is very small and therefore their contribution to the partition function is close to
zero. Thus it is a good approximation to use mainly those spin configurations with a significant contribution for the
calculation of the partition function. The technique to generate these important configurations is called importance
sampling.

We will use the Metropolis-Hastings algorithm to generate such a set of configurations. Given a start configuration
the next configuration is generated by doing the following steps:

1. Flip one spin of your lattice: si,j Ñ s1
i,j “ ´si,j

1.
Thus obtaining a new set of spins S “ ts1,1, s1,2, . . . , si,j , . . . , sL,Lu Ñ S1 “ ts1,1, s1,2, . . . ,´si,j , . . . , sL,Lu.

2. Calculate the resulting change in energy δH “ H pS1q ´ H pSq.

3. Accept S1 as the new configuration with the probability

W
`

si,j Ñ s1
i,j

˘

“

#

1 if δH ă 0

e´β δH otherwise
. (5)

When S1 is rejected keep S as the new configuration.

One full update corresponds to repeating these steps L2 times. The next configuration in the set of configurations
to be used in the Monte-Carlo method is obtained after one full update. The previous configuration is used as start
configuration of the next update. The configurations created with this algorithm are obviously not independent,
since new configurations are always created from previous ones. This is called auto-correlation and we will discuss
this further in Sec. 6. Therefore, in practice one full update corresponds to Nskip-times L2 Metropolis-Hastings

1There are different ways to choose which spin si,j to flip. We will discuss the different approaches in Sec. 4.2

2

https://en.wikipedia.org/wiki/Importance_sampling
https://en.wikipedia.org/wiki/Importance_sampling
https://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm

steps, where Nskip is chosen such that the obtained configuration is essentially independent of the previous one.

We estimate the expectation values of an observable O as in Eq. (3) by

xOy «
1

N

N
ÿ

n“0

On, (6)

where On “ OpSnq is the observable measured on the n-th generated configuration Sn and N is number of generated
configurations.

2.3 Observables
Moments

Given an observable On we can define moments mk of this observable as

mk “
1

N

N
ÿ

n“0

Ok
n, (7)

and the central moments µk

µk “
1

N

N
ÿ

n“0

pOn ´ m1qk. (8)

It can be shown that the central moments can also be calculated directly from the moments as

µ1 “ 0 , µ2 “ m2 ´ m2
1,

µ3 “ m3 ´ 3m2m1 ` 2m3
1 , µ4 “ m4 ´ 4m3m1 ´ 3m2

2 ` 12m2m
2
1 ´ 6m4

1 ` 3µ2
2. (9)

As a last definition we introduce the standardized moment

Bn :“
µn

pµ2q
n
2
. (10)

Order Parameter

An order parameter is an observable O, that is a measure of the phase of a system. It normally ranges between
zero in one phase and non-zero in the other. Moments of this order parameter characterize the phase transition
and dynamics of the system:

• Mean m1: We denote this also with xOy. This quantity reflects in which phase the system is. When crossing
β̂c the mean will jump immediately from zero to constant non zero for a first order phase transition in the
infinite volume.

• Susceptibility χ “ µ2V : This quantity will peak (diverge in an infinite volume) at the phase transition.

• Skewness B3: This quantity gives information about the asymmetry of the probability distribution of our
observable.

B3

$

’

&

’

%

ą 0 if the distribution has a tail to right
“ 0 if the distribution is symmetric
ă 0 if the distribution has a tail to left

(11)

Zeros of the skewness might signal a phase transition.

• Kurtosis B4: When calculated at β̂c the kurtosis assumes distinct values depending on the order of the phase
transition and the symmetries of the system (Analyzing the phase transition with this quantity goes beyond
the scope of this project.).

3

https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis

The magnetization

Mn “
1

L2

ÿ

i,j P Λ

si,j (12)

serves as an order parameter for this system.

3 Tasks
The project consists of a mandatory part and optional tasks.

The mandatory part is:

1. Perform a Monte Carlo simulation of the two dimensional Ising model.

2. Determine β̂c via the mean Magnetization xMy and the susceptibility χ of M .

3. Plot B3 of M as a function of β̂. Would you try to locate β̂c with this quantity?

If you finish early with this task and are motivated two optional tasks are proposed

1. Simulate at different volumes and approach the infinite volume limit to understand the order of the phase
transition.

2. Visualize the Monte Carlo history of the spin configurations with an animation.

4 Implementation
This section is meant to help you to write your code and give you hints about its structure. A kind of flowchart of
the code can be seen in Fig. 5, where it is shown how the different parts of your program are connected and work
together. Unless you have good reasons not to do so, follow the suggested implementation!

