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Einführung in die Programmierung für Physiker
SoSe 2024 – Marc Wagner

Michael Eichberg: eichberg@itp.uni-frankfurt.de

Project part III

1 Overview

See section 4 of the lecture notes “Bestimmung quantenmechanischer Energieniveaus durch numerisches
Lösen der Schrödinger-Gleichung”.

2 Assignment

Consider the 1-dimensional Schrödinger equation with potential

V (x) =

{
mω2x2 if − L/2 ≤ x ≤ +L/2 ,

0 otherwise,
(1)

i.e. a harmonic potential with hard walls at x = ±L/2. It is convenient to define the dimensionless
quantities

x̂ =
x

L
, Ê =

2mL2E

ℏ2
, ω̂ =

mωL

ℏ
. (2)

The Schrödinger equation expressed exclusively in dimensionless quantities together with the hard wall
boundary conditions is then

d2

dx̂2
ψ(x̂) =

(
ω̂2x̂2 − Ê

)
ψ(x̂) , ψ(x̂ = ±1/2) = 0 . (3)

Consider in the following ω̂ = 70 unless explicitly stated otherwise.

(i) Compute the lowest three energy levels Ên, n = 0, 1, 2. They should be close to the ordinary
quantum mechanical harmonic oscillator ÊHO

n = ω(2n+ 1), because Ên ≈ ÊHO
n ≪ ω̂2/4 is fulfilled

(70, 210, 350 ≪ 1225). Compare your numerical results to this crude analytical expectation and
compute the relative difference (Ên − ÊHO

n )/Ên.

(ii) Now consider energy levels with Êm ≫ ω̂2/4, which should be close to those of the infinite well.
For example one might expect energy levels close to ÊIW

n = π2(n + 1)2 with n = 17, 18, 19,
because π2 · 182, π2 · 192, π2 · 202 ≈ 3198, 3563, 3948 ≫ 1125. Compute these energy levels using
3198, 3563, 3948 as starting values for Ê for the shooting method and compare your results to the
crude analytical expectation. As before, provide the relative difference, i.e. (Êm − ÊIW

n )/Êm.

(iii) Determine all energy levels in between those computed in task (i) and task (ii) and count them.
What is the index of the energy level Êm found in task (ii), which is close to ÊIW

19 ?

Hint: Even though one might naively expect m = n = 19, you should find m ̸= n = 19.

(iv) Investigate your (possibly) surprising result from task (iii) in more detail. To this end, compute
all energy levels Ên with Ên < 5000 as functions of ω̂ in the range 0 ≤ ω̂ ≤ 70 (it is sufficient to
sample this ω̂ range by the values ω̂ = 0, 10, 20, 30, 40, 50, 60, 70).
Plot all Ên(ω̂) in a single plot (horizontal axis ω̂ [range 0 . . . 70], vertical axis Ê [range 0 . . . 1000]).
Show in the same plot the analytically known energy levels of the ordinary HO as functions of ω̂
(the ten lowest energy levels of the ordinary HO are sufficient). Discuss the plot, in particular the
region of large ω̂ and small Ê.
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Plot all Ên(ω̂) in a single plot (horizontal axis ω̂ [range 0 . . . 70], vertical axis Ê [range 0 . . . 5000]).
Show in the same plot the analytically known energy levels of the infinite well up to Ê = 5000
(since they do not depend on ω̂, these are just horizontal lines). Discuss the plot. Start with the
region of small ω̂. Then continue your discussion with larger values of ω̂ with particular focus on
the three energy levels computed in task (ii). Try to understand and explain the reason for the
difference between the indices m and n observed in task (iii).

(v) Focus again on ω̂ = 70 and compute the difference of neighboring energy levels, i.e. Ên − Ên−1 for
energies Ên < 5000. Compare to the corresponding differences for the analytically known energy
levels of the infinite potential well, i.e. ÊIW

n − ÊIW
n−1. What do you observe?

(vi) Formulate conclusions based on your investigations and findings from tasks (i) to (v), i.e. try to
summarize, how ω̂ changes the energy levels, and in which parameter regions (i.e. small/large values
of ω̂ and Ê) the numerically computed energy levels exhibit similarities to those of the ordinary
HO and to those of the infinite well.

3 Code design

In this final part of the programming project there is not much new to implement. The focus is on using
your implemented methods from part I and part II and to carry out an extensive numerical analysis for
a problem from 1-dimensional quantum mechanics.

It is, in principle, sufficient to take your code from part II of the programming project and just change
the potential (i.e. modify a single line). We recommend, however, to add a few more lines to your code,
which will most likely save you some time, in particular when generating the large set of data points for
the plots in task (v).

Here are our suggestions:

• Task (i) and (ii): Replace the potential and proceed with your existing code as in part II of the
programming project.

• Task (iii): To count the energy levels, we recommend that you use your function energy_scan at
sufficiently high resolution. It might be convenient to plot the violation of the boundary condition
vbc(E) on a logarithmic scale. A simple possibility is to plot the quantity log(|vbc(E)|+ 1).

• Task (iv): For the plots O(2000) energy levels have to be computed. Manually providing a starting
value each time and running your program is tedious and not professional. You should automatically
loop over the values for ω̂ and the indices n of the resulting energy levels Ên. At first glance, it
might be difficult to automatically provide a good starting value for Ê (i.e. close to the energy level
Ên you are interested in), when calling the shooting method. This, however, can be achieved in
a simple way by minimally extending your function energy_scan. Add a few lines of code, such
that it does not just print vbc(E), but checks, whether there was a change in the sign compared to
the previous vbc(E) data point. If this is the case (and the energy resolution you use is sufficiently
fine), you can interpolate the two data points by a straight line and take the intersection with 0
(do not do this numerically; it is a simple formula, which you can derive analytically). In this way
you obtain an excellent starting value for the shooting method.
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