
∗ Notation of energy eigenvalues E
(n)
0 :

· Gauge invariant states, i.e. no static quarks: En (j(x) = 0 for all x).

· A static quark/antiquark at −r/2 and at +r/2: V
singlet
n (r) (j(−r/2) = j(+r/2) = 1/2).

· An adjoint static quark at s: E
Qadj

n (j(s) = 1).

· A static quark/antiquark at −r/2 and at +r/2, an adjoint static quark at s: V
QQ̄Qadj

n (r)
(j(−r/2) = j(+r/2) = 1/2, j(s) = 1).

∗ One can derive

〈Φsinglet(t2)|Φ
singlet(t1)〉 =

∑

k

e−V singlet
k (r)∆t

∑

m

e−Em(T−∆t)
∑

α,β

∣
∣
∣〈k, αβ|Ûαβ(−r/2; +r/2)|m〉

∣
∣
∣

2
;

α ≡ m(−r/2) = ±1/2 and β ≡ m(+r/2) = ±1/2 are color indices at ±r/2.

∗ This correlation function is suited to extract the common singlet potential V
singlet
0 (r).

•Non-perturbative computations (lattice), triplet potential:

– Including the gauge fixing in the observable:

∗ Again one has to distinguish two cases, which this time yield different results.

∗ (s, t1) and (s, t2), the spacetime positions of the “triplet generators’ σa, are connected by an
adjoint static propagator: Tr(σaU(t1, s; t2, s)σbU(t2, s; t1, s)).

– Transfer matrix formalism:

∗ One can derive for case (A)

〈Φtriplet,a(t2)|Φ
triplet,a(t1)〉 =

=
∑

k

e−V QQ̄Qadj

k (r)∆t
∑

m

e−Em(T−∆t)
∑

α,β

∣
∣
∣〈k, αβ, m(s) = a|Ûαβ,a(−r/2; s; +r/2)|m〉
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and for case (B)

〈Φtriplet,a(t2)|Φ
triplet,a(t1)〉 =

=
∑

k

e−V singlet
k (r)∆t

∑

m

e−EQadj
m (T−∆t)

∑

α,β

∣
∣
∣〈k, αβ|Ûαβ,a(−r/2; s; +r/2)|m, m(s) = a〉

∣
∣
∣

2
.

– Conclusion: one can either extract a three-quark potential (one quark at +r/2, one antiquark at
−r/2, one adjoint quark at s) (case (A)) or the ordinary singlet potential (case (B)).

Gauge fixing, Lorentz gauge (∂µAµ = 0)

• Perturbative calculations:

– Leading order result for trial states Q̄(−r/2)U(−r/2; 0)ΣU(0; +r/2)Q(+r/2)|Ω〉:

∗ Singlet potential Σ = 1: V
singlet
0 (r) = −3g2/16πr, i.e. attractive.

· Can be compared to the non-perturbative lattice result (in any gauge), since the the trial state
is gauge invariant; qualitative agreement is found (cf. Figure [bottom, left], solid blue line).

∗ Triplet potential Σ = σa: V
triplet
0 (r) = +g2/16πr, i.e. repulsive.

· In Lorentz gauge a transfer matrix does not exist; the physical interpretation is unclear ...

– One can also calculate the gauge invariant triplet diagram obtained by using temporal gauge (cf.

Figure [center], “triplet, case (A)”): V
QQ̄Qadj

0 (r) = −9g2/16πr (for s = 0), i.e. attractive.

∗ Qualitative agreement with the lattice result is found (cf. Figure [bottom, left], red dots and solid
red line).

Conclusions
• The singlet potential corresponds to a gauge invariant trial state Q̄(−r/2)U(−r/2; +r/2)Q(+r/2)|Ω〉;

it is the same in any gauge and its interpretation as a static quark antiquark potential is clear.

• The “triplet potential” corresponding to trial states Q̄(−r/2)U(−r/2; s)σaU(s; +r/2)Q(+r/2)|Ω〉
is gauge dependent:

– Without gauge fixing it cannot be calculated/computed.

– In temporal gauge it corresponds to a three-quark potential and not to a potential between a quark
and an antiquark in a color triplet state, i.e. the name “triplet potential” is rather misleading.

– In Lorentz gauge a perturbative calculation yields a repulsive potential; since a transfer matrix does
not exist, the physical interpretation is unclear ...

Gauge fixing, temporal gauge (A0 = 0)

• Gauge transformations and gauge fixing on a lattice:

– Gauge transformation of a temporal link: U0(t,x) → U
g
0 (t,x) = g(t,x)U0(t,x)g†(t + a,x), where

g(t,x) ∈ SU(2).

– Temporal gauge A
g
0 = 0 in the continuum corresponds to U

g
0 (t,x) = 1 on a lattice.

– On a lattice with finite periodic temporal extension it is not possible to fix to temporal gauge
everywhere; there will be a slice of links, where U0 6= 0; in the following wlog. U

g
0 (t = 0,x) 6= 1,

while U
g
0 (t = 1 . . . T − 1,x) = 1 (T is the periodic temporal extension of the lattice).

– A possible choice for the corresponding gauge transformation g(t,x) is
g(t = 2a,x) = U0(t = a,x),
g(t = 3a,x) = g(t = 2a,x)U0(t = 2a,x) = U0(t = a,x)U0(t = 2a,x),
g(t = 4a,x) = g(t = 3a,x)U0(t = 3a,x) = U0(t = a,x)U0(t = 2a,x)U0(t = 3a,x),
g(t = 5a,x) = . . .

•Non-perturbative computations (lattice), singlet potential:

– Trial states |Φsinglet〉 are gauge invariant; therefore the result is identical to the result without gauge
fixing (cf. Figure [bottom, left], blue dots).

