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Einführung in die Programmierung für Physiker
SoSe 2024 – Marc Wagner

Michael Eichberg: eichberg@itp.uni-frankfurt.de

Project part I

1 Overview

In the lecture you have seen, how ordinary differential equations (ODEs) can be solved numerically using
the Runge-Kutta method. An obvious example for such an ODE from classical mechanics is Newton’s
equation of motion for the harmonic oscillator, where the analytical solution is known. The anharmonic
oscillator, on the other hand, is a problem, where such an analytical solution does not exist.

In the first part of the programming project, it is your task to numerically solve the equation of motion
for the 1-dimensional anharmonic oscillator and study its trajectory. This is a preparatory step for the
upcoming project parts, where you will solve a time-independent Schrödinger equation and compute the
corresponding quantized energy levels.

2 Assignment

Consider the 1-dimensional anharmonic oscillator given by the Lagrangian

L(x, ẋ) =
m

2
ẋ2 −mαxn , (1)

where α > 0 is a constant and n ∈ 2, 4, 6, . . . is the characteristic exponent of the potential. The
corresponding equation of motion is

mẍ = −mαnxn−1 . (2)

Rewriting this as a system of first-order ODEs yields

ẏ = f(y(t), t) , (3)

where

y(t) = (x(t), v(t)) , (4)

f(y(t), t) = (v(t),−αnxn−1(t)) . (5)

(i) Eqs. (17) to (21) in the lecture notes provide formulae to perform a 4th order Runge-Kutta step
with fixed step-size τ . Write a C program, which uses the Runge-Kutta method with step-size τ
and number of steps N to numerically solve Eq. (5) for α = 0.5 and n = 2 (this corresponds to the
harmonic oscillator with ω2 = 1), and writes the results, i.e. a sequence of points (t, x(t)), to a file.

(ii) Compute y(t) in the interval [0, 4π] with initial conditions y(0) = (1.0, 0.0) and step-sizes τk =
π · 2−k, k = 1, 2, . . . , 6, and plot the results (e.g. using Gnuplot).

(iii) Now, consider the anharmonic oscillator with α = 1.0, n = 6 and the same initial conditions
y(0) = (1.0, 0.0) and use your code to determine the oscillation period T . You can do this by
finding the first root of the trajectory for positive t, i.e. the point t0 = T/4 > 0, given by x(t0) = 0.
A possibility to determine t0 approximately is computing x(t) using the Runge-Kutta method with
step-size τ = 10−8 and define t0 = t+ τ/2, where x(t)x(t+ τ) < 0.

Write a README.txt with instructions to compile your code and generate and discuss results for the
above tasks.
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3 Code design

When carrying out numerical investigations, it is strongly recommended to first think about the structure
of your program in a preparatory step. Since this is probably the first big project in your career as a
physicist, this section discusses, how you can and should design your code.

The assignment in section 2 requires the writing of code to carry out a specific task (solving the anhar-
monic oscillator in classical mechanics). Part of the assignment is, however, quite general, namely solving
ODEs using the Runge-Kutta method, which will also be required in upcoming parts of the project. It
is therefore advantageous, to implement the Runge-Kutta algorithm in a separate .h and .c file and
compile the latter to a library (an .o file) such, that it can be reused later in an easy and flexible way.
The minimal amount of files should, thus, be three, where

• rk.h, rk.c include general Runge-Kutta components, not related to the anharmonic oscillator,

• oscillator.c includes everything specific to tasks (i)-(iii) and the anharmonic oscillator, in par-
ticular the main function. Moreover, oscillator.c should include a function which computes
f(y(t), t) · τ , since this function contains the dynamics of the anharmonic oscillator. It can be
declared as

void compute_f_tau(double *f_tau , const Y_T *y_t , double tau);

where the result is stored in an array pointed to by *f_tau and *y_t contains the value of y(t) at
time t (see the definition of the type Y_T below).

In the following, we provide several structs and function declarations, which should be part of rk.h
and rk.c, and which you should use in your project.

• #define __N__ 2

This symbolic constant defines the size of the vector y(t). Setting __N__ to the fixed value 2
restricts the Runge-Kutta library to problems, where y(t) has n = 2 components. A generalization
to arbitrary n, which can be chosen during runtime, requires dynamic memory allocation and
increases the programming effort and difficulty of this project.1

• struct y_t {

double t;

double y[__N__];

};

typedef struct y_t Y_T;

This struct contains the function y(t), i.e. the solution of the ODE, at time t.

