
Bestimmung quantenmechanischer
Energieniveaus durch numerisches Lösen der

Schrödinger-Gleichung

Marc Wagner

Goethe-Universität Frankfurt am Main – summer semester 2024

Version: July 2, 2024

� Im Folgenden ausgewählte numerische Grundlagen, die für den erfolgreichen Abschluss des
Programmierprojekts im Rahmen der Vorlesung “Einführung in die Programmierung für
Studierende der Physik” erforderlich sind.

� Im Wesentlichen ein Auszug aus den Vorlesungsaufzeichnungen zur Vorlesung “Numerical
methods in physics” (https://itp.uni-frankfurt.de/∼mwagner/mcwagner.html#nuphe).

� Das Programmierprojekt gliedert sich in drei aufeinander aufbauende Aufgabenteile, die
auf den letzten drei Übungszetteln in diesem Semester gestellt werden (die Übungszettel
vom 21.06.2024, 28.06.2024 und 05.07.2024).

� Das Programmierprojekt zählt nicht zu den regulären wöchentlichen Übungsaufgaben. Es
wird nicht bepunktet, sondern nur mit “bestanden” oder “nicht bestanden” gewertet.

� Für einen erfolgreichen Abschluss (d.h. “bestanden”) sind das vollständig funktionsfähige
Programm sowie die Ergebnisse der geforderten numerischen Untersuchungen dem je-
weiligen Tutor zu präsentieren. Die Termine für solche Präsentationen sind mit dem Tutor
individuell zu vereinbaren. Empfohlen wird dafür die vorletzte Semesterwoche (08.07.2024
bis 12.07.2024). Strikte Deadline ist der letzte Tag der Vorlesungszeit, der 19.07.2024.

1

***** 1. Aufgabenteil *****

***** (Übungszettel vom 21.06.2024) *****

1 Ordinary differential equations (ODEs), initial value problems

1.1 Physics motivation

� Newton’s equations of motion (EOMs), N point masses mj ,

mj r̈j(t) = Fj(r1(t), . . . , rN (t), ṙ1(t), . . . , ṙN (t), t) , j = 1, . . . , N, (1)

initial conditions

rj(t = 0) = rj,0 , ṙj(t = 0) = vj,0. (2)

� Calculate trajectories rj(t).

� Cannot be done analytically in the majority of cases, e.g. three-body problem “sun and
two planets”.

� For boundary value problems see section 3 (e.g. quantum mechanics [QM], Schrödinger
equation, ψ(x1) = 0, ψ(x2) = 0).

1.2 Euler’s method

� Preparatory step: rewrite ODEs as system of first order ODEs.

– Newton’s EOMs equivalent to

ṙj(t) = vj(t) , v̇j(t) =
Fj(r1(t), . . . , rN (t), ṙ1(t), . . . , ṙN (t), t)

mj
. (3)

– Define

y(t) = (r1(t), . . . , rN (t),v1(t), . . . ,vN (t)) (4)

f(y(t), t) =

(
v1(t), . . . ,vN (t)︸ ︷︷ ︸

∈y(t)

,
F1(y(t), t)

m1
, . . . ,

FN (y(t), t)

mN

)
. (5)

– Then

ẏ(t) = f(y(t), t) (6)

(left hand side (lhs) can be evaluated in a straightforward way for given t and y(t)).

– Always possible to rewrite a system of ODEs according to (6).

� Solve (6) by iteration, i.e. perform many small steps in time, step size τ :

y(t+ τ) = y(t) + ẏ(t)τ +O(τ2) = y(t) + f(y(t), t)τ +O(τ2). (7)

2

� τ can be positive (→ computation of future) or negative (→ computation of past).

� Problem: method inefficient, because of large discretization errors.

– O(τ2) error per step.

– Time evolution from t = 0 (initial conditions) to t = T
→ T/τ steps
→ O((T/τ)τ2) = O(τ) total error (very inefficient).

– Total error might be underestimated (e.g. chaotic systems are highly sensitive to
initial conditions and, thus, to the error per step).

