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Phase transition of the 2d Ising Model
via Monte Carlo simulations

1 Introduction

In this project we compute the critical temperature for the two dimensional Ising Model' phase
transition using Monte Carlo simulations. Let s; ; denote a spin state at lattice coordinates ¢ and j
having either spin up or spin down, s; ; = +1. The Hamiltonian or total energy of the system in a
particular state {s; ;} is

H({si;}) == > sij(siv1;+ i1+ Sija1+ si1), (1)
.
assuming periodic boundary conditions and only nearest neighbour interactions with a coupling J.
The probability of finding the system in any particular state {s; ;} is given by
1

W({si;}) = 705 P [=BH({si;})], (2)

where = 1/(kgT) with T the temperature, kg Boltzmann’s constant and
Z(B) =Y exp[-BH({si;})], (3)
{sij}
the partion function.
The computation of macroscopic quantities like the magnetization requires an integration/sum
over all spin configurations weighted with their respective probability. The Metropolis-Hastings”
algorithm allows for an effective computation of these multidimensional integrals/sums by sampling

their probability distributions by Markov chains®. Thus the mean magnetization can be computed
from

()= = 3 M({si,)), (@)
{sij}

where we average over N configurations {s; ;} generated according to the probability W ({s; ;}).

2 Implementation

The following steps guide you through the development ouf your own Monte Carlo simulation for the
2d Ising Model.

2.1 Pseudo random number generator

Add a pseudo random number generator to your code, which creates pseudo random numbers r
uniformly distributed between r € [0,1):

double giveRandomNumber ().

Regarding our problem the ordinary generator” is sufficient.

Ihttp://en.wikipedia.org/wiki/Ising_model
2http://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
Shttp://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
'http://www.cplusplus.com/reference/cstdlib/rand/
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2.2 Geometry of the lattice

Create a one-dimensional array, which contains the spin alignment for every site of your L x L lattice.
To access this array you want to introduce a superindex SI mapping your site coordinates to, SI(¢,7) :
Z x Z — N. Provide a method of the form

int getSuperIndex (int i, int j).

Note, this method is a suitable place to include periodic boundary conditions, i.e. that ¢ +n x L =1
and j+nx L=jfornelZ.

2.3 Cold start and magnetization

Initialize your spin configuration by a cold start, i.e. setting all spins to one s; ; =1V 1, j:
void coldStart (int latticeSpin []).

Implement the magnetization M = 75 >, s; as an observable:

double computeMagnetization (int latticeSpin/]).

2.4 Metropolis-Hastings algorithm
Update your lattice of spins according to the Metropolis-Hastings algorithm:
void updateLattice (int latticeSpinf], double effectiveBeta).

The idea of the Metropolis-Hastings algorithm is to replace one spin state of your lattice by s; ; —

s;J = —s; ; and accept this step with a probability

, (5)

1 if VH <0
W(Si,j — S/» ) = { ! <

d exp (—36H) else

where 0H = H(s; ;) — H(s; ) corresponds to the change in energy. Regarding perfomance of your
code simplify §H analytically before implementing. Use your pseudo random number generator to
implement the acceptance step.

Then produce a number of N configurations by repeating this update step for every lattice site
and N times for the whole lattice. Plot the magnetization M for every update steps to observe how
the system develops. When should you start estimating observables, e.g. the mean magnetization
(M)?

3 Determination of the critical temperature

3.1 Critical temperature of the phase transition

Introduce an effective temperature fSeg, which includes the coupling J and the inverse temperature
B, i.e. Bef = JB. Then compute the absolute mean magnetization | (M) | based on the configurations
created in your Metropolis-Hastings algorithm and plot it against different effective temperatures Bog.
Do you see the phase transition (c.f. fig. 1)? Improve your result by performing 10 lattice updates
between each computation of the mean magnetization.

3.2 Magnetic susceptibility

A more sophisticated way to compute the critical temperature is given by determining the magnetic
susceptibility ya = (M?) — (M)?, which diverges at the phase transition. Add the computation of
this observable to your code and plot its value for different effectives temperatures 5. Estimate the
critical temperature (..
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Figure 1: Absolute mean magnetization (|M|) versus effective temperature Seg = J/(kpT'). A phase
transition occurs in the range 0.4 < Beg < 0.5.

3.3 Comparison with analytical results

Compare your” estimated critical effective temperature 35 to the analytical prediction J 3. = % In(1+
V/2) = 0.4407. Computing averages always allows one to introduce an error to your observable. Should
one do it? Is the standard error a good choice?

9A run with L = 30, N = 100, 10 updates between every computation and a stepsize for the effective temperature
of ABeg = 0.001 should be sufficient to reproduce the theoretical prediction up to two decimal places.
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