– Including the gauge fixing in the observable:

∗ Case (A), 1 ≤ t1 < t2 < T , computation on gauge fixed gauge link configurations:

〈Φsinglet(t2)|Φ
singlet(t1)〉 =

〈

Tr
(

Ug(t1,−r/2; t1, +r/2)Ug(t2, +r/2; t2,−r/2)
)〉

.

∗ Replacing Ug by the original links U and the gauge transformation g yields a manifestly gauge
invariant observable:

〈Φsinglet(t2)|Φ
singlet(t1)〉 =

〈

Tr
(

U(t1,−r/2; t1, +r/2) g†(t1, +r/2)g(t2, +r/2)
︸ ︷︷ ︸

U(t1,+r/2;t2,+r/2)

U(t2, +r/2; t2,−r/2) g†(t2,−r/2)g(t1,−r/2)
︸ ︷︷ ︸

U(t2,−r/2;t1,−r/2)

)〉

= W (r, ∆t).

gauge fixed gauge link
configurations (case (A))

including the gauge fixing
in the observable (case (A))

=

singlet, case (A) triplet, case (A) triplet, case (B)

→

result is a Wilson loop result: QQ̄Qadj potential result: singlet potential

∗ Case (B), 0 = t1 < t2 < T and 1 ≤ t2 < t1 < T , slightly more complicated, but same result.

∗ This technique of transforming a non-gauge invariant observable into an equivalent manifestly
gauge invariant observable will be helpful for interpreting the triplet potential.

– Transfer matrix formalism:
[O. Philipsen, Nucl. Phys. B 628, 167 (2002) [hep-lat/0112047]]

[O. Jahn and O. Philipsen, Phys. Rev. D 70, 074504 (2004) [hep-lat/0407042]]

∗ On the lattice a spectral decomposition of correlation functions is done in terms of eigenstates
and eigenvalues of the transfer matrix.

∗ Without gauge fixing the transfer matrix is T̂ = e−Ha (lattice discretization errors neglected),

T̂ |ψ(n)〉 = λ(n)|ψ(n)〉;

λ(n) = e−E(n)a, where E(n) are the energies of gauge invariant states (e.g. vacuum, glueballs).

∗ The transfer matrix in temporal gauge is T̂0 = e−H0a; similarly

T̂0|ψ
(n)
0 〉 = λ

(n)
0 |ψ

(n)
0 〉.

∗ In temporal gauge remaining gauge degrees of freedom are time-independent gauge transformati-
ons g(x); one can show [T̂0, g(x)] = 0, i.e. eigenstates of T̂0 can be classified according to SU(2)
color quantum numbers (j(x), m(x)) at each x.

∗ λ
(n)
0 = e−E

(n)
0 a, where E

(n)
0 are the masses/energies of the gauge invariant states discussed above

as well as of additional non-gauge invariant states with j(x) 6= 0; such states can be interpreted
as states containing static color charges (= static quarks).

Abstract
We discuss possibilities and problems to non-perturbatively define and compute a static color triplet
potential in SU(2) gauge theory. Numerical lattice results are presented and compared to analytical
perturbative results.

Calculating the static potential: basic principle

• Singlet potential: based on trial states

|Φsinglet〉 ≡ Q̄(−r/2)U(−r/2; +r/2)Q(+r/2)|Ω〉.

• Triplet potential: in the literature, e.g.
[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Nucl. Phys. B 566, 275 (2000) [hep-ph/9907240]]

, based on trial states

|Φtriplet,a〉 ≡ Q̄(−r/2)U(−r/2; s)σaU(s; +r/2)Q(+r/2)|Ω〉.

• ±r/2 ≡ (0, 0,±r/2), Q and Q̄ are static quark/antiquark operators, U are spatial parallel transpor-
ters (on a lattice products of links), σa denote Pauli matrices in color space.

• From the asymptotic behavior of the correlation function,

〈ΦX(t2)|Φ
X(t1)〉 =

∞∑

n=0

cn exp
(

− V X
n (r) (t2 − t1)︸ ︷︷ ︸

=∆t>0

)

∝∆t→∞ exp
(

− V X
0 (r)∆t

)

, (1)

the (ground state) static potential V X
0 (r) can be extracted (on a periodic lattice more complicated;

see below); it is a state containing a static quark at +r/2 and a static antiquark at −r/2; further
properties and the interpretation of this state depend on, whether the singlet or triplet trial state is
used, and, in case of the triplet trial state, on the choice of gauge.

Without gauge fixing

• Perturbative calculations not possible (gluonic propagators require gauge fixing).

•Non-perturbative computations (lattice), singlet potential:

〈Φsinglet(t2)|Φ
singlet(t1)〉 ∝ W (r, ∆t) = Tr

(

P

{

exp

(

ig

∮

dzµ Aµ(z)

)})

,

where the integration is along a rectangular path with spatial extension r and temporal extension ∆t;
the potential can then be obtained via eq. (1),

V singlet(r) = − lim
∆t→∞

Ẇ (r, ∆t)

W (r, ∆t)

(cf. Figure [bottom, left], blue dots).

•Non-perturbative computations (lattice), triplet potential:

〈Φtriplet,a(t2)|Φ
triplet,a(t1)〉 = 0 (no sum over a),

because 〈Φtriplet,a(t2)|Φ
triplet,a(t1)〉 is not gauge invariant (does not contain any gauge invariant

contribution).
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Definitions of a static SU(2) color triplet potential

U(−r/2; +r/2)

Q̄(−r/2) Q(+r/2)

Q̄(−r/2) Q(+r/2)σa

U(−r/2; s) U(s; +r/2)