1.3 Runge-Kutta (RK) method

� Same idea as in section 1.2, but improved discretization (stronger suppression of errors
with respect to τ).

� “2nd-order RK”:

k1 = f(y(t), t)τ → “full Euler step” (8)

k2 = f
(
y(t) + (1/2)k1, t+ (1/2)τ︸ ︷︷ ︸

→ “half Euler step”

)
τ (9)

y(t+ τ) = y(t) + k2 +O(τ3). (10)

– f(y(t) + (1/2)k1, t + (1/2)τ) in (9): estimated derivative ẏ(t + τ/2), i.e. after half
step.

– (10): 2nd order RK step (a full “Euler-like” step using the derivative after a half
step).

3

� Proof of (10), i.e. that error per step is O(τ3):

k2 = f
(
y + (1/2)fτ, t+ (1/2)τ

)
τ =

= fτ +

(
∂f

∂y

1

2
fτ +

∂f

∂t

1

2
τ

)
τ +O(τ3) = fτ +

1

2

(
∂f

∂y
ẏ +

∂f

∂t

)
τ2 +O(τ3) =

= fτ +
1

2
ḟτ2 +O(τ3) (11)

y(t+ τ) = y + ẏτ +
1

2
ÿτ2 +O(τ3) = y + fτ +

1

2
ḟτ2 +O(τ3) =

= y + k2 +O(τ3) (12)

(no arguments imply time t, e.g. y ≡ y(t), f ≡ f(y(t), t)).

� Discretization not unique, e.g. for O(τ3) error per step there are many possible RK ex-
pressions (an example is discussed in the tutorials).

� Straightforward to derive discretizations with O(τ4), O(τ5), ... error per step:

– “3rd-order RK”:

k1 = f(y(t), t)τ (13)

k2 = f
(
y(t) + k1, t+ τ

)
τ (14)

k3 = f
(
y(t) + (1/4)

(
k1 + k2

)
, t+ (1/2)τ

)
τ (15)

y(t+ τ) = y(t) +
1

6

(
k1 + k2 + 4k3

)
+O(τ4). (16)

– “4th-order RK”:

k1 = f(y(t), t)τ (17)

k2 = f
(
y(t) + (1/2)k1, t+ (1/2)τ

)
τ (18)

k3 = f
(
y(t) + (1/2)k2, t+ (1/2)τ

)
τ (19)

k4 = f
(
y(t) + k3, t+ τ

)
τ (20)

y(t+ τ) = y(t) +
1

6

(
k1 + 2k2 + 2k3 + k4

)
+O(τ5). (21)

4

– ...

� Common choice is 4th-order RK.

� Even better: numerical tests with different order RKs (higher orders allow larger step sizes
τ [which is good], require larger numbers of arithmetic operations per step [which is bad]).

� Example: Compute the trajectory of the 1-dimensional harmonic oszillator (HO).

– Lagrangian:

L =
m

2
ẋ2 − mω2

2
x2. (22)

– EOMs:

mẍ(t) = −mω2x(t), (23)

i.e.

ẏ(t) = f(y(t), t) (24)

with

y(t) = (x(t), v(t)) , f(y(t), t) = (v(t),−ω2x(t)). (25)

– Initial conditions: x(t = 0) = x0, ẋ(t = 0) = 0, i.e. y(t = 0) = (x0, 0).

– ω = 1.0, x0 = 1.0, step size τ = 0.1.

– Resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK are
shown in Figure 1.

– Errors of the trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK
are shown in Figure 2.

1.3.1 Estimation of errors

� Error per step for n-th order RK can be estimated in the following way:

– RK step with step size τ
→ yτ (t+ τ)
→ δ⃗τ ≈ cτn+1.

– 2 RK steps with step size τ/2
→ y2×τ/2(t+ τ)

→ δ⃗2×τ/2 ≈ 2c(τ/2)n+1.

