
Einführung in die Programmierung für Physiker 13/14 – Marc Wagner
Christian Schäfer: cschaefer@th.physik.uni-frankfut.de

Phase transition of the 222d Ising Model
via Monte Carlo simulations

1 Introduction
In this project we compute the critical temperature for the two dimensional Ising Model1 phase
transition using Monte Carlo simulations. Let si,j denote a spin state at lattice coordinates i and j
having either spin up or spin down, si,j = ±1. The Hamiltonian or total energy of the system in a
particular state {si,j} is

H({si,j}) = −J
∑
i,j

si,j (si+1,j + si−1,j + si,j+1 + si,j−1) , (1)

assuming periodic boundary conditions and only nearest neighbour interactions with a coupling J .
The probability of finding the system in any particular state {si,j} is given by

W ({si,j}) = 1
Z(β) exp [−βH({si,j})] , (2)

where β = 1/(kBT) with T the temperature, kB Boltzmann’s constant and

Z(β) =
∑
{si,j}

exp [−βH({si,j})] , (3)

the partion function.
The computation of macroscopic quantities like the magnetization requires an integration/sum

over all spin configurations weighted with their respective probability. The Metropolis-Hastings2

algorithm allows for an effective computation of these multidimensional integrals/sums by sampling
their probability distributions by Markov chains3. Thus the mean magnetization can be computed
from

〈M〉 = 1
N

∑
{si,j}

M({si,j}), (4)

where we average over N configurations {si,j} generated according to the probability W ({si,j}).

2 Implementation
The following steps guide you through the development ouf your own Monte Carlo simulation for the
2d Ising Model.

2.1 Pseudo random number generator
Add a pseudo random number generator to your code, which creates pseudo random numbers r
uniformly distributed between r ∈ [0, 1):

double giveRandomNumber ().
Regarding our problem the ordinary generator4 is sufficient.

1http://en.wikipedia.org/wiki/Ising_model
2http://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
3http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
4http://www.cplusplus.com/reference/cstdlib/rand/

1

mailto:cschaefer@th.physik.uni-frankfut.de
http://en.wikipedia.org/wiki/Ising_model
http://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
http://www.cplusplus.com/reference/cstdlib/rand/

2.2 Geometry of the lattice
Create a one-dimensional array, which contains the spin alignment for every site of your L×L lattice.
To access this array you want to introduce a superindex SI mapping your site coordinates to, SI(i, j) :
Z× Z→ N. Provide a method of the form

int getSuperIndex (int i, int j).

Note, this method is a suitable place to include periodic boundary conditions, i.e. that i+ n× L = i
and j + n× L = j for n ∈ Z.

2.3 Cold start and magnetization
Initialize your spin configuration by a cold start, i.e. setting all spins to one si,j = 1 ∀ i, j:

void coldStart (int latticeSpin []).

Implement the magnetization M = 1
L2

∑
i si as an observable:

double computeMagnetization (int latticeSpin[]).

2.4 Metropolis-Hastings algorithm
Update your lattice of spins according to the Metropolis-Hastings algorithm:

void updateLattice (int latticeSpin[], double effectiveBeta).

The idea of the Metropolis-Hastings algorithm is to replace one spin state of your lattice by si,j →
s′i,j = −si,j and accept this step with a probability

W (si,j → s′i,j) =
{

1 if δH < 0
exp (−βδH) else

, (5)

where δH = H(s′i,j) − H(si,j) corresponds to the change in energy. Regarding perfomance of your
code simplify δH analytically before implementing. Use your pseudo random number generator to
implement the acceptance step.

Then produce a number of N configurations by repeating this update step for every lattice site
and N times for the whole lattice. Plot the magnetization M for every update steps to observe how
the system develops. When should you start estimating observables, e.g. the mean magnetization
〈M〉?

3 Determination of the critical temperature
3.1 Critical temperature of the phase transition
Introduce an effective temperature βeff , which includes the coupling J and the inverse temperature
β, i.e. βeff = Jβ. Then compute the absolute mean magnetization | 〈M〉 | based on the configurations
created in your Metropolis-Hastings algorithm and plot it against different effective temperatures βeff .
Do you see the phase transition (c.f. fig. 1)? Improve your result by performing 10 lattice updates
between each computation of the mean magnetization.

3.2 Magnetic susceptibility
A more sophisticated way to compute the critical temperature is given by determining the magnetic
susceptibility χM =

〈
M2〉 − 〈M〉2, which diverges at the phase transition. Add the computation of

this observable to your code and plot its value for different effectives temperatures β. Estimate the
critical temperature βc.

2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

〈|
M

|〉

J/(KBT)

Figure 1: Absolute mean magnetization 〈|M |〉 versus effective temperature βeff = J/(kBT). A phase
transition occurs in the range 0.4 ≤ βeff ≤ 0.5.

3.3 Comparison with analytical results
Compare your5 estimated critical effective temperature βc

eff to the analytical prediction Jβc = 1
2 ln(1+√

2) = 0.4407. Computing averages always allows one to introduce an error to your observable. Should
one do it? Is the standard error a good choice?

5A run with L = 30, N = 100, 10 updates between every computation and a stepsize for the effective temperature
of ∆βeff = 0.001 should be sufficient to reproduce the theoretical prediction up to two decimal places.

3

	Introduction
	Implementation
	Pseudo random number generator
	Geometry of the lattice
	Cold start and magnetization
	Metropolis-Hastings algorithm

	Determination of the critical temperature
	Critical temperature of the phase transition
	Magnetic susceptibility
	Comparison with analytical results