4.1 Structure of the C program
In the design of your code you should separate the generation of configurations and the measurement of observables.
This prevents you from having to regenerate configurations if you need to measure other observables. Therefore the
source code will be split into three files. So the main function of your program should only parse a command line
argument, which decides if your program generates configurations or measures observables.

int main(int argc, char const *argv[])
{

if (strcmp(argv[1], "--generate") == 0)
generate(argv[2]);

else if (strcmp(argv[1], "--measure") == 0)
measure(argv[2]);

else
{

printf("Mode %s not recognized\n", argv[1]);
exit(1);

}
exit(0);

}

The second command line argument should be the name of a configuration file config_file2 where you can set
parameters for your simulation and measurement, that are parsed by your program. The easiest way to do this is

2Note that certain output or input files will be referred to with a variable like name e.g. config_file, but this is only meant as an
identifier within this text and Fig. 5. For your program the files should have meaningful names by which you and your program can
distinguish files e.g. outputfiles of runs with different parameters.

4

a file, where the different lines correspond to the value assigned to their corresponding variable. Therefore, it is
important that the order of the parameters is defined and fixed. Possible parameters given via this file are shown
in Tab. 1. The meaning of some of them will only become clear after reading the following sections.

Parameter function used by
N sets total number of lattice updates generate.c

NSkip sets amount of lattice updates between two measurements generate.c
L sets the lattice size generate.c, measure.c

betaLower sets lower bound of the β̂ interval generate.c, measure.c
betaUpper sets upper bound of the β̂ interval generate.c, measure.c
betaStep sets step size of the β̂ interval generate.c, measure.c

startParameter sets the initial configuration generate.c
id gives your result files a unique identifier generate.c, measure.c

outputConfig controls whether the spin configurations are saved generate.c
NThermal sets the thermalization time after which observables are calculated measure.c

Table 1: Proposed parameters for config_file.

The content of config_file could look like
10000
100
128
0.1
0.9
0.001
1
run1
0
200

where one line corresponds to the value of one variable.

Alternatively you could use a two column file, where the first column specifies the parameter and the second the
given value. Your program then has to parse the entry of the first column to assign the value of the second column
to the right variable inside your program. Your file config_file could then look like this:

N 10000
NSkip 100
L 128
...

4.2 generate.c

The code in this file is responsible for

• initializing the lattice,

• do the following for every β̂ specified by config_file:

– generating configurations accordingly to the Metropolis-Hastings algorithm,
– measuring the magnetization per configuration Mn accordingly to Eq. (12),
– writing all calculated Mn to output_file

– optional: writing the generated spin configurations to spinConfig_file

To guide you a bit further, we will now discuss the vital aspects of this code.

5

The generate function

In the provided example of the main function there is a function called generate that handles all tasks for the
generation of the configurations. It could be structured like

void generate(char const *fileName)
{

/*
- declare variables
- parse config_file
- call init function

*/

for(double b = betaLower; b <= betaUpper; b+=betaStep)
{

/*
- set initial spin configuration

*/

for(int n = 0; n <= N; ++n)
{

/*
- update your Lattice
- store magnetization every NSkip steps

*/

}

/*
- save results in file

*/

}
}

Again, the meaning or necessity of some structures will only become clear when reading the following section.

Initialization

Once you’ve parsed your configuration file, you know crucial values like the size of the lattice or the number of
configurations to generate. This will affect the allocation of memory for different arrays among other things. To
handle such initialization tasks create a function

void init(...);

Lattice setup

You will need an array latticeSpin to store the spin values si,j . Instead of a two dimensional array, a one
dimensional array is usually used, which is indexed with a so-called superindex n. This is done by a function
n : Z ˆ Z Ñ N, npi, jq :“ j ¨ L ` i, whose signature could read

unsigned int getSuperIndex(const int i, const int j);

where i and j are the x and y coordinates of the site. This is a suitable location to implement the periodic boundary
conditions.

Since the interaction takes place only between nearest neighbours, you will often have to retrieve the neighbour-
ing spin values, for which you would have to calculate the superindeces of these neighbours. However, since
these neighbour indices are constant during your simulation, it is recommended to create a two dimensional array

6

neighbourArray of dimensions L2 ˆ 4 during initialization that contains the superindices of all nearest neighbours
to a grid point. Filling neighbourArray with the correct indeces should be part of init.

Random numbers

In the implementation of some functions you will need to generate uniformly distributed random numbers. Therefore
implement a function

double drawRandomNumber(void);

which returns a random number x P r0, 1s drawn from a uniform distribution. Regarding our problem the basic C
generator is sufficient.

Initial spin configuration

The Metropolis-Hastings algorithm always needs a configuration to be updated. This means that we need to choose
an initial spin configuration at the beginning of our simulation. There are two common options

• cold start: Set all spins to the same value (Ñ `1 or ´1)

• hot start: Randomly set spins to ˘1

The cold start is recommended. In case you do the optional task of visualization try to answer the following: What
happens with a hot start at large β̂? This should answer why a cold start is recommended.

