
“Einführung in die Programmierung für Physiker” – WS 2013/14 – Marc Wagner

Tutors: C. Czaban, A. Dromard, J. Glesaaen, M. Neuman, D. Palao, C. Schäfer, A. Sciarra

Tutorial I
October 17

Excercise 1 [Installing GNU/Linux] Having a GNU/Linux system at hand is probably a very good idea

in this course. It is flexible and powerful, and most fashionable distributions (Fedora, Debian, Ubuntu,

Suse. . .) bring by default many tools for programming. And provide easy access to much more software

through their package managers.

This first exercise is a reminder of what was said in the lecture. The simplest GNU/Linux installation is

probably done on a clean computer —without any other operating system. But it is usually possible to

make GNU/Linux coexisting with other operating systems. Many distributions have online documenta-

tion to help you in such a task.

Another option is to use some kind of virtualization software. In that case, you install some program like

VirtualBox or Xen (or many others) in your current operating system. The general idea is that those

programs simulate computers, therefore you can create a new virtual computer inside the virtualization

program and install whatever operating system you like without affecting the installation of the current

real operating system.

You are free to choose the method you like more.

Excercise 2 [Playing with the shell] In this exercise we will play around with some basic shell commands:

mkdir, touch, chmod, rmdir, rm, pwd, cat. Moreover, remember that ls and cd are always your

friends. When working with Bash or similar shells, the <Tab> key, which completes text, and the <Up>

and <Down> arrows, which navigate through the command history, are very handy. Play a little bit with

them during the exercise to find out how they can help you.

(i) Create one directory in your home, let us call it ex, and make inside it the following directories:

bin, etc, physics and src, such that

$ ls ex/

bin etc physics src

(ii) Go inside directory ex/src/ (you can always check where you are with the pwd command) and

make three directories: c, c++ and python. Then go to directory c. We will use the command

touch to create some files. First, execute touch Makefile, then touch makefile and last repeat

touch Makefile. What does it happen? How many new files do you expect to have after running

these three commands? Remember: the shell is case-sensitive.

Finally, go to ~/ex/ and remove directory src/ and all its content. You can use rm or rmdir to

complete this task. Perhaps some option is needed (check the man page in case of doubt).

(iii) Next, go to ~/ex/physics/ and create a new directory called .secret.project, and go inside

it. Then, use your favorite editor (emacs, xemacs, vi, vim, nano, kate, gedit. . .) to open

a file called readme.text and write something inside it. Save the file and exit. Now, cd to

~/ex/physics/ and do ls. Where is the directory .secret.project, and the file readme.text?

If you have troubles, check the man page of the ls command.

(iv) Change the working directory to ~/bin and do touch my.fake.program. Use chmod to make it

executable, for instance with

$ chmod +x my.fake.program

At this moment you can execute it. Try it (./my.fake.program; what is the content of the file?

What is the result of executing it?). Put some content in the file using echo. For instance

$ echo "Hello world!" > my.fake.program

$ echo "Goodbye." >> my.fake.program

What is the contents of the file now? Check it with cat. Note the usage of >> in the second

command above, instead of the symbol > in the first command. What happens if you execute both

echo lines with >? What is the content of the file afterwards? Now, put some new content to the

file, and execute it

$ echo "cal" > my.fake.program

$ echo "date" >> my.fake.program

$ echo "ls" >> my.fake.program

$./my.fake.program

Can you explain the output? Again, feel free to check the man page of any command whenever you

need.

Excercise 3 [Basic gnuplot usage] Gnuplot, as mentioned in the lectures, is a command based, graphical

plotting program for Linux which in addition to being very handy when one needs a “quick and dirty”

plot, is also extremely customisable, and can, with sufficient practice, be used to generate professional

looking plots.

First, open gnuplot by typing gnuplot in the terminal. Although a bit minimalistic, gnuplot comes with

extensive documentation through the help command. Start off with typing help plot which will tell

you how to use the plotting function. Following the first example of the documentation, you can plot a

simple sine curve by typing

plot sin(x)

Gnuplot has a set of standard functions you can use when plotting, some of which are summarised below:

exp() log() ** (^)

sin() cos() tan()

asin() acos() atan()

cosh() sinh() tanh()

(i) First try to plot the Gaussian distribution with 0 mean value and unit standard deviation:

1√
2π

exp
{
− 1

2x
2
}

(ii) Gnuplot should have been able to plot that quite nicely, but let’s tidy it up a little.

(a) Give the plot labels, such as x at the x-axis and P at the y-axis

(b) Restrict the plot to only plot the ranges x ∈ [−5, 5] and y ∈ [0, 0.5]

(c) Plot tics along the x-axis at intervals of 1, and along the y-axis at intervals of 0.1

(d) Plot special named tics at the points x = −1.96 and x = 1.96, and name them “95%”

(e) Give the plot a title, e.g. “Gaussian distribution (〈x〉 = 0, var = 1)”

(f) Set the sample rate for the function to make the plot smoother

All of the above tasks can be done with gnuplot’s set [option] function. You should read the

help section (by typing help set [option]) on some of the following options and learn how to use

them. You can use the replot function between each call to set to have your changes displayed,

instead of re-writing the plot command.

xlabel xrange xtics

title samples key

(iv) Lastly, let us change gnuplot’s terminal and output so that we can save the plot we have made as

an image file. The terminal setting tells gnuplot which kind of output it should generate, e.q. gif,

png, jpg, pdf, tex and so on (you might have noticed during startup that gnuplot set the output

to “wxt”, so if you ever need to switch back, you do not need to close and re-open gnuplot). The

output setting tells gnuplot which file to save to. Read the documentation for the two settings,

and save your plot in a filetype of your own choice.

In this exercise we only covered styling the plot borders, and not the lines themselves. The lines are gener-

ally stylised along with the plot command using the command with, such as plot sin(x) with [options].

It is once again recommended to look at the documentation for this (help plot with), to get an overview

of the options available. You could for instance try plotting the above function with points instead of

lines and vary the samples setting to get a clear idea of what it does.

Excercise 4 [Advanced shell] Open a new file called script.sh with an editor and write inside the

following code

#!/bin/bash

this line is a comment: it is ignored; also blank lines are ignored

for i in $(ls /tmp); do

echo $i | wc -c >> lengths.text

done

Make it executable and run it. Try to understand what happened.

(i) Make a new script, called script2.sh. The output of this new script, once executed, must be a

file called name_lengths.text with so many lines as files in the /tmp directory, and each line must

contain two entries: the first being the name of the corresponding file in /tmp, and the second

the length of this file name (for instance, if there was a file called “house” in that directory, the

corresponding line would be “house 5”).

(ii) Make another script, called script3.sh. The output of this one, once executed, should be a file

called name_sizes.text with so many lines as files in the /tmp directory, and each line must contain

two entries: the first being again the name of the corresponding file in /tmp, and the second its size

in bytes.

