EINFUHRUNG IN DIE PROGRAMMIERUNG FUR PHYSIKER
SOSE 2024 — MARC WAGNER

MICHAEL EICHBERG: eichberg@itp.uni-frankfurt.de

Exercise sheet 9
To be handed in on 21.06.2024.

Exercise 1 [Recursion counter] (3 pts.)

In the lecture, the merge sort algorithm was presented as an example of a recursive algorithm. Moreover,
the complexity of the algorithm was discussed. Your task is now to verify this complexity by explicit
counting. Use static variables to count and print the number of recursion levels Nj, as well as the
number of operations Nc()f))s at recursion level i (since prefactors are irrelevant for the complexity of an
algorithm, it is sufficient to count the number of iterations of the loop responsible for merging two sorted
lists). E.g. for an array of size N = 1024, you should count Nj,; = 10 recursion levels, with O(N)
operations at the ith level.

Hint: Tt is sufficient to count the operations of the first three iterations, i.e. you can define a static
array with three elements for Né;)b

Exercise 2 [Inclusion guards] (3 pts.)

(i) Compile the .c file below, where two .h files are included, and run the program.

e ex2i.c:

int main() {
f_a();
f_ b0

return 0;

void f_a() {
printf ("f_a wird ausgefuehrt.\n");
}

e b.h:

ExerciseHandler



(i)

(iii)

void f_b() {
f_a();
printf ("f_b wird ausgefuehrt.\n");

Remove from both .h files the preprocessor directives , and
Try to compile the .c file. Why do you get an error?

Read about “include guards” (e.g. https://de.wikipedia.org/wiki/Include-Guard) and sum-
marize in your own words the basic concept. Refer in your summary to the example from task

and task

Exercise 3 [Symbolic constants] (1 +2+1=4pts.)

(i)

Compile the following code and run the program.

struct {
int b[N];
};

int main() {
struct al;
printf ("%lul\n", sizeof(al.b) / sizeof (int));

struct a2;

printf ("%lul\n", sizeof(a2.b) / sizeof (int));
}
Explain, why has no effect on the size of the array a2.

Try to compile the following code.

struct {
int b[N];
}s

int main() {

struct al;

printf ("%lu\n", sizeof(al) / sizeof (int));
}

Why do you get an error? Try to compile the code again with the option -DN=4 using the gcc
compiler. If you are not familiar with gcc’s -D option, you can read about it in the documentation:

Produced with the ExerciseHandler


https://de.wikipedia.org/wiki/Include-Guard

https://gcc.gnu.org/onlinedocs/gcc/Preprocessor-Options.html,

Why does the code compile now? Run the program. What is the effect of the option -DN=107

(iii) Compile the following code with the option -DN=10 and run the program.

struct {
int b[N];
};

int main() {

struct al;

printf ("%lu\n", sizeof(al) / sizeof (int));
}

The option -DN=10 does not have an effect anymore. Explain, why. Try to find a simple way to
extend the code with two lines of preprocessor directives such, that the option -DN=10 leads to
arrays b in struct =2 with 10 elements, but that it is also possible to compile the code without the
-D option (in that case arrays b in struct 2 should have 4 elements according to ).

Exercise 4 [Linked lists] (1+1+3+1+3+1=10 pts.)
You have learned, how you can define a struct to bundle multiple variables. One example from the

lecture is a linked list, where each element contains a name and a pointer to the next element. In the
following, we will explore this example in more detail.

(i) Consider a loop of the form

for (/* exprl */; /* expr2 */; /* expr3 x*/) {
/* .. %/
}

How can you iterate over the elements of a linked list, using only the expressions controlling the
for loop?

(ii) Accessing the ith element of an array of size N has complexity of O(1), since the memory address
is known to be start + i * element_size. What complexity do you expect for access of the ith
element of a linked list of size N7

Now your task is to further develop the linked list example by adding new features and test them.
Remember to free memory and set pointers to NULL when list elements are not needed anymore. Moreover,
check for NULL pointers in your functions and exit with appropriate error messages.

(iii) The linked list in the lecture is a so-called singly linked list, i.e. each element has just one pointer
to the next element. Expand this struct to a doubly linked list, which has an additional pointer
to the previous element. Modify the functions 1_delete and 1_append accordingly.

(iv) Write a function, which inserts a new element at a position, defined by an index, into the list.

(v) Write a function, which inverts the order of list elements. What is the complexity of your function?
Design an efficient algorithm for list reversal, which has complexity O(N), and a less efficient
algorithm with complexity O(N?).

(vi) Write a function, which copies an entire list.

2.7 Time to Test! Use the main function provided in the lecture and suitable tests for your newly added

3;4 features.

ExerciseHandler


https://gcc.gnu.org/onlinedocs/gcc/Preprocessor-Options.html