Implement a function
void setInitialConfig(int* latticeSpin , int mode);

to handle the task of setting the initial configuration.

Metropolis-Hastings algorithm

The next task is to implement the Metropolis-Hastings algorithm. Implement a function that performs the
Metropolis-Hastings algorithm , whose signature could read

void updateLattice(int* latticeSpin , const int** neighbourArray , const double beta);

where one call of this function should perform L2 iterations of the Metropolis-Hastings algorithm. To do this, we
look at the computational requirement of every step of the algorithm:

1. Step - Flipping of a spin: By now you will have already wondered how to choose the spins to flip. There
are three answers that might come to mind

• Sequential update: Just go through the whole lattice in order Ñ Not recommended as the generated
configurations will be highly correlated. But it is encouraged to explore this option in combination with
the visualization task.

• Random update with doubling: Choose a spin of your lattice randomly Ñ Recommended option as it
has the right balance between cost and auto-correlation.

• Random update without doubling: Choose the order of the spins randomly, but ensure that updateLattice
updates every site exactly once Ñ Not recommended as it is very expensive and is not needed.

2. Step - Calculating δĤ: The easiest way to do it, is to calculate Ĥ pS1q and Ĥ pSq and take the difference.
However, this calculates more than you need to. Since the interaction of the spins are only nearest neighbours,
the energy will only change locally. Therefore, you will have to simplify δĤ analytically.

3. Step - The acceptance step: Use drawRandomNumber to implement the acceptance step.

Calculate Mn

Calculate the magnetization Mn every NSkip configurations and store them in an array.

7

http://www.cplusplus.com/reference/cstdlib/rand/

Output files

As proposed in Fig. 5 this part of your program should be able to output a file output_file where every line
corresponds to the magnetization Mn of a generated configuration in your Monte Carlo simulation. To keep it
simple, generate one file per value of β̂. Generate unique names for you files from the run parameters. It should
look like

...
0.912109
0.908203
0.913574
0.898926
0.917480
0.912109
...

If you intend to do the optional task of the visualization, your code should also be able to output files of the spin
configuration spinConfig_file. Generate matrix blocks with the spin values and separate them by a double blank
line. Their content should look like

...
-1 -1 +1 -1 -1 -1
-1 -1 +1 +1 +1 -1
-1 +1 +1 -1 -1 -1
+1 +1 -1 -1 -1 +1
-1 +1 +1 +1 +1 -1
-1 +1 -1 +1 +1 +1

-1 -1 +1 -1 -1 +1
...

for a 6 ˆ 6 lattice. Make the output of such files optional and only output them when needed, as their size can
quickly increase for larger lattices and statistics (having a few GB file is easily possible).

4.3 measure.c

The code in this file is responsible for

• reading in the previously generated output_file corresponding to the β̂ specified by config_file

• calculate |xMy| and χ, B3, B4 of M as defined in Sec. 2.3 for all configurations after NTherm.

• write them to a central file results_file, where the first column is β̂ and the next columns are the corre-
sponding quantities calculated in the previous step.

The content of results_file should look like
...
0.014000 0.029142 0.001359 -0.085496 3.066083
0.015000 0.024791 0.001016 0.091971 3.347088
0.016000 0.026640 0.001137 0.124383 2.998146
0.017000 0.026147 0.001075 0.034916 2.857480
...

Thermalization

When doing Monte Carlo simulations the system needs time to thermalize. This means that the system is not yet in
equilibrium (with respect to the Monte Carlo simulation) and the generated configurations are not representative.
This is best seen when looking at the Monte Carlo history from output_file. The Monte Carlo history of Mn

of a simulation for β̂ ă β̂c initialized with a cold start is shown in Fig. 2. At the beginning the value starts at

8

1 (due to the cold start) and then slowly evolves towards zero until it only fluctuates around this value, where it
seems to be in equilibrium. The amount of configurations it takes until the simulation is in equilibrium is called
thermalization time. One should only start to calculate expectation values of observables with configurations after
this thermalization time. Keep in mind that this thermalization time depends for one on your system’s size, but
also on the value β̂. Therefore is strongly recommended to have a quick look into some of the Monte Carlo histories
before calculating observables to have a rough estimate of NTherm. When in doubt it is better to overestimate
NTherm.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

M
n

Configurations n

Figure 2: Monte Carlo history of Mn for L “ 256, NSkip “ 10 and cold start.

