
Einführung in die Programmierung für Physiker – WS 2017/18 – Marc Wagner

Francesca Cuteri: cuteri@th.physik.uni-frankfurt.de

Final Project: Predators vs. preys

”Your almost unique opportunity of writing a code in which you are not allowed,
but rather supposed to have “bugs”... ()

...which you should not try to get rid of by assuming constant zero populations!”

1 Introduction

Figure 1: Cottony cushion in-
sect (Icerya Purchasi)

In this project we are interested in a model, the Lotka-Volterra
model, describing the population growth, in a closed ecosystem, of
two species of animals in which one of the two species (the preys)
is the primary food source for the other species (the predators).

There are many examples of situations of which the model we aim
to implement can provide a semi-realistic description: baleen whales vs
Antarctic krill (in turn eating plankton) in the Southern Ocean, wolves
vs rabbits (in turn eating vegetation) in a closed forest.

Remarkably the model we are going to deal with was even able to
explain observations in the behavior of the involved species when, in 1968
in California the cottony cushion insect (Icerya Purchasi) was accidentally
introduced from Australia and it was threatening all citrus crops. To
solve the problem it was imported in 1888-1889 by C. V. Riley, again
from Australia, the ladybird beetle (Novius Cardinalis), the most effective
predator for the cottony cushion insect. It was one of the first major
successes of biological control resulting in swift reductions of the cottony
cushion insect populations, saving the burgeoning Californian citrus industry from this destructive pest.

Figure 2: Ladybird bee-
tle (Novius Cardinalis)

However, later on, when the insecticidal action of the Dichlorodiphenyl-
trichloroethane (DDT) was discovered in 1939, farmers started using it in the
hope of reducing even further the cottony cushion insect population. However,
DDT turned out to be fatal to the beetle as well, and the overall effect of us-
ing the insecticide was to increase the numbers of the cottony cushion insect.
Also this aspect of the predator-prey dynamics and the related experimental
observations can be explained by slightly modifying the Lotka-Volterra model
to keep the DDT effect into account. Yet another big success for the model.

Still biologist and ecologist have reason to criticize the Lotka-Volterra model
for being unrealistic because the system, as described by the model, is not
asymptotically stable, whereas most natural predator-prey systems tend to
reach equilibrium levels over time after showing regular population cycles. This

is why alternative models that are asymptotically stable have been proposed where also the degree of competi-
tion among the predators for the finite amount of available preys as well as the degree of internal competition
among preys due to the limited amount of resources (e.g. food) are taken into account.

2 Overview of the problem

Let us take a closer look at the ecosystem of the ladybird beetles and cottony cushion insects. The beetles
eat the insects, and the insects live on the citrus crop. If the beetles eat so many insects that these latter

1

mailto:cuteri@th.physik.uni-frankfurt.de

cease to be abundant, the food supply of the beetles is greatly reduced. Then the ladybird beetles will starve.
As the population of beetles dwindles, the cottony cushion insects population makes a comeback because
not so many of them are being eaten any more. As the insects population increases, the food supply for the
beetles grows again and, consequently, so does their population. Also, more beetles are eating increasingly
more insects again.

In the closed ecosystem, does this cycle continue indefinitely or does one of the species eventually die out?
What effect does exploitation of pesticides have on the balance between the ladybird beetle and cottony
cushion insect populations? The ability to answer such questions is important to management of biological
control as alternative to other methods for the protection of farming plantations. Answers can be obtained
from a computational approach to solve numerically the system of differential equations describing the model.

3 Overview of the model

Let x(t) and y(t) indicate, at any time t, the cottony cushion insect and the ladybird beetle population
respectively within a closed Californian citrus crop.

The level of the insect population x(t) depends on a number of factors, including the ability of the crop
to support them, the existence of competitors for their primary food source (the citrus plants) and the
populations of other possible predators than the beetle. We will however start building the model under
the assumption that our unfortunate citrus crop can support an unlimited number of insects so that their
population could in principle grow exponentially if it was not for the beetles that we assume to be the
unique predators of the insects. This reduces the growth rate of the insects in a way that is proportional
to the number of interactions between them and the beetles. All above observations leads to the differential
equation

dx(t)

dt
= [a− b y(t)]x(t) , (1)

where a, b are positive constants (determined on the basis of observations) indicating the degree of self-
regulation of the insects population given the unlimited amount of resources and the predatoriness of the
beetles, respectively. So a− b y(t) is the intrinsic growth rate of our population of preys.

