
P
ro
d
u
ce
d
w
it
h
th
e
E
x
e
r
c
i
s
e
H
a
n
d
l
e
r

Einführung in die Programmierung für Physiker
SoSe 2024 – Marc Wagner

Michael Eichberg: eichberg@itp.uni-frankfurt.de

Exercise sheet 6
To be handed in on 31.05.2024.

Exercise 1 [Const-correctness] (4 pts.)

The use of the const keyword in C is, strictly speaking, not mandatory, but it helps us to defend
ourselves. . . from ourselves! Actually, there are typical use cases, one of which we will analyse in a
moment. Before, let us clarify the meaning of the keyword and how to use it, especially together with
pointers. What const means should be clear from the keyword itself. Something is marked as constant
and it cannot be changed (and this allows the compiler to give you an error if you try to violate this
rule you set yourself). However, it is very important to understand what exactly is marked as constant.
Consider the following code.

int main(void){

double var = 5, value = 10;

double* ptr_var = &var;

const double c_var = 6;

const double* ptr_c_var = &c_var;

double* const c_ptr_var = &var;

const double* const c_ptr_c_var = &c_var;

// Modyfing attempts:

/*(0)*/ ptr_c_var = ptr_var; /*(4)*/ *c_ptr_var = value;

/*(1)*/ c_var = value; /*(5)*/ c_ptr_var = ptr_var;

/*(2)*/ var = c_var; /*(6)*/ *c_ptr_c_var = value;

/*(3)*/ *ptr_c_var = value; /*(7)*/ c_ptr_c_var = ptr_var;

}

Which of the assignments are allowed? Can you predict which error the compiler will give you? How do
you understand the types of the variables var, ptr_var, c_var, ptr_c_var, c_ptr_var, c_ptr_c_var?

Exercise 2 [Linear algebra] (4 pts.)

In the lecture, you saw examples for the use of arrays in linear algebra operations. The library is still
missing important features, our goal is to implement some of them. Copy the code presented in the
lecture. Considering N = 4 dimensions, add new functions to perform the operations C = A + B,
C = c ·A, w = u+ v and w = c · v for c ∈ R, u, v, w ∈ RN and A,B,C ∈ RN×N . Use the const keyword
wherever you can.
Test your code by computing the expression

1 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 1

+ 2 ·

0 0 0 0
0 0 −0.5 0
0 1 0 0
0 0 0 0

0
2
0
3

+
1

2
·

2
0
−2
0

 =

1
1
2
3

 .

Exercise 3 [Arrays decaying to pointers I] (3 + 3 + 1 + 1 = 8 pts.)

In this exercise we explore in detail what exactly happens when an array is passed to a function.

(i) Define an array int v[5] in the main function of your program and initialize it. Define then a
pointer v_ptr and find two equivalent ways to let it point to v. Print the array, one time using the
array itself and one time using the pointer. Call the sizeof operator on v to check the size of the
array. What does the result of sizeof mean?

1

P
ro
d
u
ce
d
w
it
h
th
e
E
x
e
r
c
i
s
e
H
a
n
d
l
e
r

Remark: at this point you might think that the name of an array is implicitly like a pointer to
the first element of the array. This statement is slightly inaccurate and there are subtle differences
which we will now explore. A more precise statement would be that array names can decay to
pointers.

(ii) Consider the following function.

void changeArray(int* array , int size){

printf("In changeArray , sizeof(array) = %lu\n", sizeof array);

if(size >2)

array [2]=111;

array=NULL;

}

Call changeArray from main, using v_ptr and print v to the output before and after the function
call. Can you explain the discrepancy between the call of sizeof in main and in changeArray?
Is v_ptr still a valid pointer after the function call? Did v[2] change in the main? Can you call
changeArray passing v as first argument?

(iii) Change the signature of the function to void changeArray(int array[], int size) and repeat
task (ii) passing v to it. Did anything change? Can you call this function passing v_ptr as first
argument?

Exercise 4 [The Sieve of Sundaram] (4 pts.)

The sieve of Sundaram is an algorithm to find all the prime numbers up to a specified integer. It was
discovered by the Indian mathematician S. P. Sundaram in 1934.
For fixed N ∈ N and given a list of the integers between 1 and N , remove all the numbers of the form

i+ j + 2 i j where i ∈ N , j ∈ N , 1 ≤ i ≤ j and i+ j + 2 i j ≤ N .

The remaining numbers, each doubled and incremented by one, give all the prime numbers smaller than
M ≡ 2N + 2 except 2.
Implement the Sieve of Sundaram with N = 500 and print all prime numbers smaller than M , along
with the number of prime numbers up to M .
Hint: Even if it sounds natural, do not use an array of int variables. Instead, think of the array indices
as your list of numbers for the sieve and keep track of wether the index corresponds to a prime number
by setting the value to 0 or 1.
Time to Test! For N = 500, your code should tell that there are 168 prime numbers up to M = 1002.

2