5

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

x

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

Euler

2nd order RK

3rd order RK

4th order RK

analytical solution

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 90 92 94 96 98 100

x

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

Euler

2nd order RK

3rd order RK

4th order RK

analytical solution

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 990 992 994 996 998 1000

x

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

Euler

2nd order RK

3rd order RK

4th order RK

analytical solution

Figure 1: HO, resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK.

– Estimated absolute error for y2×τ/2(t+ τ):

δabs =
|y2×τ/2(t+ τ)− yτ (t+ τ)|

2n − 1
, (26)

where | . . . | can be e.g. Euclidean norm, maximum norm (might be a better choice
for many degrees of freedom [dof’s]), ...

– Estimated relative error for y2×τ/2(t + τ) (might be more relevant than estimated
absolute error):

δrel =
δabs
|y(t)|

. (27)

� Estimated error allows local extrapolation:

– Correct by estimated error:

y2×τ/2(t+ τ) → y2×τ/2(t+ τ) +
y2×τ/2(t+ τ)− yτ (t+ τ)

2n − 1
. (28)

– However, no estimation of errors, when using (28).

6

-150

-100

-50

 0

 50

 100

 150

 0 20 40 60 80 100

(x
n
u
m

e
ri
c
a
lly

 -
 x

a
n
a
ly

ti
c
a
lly

)

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

error Euler

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

(x
n
u
m

e
ri
c
a
lly

 -
 x

a
n
a
ly

ti
c
a
lly

)

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

error 2nd order RK

-0.004

-0.002

 0

 0.002

 0.004

 0 20 40 60 80 100

(x
n
u
m

e
ri
c
a
lly

 -
 x

a
n
a
ly

ti
c
a
lly

)

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

error 3rd order RK

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0 20 40 60 80 100

(x
n
u
m

e
ri
c
a
lly

 -
 x

a
n
a
ly

ti
c
a
lly

)

t

HO: V(x) = mω
2
x

2
/2, ω = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, τ = 0.1

error 4th order RK

Figure 2: HO, errors of the trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order
RK.

7

***** 2. Aufgabenteil *****

***** (Übungszettel vom 28.06.2024) *****

2 Newton-Raphson root finding for univariate functions f(x)

� Starting point: arbitrary x1 (ideally x1 is close to a root of f(x), i.e. f(x1) ≈ 0).

� Newton-Raphson method might find a root of f(x), but convergence is not guaranteed.

� Basic principle:

– An iterative method, i.e. xn+1 is a better estimate of the root than xn (in that respect
similar to bisection; see slides “Die Programmiersprache C – Kontrollstrukturen”).

– Uses derivative f ′(xn):

* f ′ can be estimated numerically via a finite difference:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +O(h3) (29)

→ f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (30)

→ f ′finite difference(x) =
f(x+ h)− f(x− h)

2h
≈ f ′(x) (31)

(“symmetric derivative”).

* Optimal choice h = hopt ∼ ϵ1/3 , where ϵ denotes the relative precision (ϵ ≈ 10−7

for float and ϵ ≈ 10−16 for double). The relative error is then
δf ′(x)/|f ′(x)| ∼ ϵ2/3, where δf ′(x) = |f ′(x)− f ′finite difference(x)|.

– Each step as sketched below.

� Algorithm:

– n = 1.

(1)

∆x = − 1

f ′(xn)
f(xn) , xn+1 = xn +∆x. (32)

8

– If |∆x| sufficiently small:

→ xn+1 is approximate root.
End of algorithm.

Else:

→ n = n+ 1.
Go to (1).

� Advantages and disadvantages:

(+) Converges faster than bisection.

(−) Does not always find a root (bisection always finds a root).

(−) f ′ has to be known analytically/must be cheap to evaluate numerically (bisection
does not need f ′).

(+) Can be generalized to multivariate functions f(x).