About the level of the ladybird beetle population y(t), one can observe that in the absence of their primary
food source y(t) declines at a rate which is proportional to their numbers, i.e. according to exponential
decay kind of equation. However, in the presence of preys, y(t) is also expected to increase at a rate which
is proportional to the interactions between the two species, boiling down to another differential equation

dy(t)

dt
= [−m+ nx(t)] y(t) , (2)

where m,n are positive constants (determined on the basis of observations) and −m+ nx(t) is the intrinsic
growth rate of our population of predators. So for our predator-prey model we obtained an autonomous
system of differential equations

dx(t)

dt
= [a− b y(t)]x(t)

dy(t)

dt
= [−m+ nx(t)] y(t) ,

(3)

2

where x(0) = x0, y(0) = y0 and a, b,m, n are all positive constants. These is the so-called Lotka-Volterra
system of equations, independently developed in 1926 by the Italian mathematician Vito Volterra (1860-
1940) and American statistician Alfred J. Lotka (1880-1949). It describes the interaction of the ladybird
beetles and the cottony cushion insects under the limited growth assumptions made above and in the absence
of other competitors/predators.

The system of differential equations in Eq.(3), characterizing the basic Lotka-Volterra model, can indeed
be analytically solved and two important properties of the model that can be easily proven are that:

(i) The system admits cyclic solutions (predators and preys sustain each other) of period T ;

(ii) The averages of the two populations depend on the parameters a, b,m and n

〈x〉 =
1

T

∫ T

0

x(t)dt =
m

n

〈y〉 =
1

T

∫ T

0

y(t)dt =
a

b
. (4)

We want to solve the model numerically and check the above properties.
Later on, we also want to explain effects from the employment of DDT in citrus crops in terms of Lotka-

Volterra laws. To do so, we have to modify the model to keep into account that the insecticide destroys in
the same way both the preys and the predators modifying the equations for the system to

dx(t)

dt
= [a− ε− b y(t)]x(t)

dy(t)

dt
= [−m− ε+ nx(t)] y(t) .

(5)

This means, for the second Lotka-Volterra law, i.e. according to Eq. (4), that the average number of beetles
has decreased, becoming a−ε

b , whilst the number of preys has increased to m+ε
n . This was indeed observed

experimentally and was one of the big successes of Lotka-Volterra systems.
As a last step towards a more realistic predator-prey model, the internal competition of the preys for their

limited amount of resources as well as the competition among predators due to the finite amount of available
preys can be encoded in the original Lotka-Volterra model getting to yet another system of equations

dx(t)

dt
= [a− b y(t)− r x(t)]x(t)

dy(t)

dt
= [−m+ nx(t)− s y(t)] y(t) .

(6)

Solving numerically this last model you will be able to check that the trajectories that constitute a solution
to this model are not periodic and tend to equilibrium levels.

4 Integrating the relevant Ordinary Differential Equations

All the dynamics in our model is encoded in the system of first-order ordinary differential equations in
Eq. (3). Both equations relate a total derivative to some function of the dependent variables x(t), y(t) where
the independent variable does not appear explicitly. What we will solve numerically is the corresponding
first-order initial value problem (IVP) given the equations, to be solved simultaneously, and as many initial
boundary conditions. Not requiring an exact solution function to our IVP we will just use our computer
to generate a sequence of approximate numerical values for x(t), y(t). This is the numerical solution of the
problem produced using some numerical method.

3

As a prerequisite for developing the program for this project, you should then learn about numerical
methods, and corresponding algorithms, to solve numerically (systems of) differential equations1.

The idea at the basis of any algorithm for solving a given IVP is to rewrite the dx’s and dt’s

dx(t)

dt
= f (x(t), t) (7)

as finite steps δx and δt, and multiply the equation by δt. This gives algebraic relations to compute the
change in the functions when the independent variable t is changed by δt. In the limit in which the stepsize
δt is made very small, a good approximation to the underlying differential equation is achieved. So, and this
is what we call the Euler’s method, one discretizes the range [t0 = 0, T] over which t varies in steps of some
given size δt = h and iteratively determines the solution at all discrete times according to

xn+1 ≈ xn + hf(xn, tn) (8)

advancing a solution from xn to xn=1 = xn + h, but neglecting, over the all t-range of integration, errors
of order h. What the second order Runge-Kutta or midpoint method does is to attain better accuracy by
combining the information from several Euler-style steps (each involving one evaluation of the function f).
Second order accuracy is indeed achieved by using the initial derivative at each step to find a point halfway
across the h interval, then using the midpoint derivative across the full width of the interval as summarized
by the equations

k1 = hf (xn, tn)

k2 = hf

(
xn +

1

2
k1, tn +

1

2
h

)
xn+1 = yn + k2 +O(h3). (9)