• typedef void (* COMPUTE_F_TAU_PTR)(double *, const Y_T *, double);

The purpose of this typedef is to make the code more readable. COMPUTE_F_TAU_PTR defines a
new type, which is a pointer to a void function taking one double *, one const Y_T * and one
double variable as arguments. A pointer of this type can later be utilized to store the address of
the function compute_f_tau, which computes f(y(t), t) · τ (see above).

• // k1 = f(y, t) * tau

void compute_k1(double *k1 , const Y_T *y_t , double tau ,

COMPUTE_F_TAU_PTR compute_f_tau_ptr);

// k2 = f(y + k1/2, t + tau /2) * tau

void compute_k2(double *k2 , const Y_T *y_t , const double *k1 ,

double tau , COMPUTE_F_TAU_PTR compute_f_tau_ptr);

// k3 = f(y + k2/2, t + tau /2) * tau

1If you are interested in a challenge, feel free to design a more powerful Runge-Kutta library, where the user can provide
n during runtime.

2



P
ro
d
u
ce
d
w
it
h
th
e
E
x
e
r
c
i
s
e
H
a
n
d
l
e
r

void compute_k3(double *k3 , const Y_T *y_t , const double *k2 ,

double tau , COMPUTE_F_TAU_PTR compute_f_tau_ptr);

// k4 = f(y + k3 , t + tau) * tau

void compute_k4(double *k4 , const Y_T *y_t , const double *k3 ,

double tau , COMPUTE_F_TAU_PTR compute_f_tau_ptr);

// y(t+tau) = y(t) + (k1 + 2*k2 + 2*k3 + k4) / 6

void step_rk4(Y_T *y_t_tau , const Y_T *y_t , double tau ,

COMPUTE_F_TAU_PTR compute_f_tau_ptr);

These functions compute k1, k2, k3, k4 and y(t+ τ), using information about y(t) stored in ∗yt,
and a pointer to a function representing f(y(t), t). In step_rk4, arrays double k1[__N__], k2[

__N__],... can be defined locally and passed to the function compute_k1, compute_k2, . . . . With
the above function declarations, a Runge-Kutta step can be performed by calling

step_rk4 (&y_t_tau , &y_t , tau , compute_f_tau);

When passed to compute_k1, compute_k2, . . . , you can call compute_f_tau via

(* compute_f_tau_ptr)(...);

• void write_y_t_to_file(FILE *file , const Y_T *y_t);

This function prints one line with t and the components of y(t) to a file, i.e.

<t> <y[0] > <y[1] >

As you know from the lecture, FILE is defined in stdlib.h from the standard library.

4 Using a Makefile

Compiling projects consisting of several files manually can be tedious. Tools like Makefile are thus
commonly used, to automate this process. Here we give a short example of a Makefile, which can be
used to compile the project files rk.c (in this case, a library) and oscillator.c (containing the main

function).

CC = gcc

CFLAGS = -std=c11 -Wall -Wextra -pedantic -O3

LIBS = -lm

all: oscillator

oscillator: oscillator.o rk.o

$(CC) $(CFLAGS) -o oscillator oscillator.o rk.o $(LIBS)

oscillator.o: oscillator.c

$(CC) $(CFLAGS) -c -o oscillator.o oscillator.c

rk.o: rk.c

$(CC) $(CFLAGS) -c -o rk.o rk.c

clean:

rm -f *.o oscillator

Makefiles are scripts with filename Makefile and typically placed in the root directory of the project.
The script is run by executing make [TARGET] or simply make in the terminal (see man make for more
information). In the above example executing make would run the make-target all, which consists of
the target oscillator, which in turn consists of the targets oscillator.o and rk.o. CC, CFLAGS and
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LIBS are variables, where CC is equivalent to the compiler command gcc, CFLAGS represents various
compiler options, and LIBS includes the system’s math library. Thus, when Makefile executes the lines
$(CC) $(CFLAGS) ..., the gcc command is run to compile the specified source files in an appropriate
way and ordering.

It is common to also include a target clean in a Makefile. The purpose of this target is to remove files
previously generated via make [TARGET]. In the above example, executing make clean will delete all
generated .o files, as well as the executable oscillator.
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