3 Ordinary differential equations (ODEs), boundary value prob-
lems

3.1 Physics motivation

� Newton’s EOMs, N point masses mj ,

mj r̈j(t) = Fj(r1(t), . . . , rN (t), ṙ1(t), . . . , ṙN (t), t) , j = 1, . . . , N, (33)

boundary conditions

rj(t1) = rj,1 , rj(t2) = rj,2 (34)

(“Compute trajectory of a particle, which is at r1 at time t1 and at r2 at time t2.”).

� QM, Schrödinger equation in 1 dimension,

− ℏ2

2m
ψ′′(x) + V (x)ψ(x) = Eψ(x), (35)

boundary conditions

ψ(x1) = ψ(x2) = 0 (36)

(i.e. “V (x) = ∞ at x = x1, x2”, e.g. infinite potential well).

– Example appropriate? E is unknown, i.e. (35) and (36) is rather an eigenvalue prob-
lem, not an ordinary boundary value problem ...?

– Yes, can be reformulated:

* Consider E as a function of x, i.e. E = E(x).

* Add another ODE, E′(x) = 0, which guarantees E(x) = const.

→ System of ODEs,

− ℏ2

2m
ψ′′(x) + V (x)ψ(x) = E(x)ψ(x) , E′(x) = 0. (37)

9

3.2 Shooting method

� Preparatory step as in section 1.2: rewrite ODEs as system of first order ODEs,

y′(x) = f(y(x), x) (38)

(both y and f have N components) and boundary conditions as

gj(y(x1)) = 0 , j = 1, . . . , n < N (39)

hj(y(x2)) = 0 , j = 1, . . . , N − n. (40)

� Basic principle:

– Choose/guess initial conditions y(x1) such that

* boundary conditions gj(y(x1)) = 0, j = 1, . . . , n < N are fulfilled,

* boundary conditions hj(y(x2)) = 0, j = 1, . . . , N − n are approximately fulfilled
(y(x2) can be computed using a RK method from section 1.3).

– Use root finding methods (e.g. bisection [see slides “Die Programmiersprache C –
Kontrollstrukturen”] or Newton-Raphson method [see section 2]) to iteratively im-
prove initial conditions y(x1), i.e. such that hj(y(x2)) = 0.

� Example: mechanics, mẍ(t) = F (x(t)) with x(t1) = a, x(t2) = b.

– y(t) = (x(t), v(t)), f(y(t), t) = (v(t), F (x(t))/m) (as in section 1.2).

– g(y(t1)) = x(t1)− a = 0, h(y(t2)) = x(t2)− b = 0.

– Choose initial conditions y(t1) = (a, λ).

* a in 1st component → g(y(t1)) = 0 fulfilled.

* λ in 2nd component should lead to h(y(t2)) ≈ 0.

– RK computation of y(t) from t = t1 to t = t2.

– Improve initial conditions, i.e. tune λ, using the Newton-Raphson method (see sec-
tion 2):

10

* Interpret h(y(t2)) = x(t2)−b as function of λ (x(t2) depends on initial conditions
y(t1), i.e. on λ).

* Compute derivative dh(y(t2))/dλ (needed by the Newton-Raphson method) nu-
merically (see (31)).

* Newton-Raphson step to improve λ:

λ → λ− h(y(t2))

dh(y(t2))/dλ
. (41)

– Repeat RK computation and Newton-Raphson step, until h(y(t2)) = 0 (numerically
0, e.g. up to 6 digits).

3.3 Example: QM, 1 dimension, infinite potential well

� Infinite potential well:

V (x) =

{
0 if 0 ≤ x ≤ L
∞ otherwise

. (42)

� Schrödinger equation and boundary conditions:

− ℏ2

2m
ψ′′(x) = Eψ(x) , ψ(x = 0) = ψ(x = L) = 0. (43)

� Reformulate equations using exclusively dimensionless quantities1:

x̂ =
x

L
(44)

→ d

dx̂
= L

d

dx
(45)

→ − d2

dx̂2
ψ(x̂) =

2mEL2

ℏ2︸ ︷︷ ︸
=Ê

ψ(x̂) (46)

(Ê is “dimensionless energy”), i.e.

