
Einführung in die Programmierung für Physiker
WS 2017/2018 – Marc Wagner

Francesca Cuteri: cuteri@th.physik.uni-frankfurt.de
Alessandro Sciarra: sciarra@th.physik.uni-frankfurt.de

Exercise sheet 9
To be corrected in tutorials in the week from from 08/01/2018 to 12/01/2018

Exercise 1 [Unit tests]

In computer programming, unit testing is a way to ensure that the code is working by focusing on single
units of source code. In real life, this is nothing but the first step to test a code1, but for our purposes
it is already almost everything we need.

In this exercise we will develop a scheme to make unit test that can be reused in other codes. The idea
is to have a set of functions (our units) and to test them separately. In order to do so, we will write a
new function for each unit to be tested and, inside it, the original function will be called with default
parameters and its output will be compared with some reference values. At the beginning all the input
and reference values will be hard-coded, i.e. our test functions will not get any parameter in input. Later
on we will try to generalize our code, but only in some particular case2.

(i) Your first task is to write some typical testing function, i.e. functions which encapsulate a com-
parison between numbers.

bool isLarger(const double lhs , const double rhs);

bool isSmaller(const double lhs , const double rhs);

bool isEqual(const double lhs , const double rhs , const double epsilon);

(ii) Now let us consider some units to be tested. To stay focused on the idea of testing, we will
implement some simple mathematical functions, using what is available in the math.h library.
Define the following functions.

double gaussian(const double x, const double mu, const double sigma);

double sine(const double x, const double A, const double B); // sin(A*x+B)

double exponential(const double x, const double alpha); // exp(alpha*x)

(iii) For each of the functions above, implement a function to test them. Their structure should be
similar.

bool /*<function name >*/_test(void){

// 1 - declare input and reference values

// 2 - call mathematical function

// 3 - make test and return

}

Check, for example, that the Gaussian distribution N(x, 0, 1) > 0 at some value of x, e3x < 1 for

some negative value of x and sin(4x+ π
4 ) = −

√
2
2 at x = π

4 .

(iv) Now we should focus on implementing a runAllTests function which runs all the tests and gives
information to the user. In this function you should, then, call all the _test functions and keep
track of successes and/or failures. It should now be clear, why we decided before to make a single
test return a bool variable. We would like to have a complete report.

1Usually, depending on the software, integration tests, component interface tests, system tests or operational acceptance
tests are needed before a release. Refer to https://en.wikipedia.org/wiki/Software testing to read more on the topic.

2There are, indeed, more intricate but elegant ways to approach the problem in general and you will discover soon in
the lecture the technology to do so. However, it would be too early now to deal with this problem and it makes sense to
postpone it.

1



--------------------------------------

Running 3 tests ...

1 Gaussian distribution OK

2 Sine function FAILED

3 Exponential function OK

... done!

--------------------------------------

2 test(s) passed, 1 test(s) failed!

--------------------------------------

Delegate the printing of a single test outcome to a separate function.

void printOutcomeSingleTest(const bool passed , const char* testName , /*...*/);

(v) So far so good. Now, the interesting part comes in. Suppose to have a new unit to be tested, and
to have already implemented its _test. We would like to minimize the effort to add this test to our
report. At the moment, to add it, you should probably implement an if case, and some printing.
It would be nicer to just call a function runSingleTest, which takes over the job. Indeed, since
the signature of all the _test functions is the same, it is not so difficult. Try to implement it,
passing a function-pointer as parameter (and a const char* to print the test name). Now, your
runAllTests function can be rewritten in a much easier to generalise way, using e.g. calls like
passed+=runSingleTest(sine_test, "Sine function");.

(vi) Despite the fact the code looks already good at this point, we cannot be completely satisfied.
Each single _test function has the test input and reference value(s) hard-coded and this makes
the code hard to maintain and generalize. Moreover, our _test functions need to prepare input
and reference values for the test as well as they have to make the test themselves. This means we
violate the single-responsibility rule, according to which each function should not have more than
one responsibility. We would like, then, to delegate the testing responsibility to a new function,
which we will try to implement in a way such that we can use it in all our _test functions. A
possible signature could be

bool makeTest(/*function -ptr*/, const double x, const double inputParams [],

const double refValue , const char testType);

where the first argument is the function to be tested, the array contains the input parameters to
be passed over to the function and the const char is used to decide whether to call isLarger or
isSmaller or isEqual. Add this function to your code.

(vii) In order to use the makeTest function in our _test functions, we need to slightly change our math-
ematical functions. In item (ii), we used signatures with const double x as first argument and a
set of const double parameters. We would like, instead, to have only two arguments, the func-
tion independent variable const double x and an array of parameters const double params[].
Rewrite your code accordingly.

(viii) Now you are ready to rewrite your _test functions which should set up the test parameters (i.e.
prepare the array of parameters for the mathematical function) and call the makeTest function.
For example, to test that e3x < 1 for x = −π, we could write

bool exponential_test(void){

const double x = - M_PI , refValue = 1;

const double params [1] = {3}; const char type = 's';

return makeTest(exponential , x, params , refValue , type);

}

which is very readable and maintainable.

As you may have already noticed, we would get in trouble if we had to add a mathematical function
with integers parameters,

double binomialDistribution(const double p, const unsigned int n, const unsigned int k);

or, even more, if we had to add a mathematical function with parameters of different types. We will
learn soon how to approach this problem.

To be continued!

2