5 Finding the position of two consecutive maxima of the relevant
numerically sampled functions

A good strategy to locate two consecutive maxima of some numerically sampled function (so in a vector)
is to make use of numerical derivatives in a way that we now try to describe. We want to be able to state
whether some ti corresponds to a maximum in our numerically sampled x(t). Then we can use the fact that
we know x(ti−1) as well as x(ti+1) whose abscissas are 2h apart to approximate the derivative of x(t) in
ti. With the same information we can build a numerical approximation for the second derivative. With the
above derivatives at hand we can run over all sub ranges in [0, T] and

• check whether the first derivative in correspondence to a given [xi−1, xi+1] interval has the opposite
sign with respect to the first derivative previously determined for the adjacent interval;

• check the sign of the second derivative in correspondence to the given interval.

These checks will allow you to generally find extrema of x(t) and you can cook up an implementation that
returns the position of two consecutive maxima. This way we will estimate the period of our periodic
solutions x(t) and y(t). Moreover, we can estimate the lag (distance in t) between consecutive maxima
of x(t) and y(t) telling us of how long the predators population lags behind the preys population as both
populations fluctuate cyclically between their maximum and minimum values.

1You can, for instance, refer to http://en.wikipedia.org/wiki/Runge-Kutta_method or to §16.1 in ”Numerical Recipes in
C”.

4

http://en.wikipedia.org/wiki/Runge-Kutta_method
https://www2.units.it/ipl/students_area/imm2/files/Numerical_Recipes.pdf
https://www2.units.it/ipl/students_area/imm2/files/Numerical_Recipes.pdf

6 Numerically approximating the relevant integrals

Methods for the numerical integration of funcions of some single real variables are based on the naive strategy
of summing up the value of the integrand at a sequence of abscissas within the range of integration2. We
are interested in integrating our functions x(t), y(t) whose value is known at equally spaced steps (once the
corresponding differential equations are numerically solved). So, to introduce some notation we have a set of
values of the independent variable t0, t1, ..., tN spaced apart by the constant stepsize h and functions x(t), y(t)
have known values at all ti abscissas. What we want is to integrate x(t), y(t) over the range [t0 = 0, tN = T]
as in Eq. (4). For this purpose you can use, at your choice,

• The Trapezoidal rule, which works by approximating the region under the graph of the function as a
trapezoid and calculating its area ∫ tn+1

tn

x(t)dt ≈ h

2
(xn + xn+1) (10)

• The Simpson’s rule, where one replaces the integrand by the parabola which takes the same values as
the integrand at the end points tn and tn+2 and at the midpoint tn+1.∫ tn+2

tn

x(t)dt ≈ h

3
(xn + 4xn+1 + xn+2) . (11)

7 Putting things together, i.e. requirements for your program

In developing this project you are asked to:

(i) Write a program that integrates the system of ordinary differential equations of the basic predator-prey
model Eq. (3), using a second order Runge Kutta integration scheme, to solve the corresponding IVP
according to the strategy documented in Sec. 4. The user should provide in input, preferably via some
input file, some/all of the following parameters3:

(a) For the definition of the model (all coefficients must be positive)

(1) a as preysReproductionCoefficient

(2) b as preysMortalityCoefficient

(3) m as predatorsMortalityCoefficient

(4) n as predatorsReproductionCoefficient

(b) For the Runge-Kutta scheme

(1) The stepsize in your discretized time range h

(2) The upper bound tFinal of your discretized time range

(3) The time interval tPrint, in general different from the stepsize h, after which you want to
append to your output file a new line containing the three values t x(t) y(t)

(c) As boundary conditions for our IVP problem

(1) x(0) as initialPreysPopulation

(2) y(0) as initialPredatorPopulation

You can check your solution via plotting the results tabulated in the output files. For this task you
can easily use gnuplot to produce the following plots

2You can, for instance, refer to https://en.wikipedia.org/wiki/Trapezoidal_rule and to https://en.wikipedia.org/

wiki/Simpson%27s_rule
3Remember that choosing variables names is one of the decisions by which you can improve the readability of your code,

along with choosing functions names.

5

https://en.wikipedia.org/wiki/Trapezoidal_rule
https://en.wikipedia.org/wiki/Simpson%27s_rule
https://en.wikipedia.org/wiki/Simpson%27s_rule

(a) Plots of trajectories in the population-time plane, i.e. of x(t) and y(t) as functions of t;

(b) Plots of trajectories in the phase plane, i.e. of y(t) as function of x(t).