− d2

dx̂2
ψ(x̂) = Êψ(x̂) , ψ(x̂ = 0) = ψ(x̂ = 1) = 0. (47)

� Analytical solution (to check numerical results):

ψ(x̂) =
√
2 sin(nπx̂) , Ê = π2n2 , n = 1, 2, . . . (48)

� Numerical solution:

1Using exclusively dimensionless quantities is possible for any physics problem and strongly recommended for
numerical computations. For details see lecture “Numerical methods in physics”
(https://itp.uni-frankfurt.de/∼mwagner/mcwagner.html#nuphe).

11

– Rewrite Schrödinger equation as system of first order ODEs:

ψ′(x̂) = ϕ(x̂) , ϕ′(x̂) = −Ê(x̂)ψ(x̂) , Ê′(x̂) = 0, (49)

(′ denotes d/dx̂) i.e.

y(x) =
(
ψ(x̂), ϕ(x̂), Ê(x̂)

)
, f(y(x), x) =

(
ϕ(x̂),−Ê(x̂)ψ(x̂), 0

)
. (50)

– Initial conditions for RK/shooting method:

* ψ(x̂ = 0.0) = 0.0
(boundary condition at x̂ = 0),

* ϕ(x̂ = 0.0) = 1.0
(must be ̸= 0, apart from that arbitrary; different choices result in differently
normalized wavefunctions),

* Ê(x̂ = 0.0) = E
(will be tuned by Newton-Raphson method such that boundary condition
ψ(x̂ = 1) = 0 is fulfilled).

– Crude “graphical determination” of energy eigenvalues (necessary to choose appro-
priate initial condition for the shooting method):

* Figure 3 shows ψ(x̂ = 1.0) as a function of E computed with 4th order RK; roots
indicate energy eigenvalues.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

ψ
(x

=
1
.0

)

E

potential well: graphical determination of energy eigenvalues

Figure 3: Infinite potential well, crude graphical determination of energy eigenvalues.

* There are 3 eigenvalues in the range 0.0 < Ê < 100.0:
Ê0 ≈ 10.0, Ê1 ≈ 40.0, Ê2 ≈ 90.0.

– Shooting method with E ∈ {10.0, 40.0, 90.0}.
* Figure 4 (top) illustrates the first Newton-Raphson step for the second excitation
(4th order RK).

* Figure 4 (bottom) shows the resulting non-normalized wave functions of the three
lowest states (4th order RK).

* Convergence after three Newton-Raphson steps (4th order RK, 7 digits of accu-
racy); see program output below.

12

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0 0.2 0.4 0.6 0.8 1

ψ

x

potential well: RK/shooting method for the 2nd excitation

before 1st Newton-Raphson step

after 1st Newton-Raphson step

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.95 0.96 0.97 0.98 0.99 1

ψ

x

potential well: RK/shooting method for the 2nd excitation

before 1st Newton-Raphson step

after 1st Newton-Raphson step

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

ψ

x

potential well: wave functions of the lowest states (not normalized)

ground state

1st excitation

2nd excitation

Figure 4: Infinite potential well. (top) First Newton-Raphson step for the second excitation.
(bottom) Non-normalized wave functions of the three lowest states.

ground state:

E_num = +10.000000 .

E_num = +9.868296 , E_ana = +9.869604 , \psi(x=1) = -0.006541 .

E_num = +9.869604 , E_ana = +9.869604 , \psi(x=1) = +0.000066 .

E_num = +9.869604 , E_ana = +9.869604 , \psi(x=1) = +0.000000 .

1st excitation:

E_num = +40.000000 .

E_num = +39.472958 , E_ana = +39.478418 , \psi(x=1) = +0.006539 .

E_num = +39.478417 , E_ana = +39.478418 , \psi(x=1) = -0.000069 .

E_num = +39.478418 , E_ana = +39.478418 , \psi(x=1) = -0.000000 .

2nd excitation:

E_num = +90.000000 .

E_num = +88.813303 , E_ana = +88.826440 , \psi(x=1) = -0.006537 .