4.4 Visualizing the Monte Carlo simulation
As an optional task you could try to visualize the evolution of configurations saved in spinConfig_file in an
animation e.g. using gnuplot (or any other tool of your choice). To do so you might need some functionalities, that
you might not have used so far. These include gif terminal, do for loops and the index keyword for the splot
command. Your script could contain the following lines (note that comments are indicated by # in gnuplot):

...
set terminal gif animate size 800,600 # How does this terminal work?
...
stats datafile nooutput # Gathers informations about the the file: line number etc.
...
set up output
set the different ranges
set a colorpalette
...
set view map
...
do for [i=1: ...] { # Which value has to be set in the second part of the square
splot ... # bracket? Think of the stats command that we used. You will need

the index keyword in splot.
}

A frame of your finished animation should then look like Fig. 3. Of course you are free to generate the animation
in any other way e.g. as a video file.

9

http://gnuplot.sourceforge.net/docs_4.2/node378.html
http://www.gnuplotting.org/gnuplot-4-6-do/
http://gnuplot.sourceforge.net/docs_4.2/node123.html#2184

Configuration 234

datafile index (i-1) matrix

 0 50 100 150 200 250

x

 0

 50

 100

 150

 200

 250

y

-1

1

S
p
in

Figure 3: Frame of the animation visualizing the Monte Carlo history of the spin configurations.

5 Running your Code
To do the main task - determining β̂c - a run with L “ 30, β̂ P t0.000, 0.001, . . . , 0.999, 1.000u with N “ 10000 and
NSkip “ 100 should be appropriate3. Fortunately, there is an analytic result for infinite volume β̂c “ 1

2 lnp1`
?
2q «

0.4407 you can compare the precision of your simulations to. In Fig. 4 |xMy| and χ from a run with the suggested
parameters are plotted against β̂. Why is a better idea to plot |xMy| instead of xMy?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|<
M

>
|

βeff

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

χ

βeff

Figure 4: Results from a run with the suggested parameters.

5.1 Infinite volume limit
Most of the time we are interested in studying physics in an infinite volume. In contrast to this, our simulations
will always be in a finite volume. However, we can simulate with increasing volumes and see if e.g. β̂c converges

3On the tutor’s office pc this took about 6 minutes.

10

to a fix value. To investigate this behaviour determine β̂c for L P t4, 8, 16, 32, . . . , 256u (or up to any volume that
your computer is able to simulate in a reasonable time4). Do the small volumes have any relevant information? Do
you think that you reached the infinite volume limit? Are you able to determine the order of the phase transition?
Does B3 improve? Keep in mind that the thermalization time and auto-correlation will drastically increase with
the volume. So an increase in NTherm and NSkip will be necessary.

6 Closing remarks
Errors
So far, we did not speak about errors of observables nor instructed you to calculate these. However, of course, any
numerical result is not free from errors and one has to be very careful. The standard deviation alone is not suitable,
since the auto-correlation has to be taken into account in the estimation of the errors. Understanding and doing
this can be a very complex topic and therefore it is left out of the project.

Further literature
If you want to learn more in detail about Monte Carlo simulation we recommend the following books Markov Chain
Monte Carlo Simulations and Their Statistical Analysis by Bernd A. Berg and Monte Carlo Methods in Statistical
Physics by M. E. J. Newman and G. T. Barkema. An important application of Monte Carlo simulation in high-
energy physics is lattice field theory in general and lattice QCD. Quantum Chromodynamics on the Lattice by C.
Gattringer and C. B. Lang is an excellent introduction to this topic for readers familiar with the path integral
formalism of Quantum field theory

4One hour of run time is still reasonable for such a simulation.

11

https://en.wikipedia.org/wiki/Quantum_chromodynamics

results_file
• lines are Mean, Susceptibility, Skewness, Kurtosis per beta

ising.c

→ mode1

2

--generate

--measure

mode == --generate

output_file
• lines are the mean magnetization
 per NSkip-th configuration

• one file per beta value

outputConfig == 1

mode == --measure

animation.plt
• plots spins as heatmap in 2d plot

• generates animation with 1 frame
 per configuration

spinConfig_
file

• spin values are written as a matrix

• matrices per configuration seperated
 by empty two lines

config_file

infinite volume

limit

OPTIONAL

generate.c
• Do the following for every b in the interval
 1. generate N configurations according via Metropolis-Hastings algorithm
 2. calculates mean magnetization on every NSkip-th configuration

measure.c
• reads in outputfiles named according to parameters

• calculates Mean, Susceptibility, Skewness, Kurtosis

animation.gif

Check

thermalization

time

choose NTherm

Figure 5: Proposed structure of the task and program

12

	Introduction
	Theory
	2D Ising Model
	Monte Carlo simulation
	Observables

	Tasks
	Implementation
	Structure of the C program
	generate.c
	measure.c
	Visualizing the Monte Carlo simulation

	Running your Code
	Infinite volume limit

	Closing remarks

