
P
ro
d
u
ce
d
w
it
h
th
e
E
x
e
r
c
i
s
e
H
a
n
d
l
e
r

Einführung in die Programmierung für Physiker
SoSe 2024 – Marc Wagner

Michael Eichberg: eichberg@itp.uni-frankfurt.de

Project part II

1 Overview

The goal for the second part of the programming project is to numerically solve the stationary 1-
dimensional Schrödinger equation for the infinite potential well and to compute the corresponding quan-
tized energy levels. Even though the infinite potential well can be solved analytically, it is useful to
test your code for the final third part of the project, where you will consider a potential, for which the
Schrödinger equation cannot be solved analytically.

2 Assignment

The stationary Schrödinger equation of a particle in 1 spatial dimension is given by

ℏ2

2m
ψ′′(x) = (V (x)− E)ψ(x) , (1)

where m is the mass of the particle, V (r) is the potential and E is an energy eigenvalue. Eq. (1)
can be solved for any value for E. However, only solutions ψ(x)|E=En

≡ ψn(x), which fulfill specific
boundary conditions, are normalizable and, thus, physically meaningful. These boundary conditions lead
to quantized energy levels En. These energy levels En can be computed numerically, using the shooting
method, as discussed in the lecture.

As already said in the overview, consider an infinite potential well of width L:

V (x) =

{
0 for −L/2 ≤ x ≤ +L/2
∞ otherwise.

(2)

For x < −L/2 and x > +L/2, the wave function has to vanish. Since the wave function must be
continuous, the boundary conditions are

ψ(±L/2) = 0 . (3)

In the lecture, dimensionless quantities x̂ = x/L and Ê = 2mL2E
ℏ2 have been introduced. With these

definitions the Schrödinger equation for the infinite potential well can be written as

ψ′′(x̂) = −Êψ(x̂) . (4)

It is restricted to the interval −1/2 < x̂ < +1/2, with boundary conditions

ψ(x̂ = ±1/2) = 0 . (5)

The eigenvalue equation (4) can be rewritten as a system of three first order ODEs, as discussed in the
lecture.

(i) As a preparatory step, implement the Newton-Raphson algorithm discussed in the lecture to com-
pute the root of a function f(x). Compute the needed derivative using finite differences

d

dx
f(x) ≈ f(x+ h)− f(x− h)

2h
.

1



P
ro
d
u
ce
d
w
it
h
th
e
E
x
e
r
c
i
s
e
H
a
n
d
l
e
r

Test your implementation for f(x) = sin(x) with h = 10−6 using double precision floating point
numbers to numerically estimate the analytically known root x0 = π. Start the root finding at
x1,a = 3.0 and x1,b = 3.5, respectively, and count the number of iterations needed, to reach six
digits of accuracy. Compare the number of Newton-Raphson steps to the 19 iterations required
with the bisection method presented in the lecture (slides Kontrollstrukturen).

(ii) Write a function, which solves the Schrödinger equation using the 4th order Runge-Kutta method
for given energy Ê, with initial conditions ψ(x̂ = −1/2) = 0.0, ψ′(x̂ = −1/2) = 1.0 and step size
τ = 10−3. Perform a scan of the violation of the boundary condition ψ(x̂ = +1/2) = 0 for energies
Ê ∈ [1.0, 250.0] in steps of ∆Ê = 1.0, to find suitable starting energies for the shooting method (in
other words, generate the analog of Figure 3 in the lecture notes with higher resolution). Read off
from your plot crude estimates for the first five energy levels.

(iii) Use these estimates as starting points for the shooting method to compute the first five energy
levels Ên, n = 1, 2, . . . 5, of the infinite potential well with at least six digits of accuracy. You can
do that by comparing your results to the analytically known energy levels Ên = π2n2. Generate
plots of the corresponding five wave functions similar to Figure 4 (bottom) in the lecture notes.

(iv) Now vary each of your numerical parameters, in particular the RK step size τ and the finite differ-
ence h, individually by at least factors of 1/2 and 2, respectively, to confirm that your numerically
obtained energy eigenvalues are stable and indeed agree with Ên = π2n2 in their first six digits.
Then successively increase τ by the factor 2 until you find a deviation from the analytical exact
result within the first six digits (provide this value of τ).

3 Code design

In the first part of the project, you implemented the 4th order Runge-Kutta algorithm. Reuse your files
rk.h and rk.c (there is no need to change anything, except for the size __N__ of the vector y(t)).

Add two new files to your project, newton_raphson.c and newton_raphson.h, which contain the
Newton-Raphson method, but nothing problem specific, i.e. related to quantum mechanics or the shoot-
ing method (the idea is that you can use these two files as a library in any other project). These files
should contain the following variables and functions:

• const int max_steps = 1000;

The value of this constant global variable corresponds to the maximum number of iterations, after
which the Newton-Raphson algorithm aborts in case a root has still not been found.

• // Delta x = - f(x) * (2*h) / (f(x+h) - f(x-h))

double newton_raphson(double x, double h, double epsilon , double (*

function_ptr)(double));

This function uses the Newton-Raphson algorithm to numerically compute the root of a function
f(x) provided by function_ptr. The algorithm starts at position x and uses numeric differentiation
to determine ∆x = −f(x)/f ′(x). The position of the root is returned, as soon as ∆x < ϵ, indicating
convergence. If the algorithm does not converge within max_steps, a warning message should be
printed to stderr and NAN (referring to not a number, defined in math.h) returned. One can check
for NAN using the function isnan() also defined in math.h.

Hint: To debug your program and monitor your numerical analyses, it is useful to provide extensive
output to stderr (as e.g. done in the bisection function discussed in the lecture).

The main function of your program should be part of the file infinite_well_shooting.c. In that file,
you also have to define a function void compute_f_tau(double *f_tau, const Y_T *y_t, double

tau) specifically written for the infinite potential well, which can be passed to step_rk4 in rk.c (for
details, see the first part of the programming project). Moreover, define and implement the following
variables and functions:

2



P
ro
d
u
ce
d
w
it
h
th
e
E
x
e
r
c
i
s
e
H
a
n
d
l
e
r

• const double tau = 1.e-5;

A global variable to set the Runge-Kutta step size.

• double compute_wave_function(double E, FILE *file);

This function computes the wave function for energy Ê and initial conditions ψ(x̂ = −1/2) = 0 and
ψ′(x̂ = −1/2) = 1 using the function step_rk4 defined in rk.c. It returns ψ(x̂ = +1/2). If file
is not NULL, the function prints the resulting wave function via fprintf using file as argument.

• double bc_violation(double E);

This function computes the violation of the boundary condition at x̂ = +1/2 for given energy Ê.
This can be done in a simple way by just calling the function compute_wave_function. Note,
that bc_violation has the signature double (*)(double) and can be passed to the function
newton_raphson defined in newton_raphson.c. At the end, the violation of the boundary condition
at x̂ = +1/2, i.e. ψ(x̂ = +1/2), is returned.

• void energy_scan(double E_min , double E_max , double delta_E);

This function performs a scan of the violation of the boundary condition at x̂ = +1/2 in the energy
range Êmin ≤ Ê ≤ Êmax in steps of ∆Ê. It calls the function bc_violation for each energy value
and prints the results to stdout (such that they can easily be redirected to a file using > in the
terminal).

• double compute_energy_level(double E_start , double h, double

epsilon);

This function computes an energy eigenvalue using the Runge-Kutta shooting method. h and
epsilon are parameters used in the Newton-Raphson root finding. The function returns the found
energy eigenvalue, or NAN in case the root finding does not converge.

3


	Overview
	Assignment
	Code design