E_num = +88.826438 , E_ana = +88.826440 , \psi(x=1) = +0.000074 .

E_num = +88.826440 , E_ana = +88.826440 , \psi(x=1) = +0.000000 .

13

***** 3. Aufgabenteil *****

***** (Übungszettel vom 05.07.2024) *****

4 Numerical investigation of the quantum mechanical HO with
hard walls

� The third and final part of the programming project does not require any further numeri-
cal techniques. The goal is rather to apply the methods discussed in section 1 to section 3,
which you have implemented in libraries and tested in part 1 and part 2 of the program-
ming project, to an interesting problem from quantum mechanics, which cannot be solved
analytically (or at least seems to be very hard to solve analytically).

� You will consider the potential

V (x) =

{
mω2x2/2 if − L/2 ≤ x ≤ +L/2

∞ otherwise
, (51)

i.e. a harmonic potential with hard walls at x = ±L/2.

� It is convenient to define the dimensionless quantity

ω̂ =
mωL2

ℏ
. (52)

The Schrödinger equation expressed exclusively in dimensionless quantities together with
the hard wall boundary conditions is then

− d2

dx̂2
ψ(x̂) =

(
Ê − ω̂2x̂2

)
ψ(x̂) , ψ(x̂ = −1/2) = ψ(x̂ = +1/2) = 0. (53)

� Whenever you carry out numerical investigations, it is essential that you meticulously test
your code and results. Without such tests, hardly anybody following your work in detail
will trust your numerical results. Moreover, there is a high probability that your code
has a bug and your results are wrong. If you publish incorrect numerical results, your
reputation as a physicist will suffer and your career may end prematurely.

� Even if your problem cannot be solved analytically, there are often regions in parameter
space or specific limits, where it is obvious that your results must approach corresponding
results from simpler analytically solvable problems. You should always try to identify
such possibilities for testing and carefully and extensively perform the tests. Only then
you may trust your numerical results and can confidently proceed by interpreting them in
“interesting regions in parameter space”, where it is less clear, what to expect, and where
are no obvious relations to any existing analytical or numerical results.

– For Ê ≫ ω̂2/4 ≥ ω̂2x̂2, i.e. for large energies, the energy levels should be close those
of the infinite well ÊIW

n = π2(n + 1)2, n = 0, 1, . . . (in this project part we always
label the ground state with n = 0, the first excitation with n = 1, etc.). The reason
behind this expectation can be seen by plotting the potential (51) on an appropriate
scale (“the bottom of the potential will then look almost flat”).

14

– For Ê ≪ ω̂2/4 the particle should be deep inside the HO contribution to the potential
and, thus, mostly localized in the region −1/2 < x̂ < +1/2. Consequently, the hard
walls are essentially irrelevant and the energy levels should be close those of the
ordinary HO ÊHO

n = ω̂(2n+ 1), n = 0, 1, . . .

� Your task in part 3 of the programming project is to solve the Schrödinger equation (51) for
various values of ω̂ numerically using the shooting method. The goal is to make contact
to analytically known results, by studying the two limits discussed above, and then to
investigate the effect of ω̂ on the spectrum of energy eigenvalues away from these limits.
Keep in mind that it is of utmost importance that you do not just carry out the numerical
tasks from the perspective of a programmer, but also to discuss and interpret the results
from a physicist’s point of view (numerical methods are powerful tools in physics, but just
generating and showing plots is not sufficient to understand any physics problem).

15

References

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, “Numerical recipes 3rd
edition: the art of scientific computing,” Cambridge University Press (2007).

16

	Ordinary differential equations (ODEs), initial value problems
	Physics motivation
	Euler's method
	Runge-Kutta (RK) method
	Estimation of errors

	Newton-Raphson root finding for univariate functions f(x)
	Ordinary differential equations (ODEs), boundary value problems
	Physics motivation
	Shooting method
	Example: QM, 1 dimension, infinite potential well

	Numerical investigation of the quantum mechanical HO with hard walls