There are feature that should leap out from these first results, that we want to quantify numerically:

(a) The period T in the oscillations of x(t) and y(t) can be computed by finding the position of two
consecutive e.g. maxima of the numerically sampled functions (see Sec. 5);

(b) The lag (distance in t) between consecutive e.g. maxima of x(t) and y(t);

(c) You will then use your result for T in order to compute averages of the two populations according
to Eq. (4), using the techniques described in Sec. 6. At this point you will be able to check to
which extent the properties in Eq. (4) are found to be satisfied in your numerical implementation
of the model;

(d) The non-closed nature of trajectories in the phase plane if a too big value for δt is set (for this
you will need to run the code multiple times). What you are expected to observe is that if δt
becomes too large, then the approximations do not cycle around counterclockwise exactly to the
initial point. To which kind of errors can this effect be ascribed?

(ii) Extend your program to solve the second version of our Lotka-Volterra IVP according to Eq. (5). The
user, at this point, should be made able to decide at running time which model is he/she interested
to, and coherently provide more input parameters to the program, including in particular the positive
coefficient ε as epsilon.

(a) Repeat the same tasks you accomplished for the basic version of the model;

(b) Choose some fixed set of input values for all other parameters but epsilon, run your code at
various epsilon values and monitor results for 〈x〉 and 〈y〉 (you can even make plots for this).
How do your results explain the effects from the employment of DDT in citrus crops?

(iii) Finally, extend once more your program to solve the third and most realistic proposed version for our
predator-prey IVP according to Eq. (6). The user, at this point, should be made able to decide at
running time which model he/she is interested to, and coherently provide the necessary subset of input
parameters to the program, including in particular the positive coefficients

(a) r as preysCompetitionCoefficient

(b) s as predatorsCompetitionCoefficient

At this point you should

(a) Check from your plots of trajectories in the population-time plane, i.e. of x(t) and y(t) as functions
of t, that periodicity breaks down to some tendency towards equilibrium levels;

(b) Check from your plots of trajectories in the phase plane, i.e. of y(t) as function of x(t) that
periodic motion is now replaced by motion toward an asymptotically stable rest point.

Once all of this is done, you will be mastering biological control techniques and able to switch to agriculture!

8 Code-related advices

• In the implementation of the second order Runge-Kutta scheme, a nice way to improve readability of
your code is to define a structure storing in it all relevant quantities. Make sure you are familiar with
structs. Consider that, inside structures, you can also declare pointers to functions, which is useful
given that the r.h.s. in our system of differential equation changes depending on the model we are
addressing. A new type could be defined as follows

6

typedef struct RungeKutta2nd {

int N;

double * y;

double * dy;

double ys;

void (* stepRK2)(double , double);

void (* rhsBasicModel)(double , double *, double *);

void (* rhsDdtModel)(double , double *, double *);

void (* rhsCompetitiveModel)(double , double *, double *);

} RungeKutta2nd;

On top you will have a function to initialize the new type like

void Initialize_RK2(RungeKutta2nd *rk2 , /*...*/);

or, gathering input from an input file, something like

void Initialize_RK2(RungeKutta2nd *rk2 , char *filename);

In such a function you will have to assign the function pointers to the corresponding functions like

rk2 ->rhsBasicModel = _rhsBasicModel;

rk2 ->rhsDdtModel = NULL;

rk2 ->rhsCompetitiveModel = NULL;

if you are initializing rk2 for the solution of the basic model and, analogously for the other two cases.

• Something that you will need to repeatedly do in the flow of your program is to print data to the
output file. Saving data too frequently to your output file will slow down your program without adding
much information to the final outcome. This is the reason for the already introduced tPrint variable.
Moreover, it might be a good idea to add to your output file also a headline to make clear what
information does each column contains. If you use gnuplot, lines starting by # in the output files will
be automatically ignored.

• Finally, the following list of (incomplete) function signatures for further functions you need to imple-
ment in your code is provided as a guideline to help you envision how to organize your implementation.

/*type*/ calcConsecutiveMaxInVector(/*...*/);

/*type*/ calcPeriodsOfOscillations(/*...*/);

/*type*/ calcLagTime(/*...*/);

/*type*/ calcIntegralWithTrapeziRule(/*...*/); // otherwise

/*type*/ calcIntegralWithSimpsonRule(/*...*/);

/*type*/ calcRatiosOfCoefficientsAndCompareWithAvgPopulation(/*...*/);

Thankfully,

a Californian citrus crop...

7

	Introduction
	Overview of the problem
	Overview of the model
	Integrating the relevant Ordinary Differential Equations
	Finding the position of two consecutive maxima of the relevant numerically sampled functions
	Numerically approximating the relevant integrals
	Putting things together, i.e. requirements for your program
	Code-related advices

