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Introduction (1)

• Models for SU(2) Yang-Mills theory with a small number of degrees of
freedom:

– Regular gauge instanton models and meron models (F. Lenz,
J. W. Negele, M. Thies, 2003).

– Pseudoparticle approach (F. Lenz, M.W., 2005).

– Calorons with non-trivial holonomy (P. Gerhold, E.-M. Ilgenfritz,
M. Müller-Preussker, 2006).

• Basic principle: restrict the path integral to those gauge field configurations,
which can be represented as a linear superposition of a small number of

localized building blocks (instantons, merons, akyrons, calorons, ...).
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Introduction (2)

• Successes of these models:

– Linear potential between two static charges at large separations

(confinement).

– Confinement-deconfinement phase transition.

– String tension, topological susceptibility and critical temperature in
qualitative agreement with lattice results.

• Intention: get a better understanding of confining gauge field configurations
and the mechanism of confinement.

• How can fermions be included in such models?

• First steps in this direction will be discussed in this talk:

– Basic principle of the PP approach in fermionic theories.

– Testing ground: the 1+1-dimensional Gross-Neveu model in the

large-N -limit (phase diagram, chiral condensate).
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Basic principle

• Consider fermionic field configurations ψ, which can be represented as a
linear superposition of a fixed number of localized building blocks (PPs):

ψ(x) =
∑

j

φjGj(x)
︸ ︷︷ ︸

j-th PP

,

∫

DψDψ̄ . . . =

∫
(
∏

j

dφj dφ̄j

)

. . .

(φj: Grassmann-valued spinors; Gj: localized functions).

• In this talk: PPs Gj are uniformly distributed “hat functions” (B-spline basis
functions of degree 2).

– “Sensible set of field configurations” (any not too heavily oscillating field
configuration can be approximated)
→ we can expect to reproduce

correct Gross-Neveu results.

– Piecewise polynomial functions
→ certain integrals can be

calculated analytically.
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The Gross-Neveu model

• Action and partition function of the 1+1-dimensional Gross-Neveu model:

S =

∫

d2x





N∑

n=1

ψ̄(n)
(

γ0(∂0 + µ) + γ1∂1

)

ψ(n) −
g2

2

(
N∑

n=1

ψ̄(n)ψ(n)

)2




Z =

∫
(

N∏

n=1

Dψ(n)Dψ̄(n)

)

e−S or equivalently

Seffective = N

(
1

2λ

∫

d2xσ2 − ln
(

det
(

γ0(∂0 + µ) + γ1∂1 + σ
)))

Z ∝

∫

Dσ e−Seffective

(N : number of flavors; µ: chemical potential; g: coupling constant; λ = Ng2;
σ =

∑N
n=1 ψ̄

(n)ψ(n): chiral condensate [a real scalar field]).

• Large-N -limit: N → ∞, λ = Ng2 = constant (there is no need to compute
the σ-path integral; it is sufficient to minimize Seffective with respect to σ).
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PP results (1)

Phase diagram for σ = constant (“old phase diagram”) (1)

• PP effective action:

Seffective

N
=

L0L1

2λ
σ2 − ln

(

det〈Gj |
(

γ0(∂0 + µ) + γ1∂1 + σ
)

|Gj′〉
)

.

• Spacetime volumes: L0 × L1 = 8 × 144 ... L0 × L1 = 48 × 144.

• One PP per unit volume.

• To set the scale: finite temperature computations at L0 = 8 and µ = 0

→ σ(λ) →
{

λ = 0.894 ↔ Tcritical = 1/8
}

.

• “Zero temperature computation” at λ = 0.894, L0 = 48
and µ = 0

→ σ0 = 0.282.
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PP results (2)

Phase diagram for σ = constant (“old phase diagram”) (2)

• Computations of the chiral condensate σ at λ = 0.894 and at different
temperature T = 1/L0 and chemical potential µ yield the phase diagram.

• Results are not even in qualitative agreement with analytical results, i.e.
these results are completely useless!!!

• It can be shown that such “bad results” will be obtained for any choice of
localized and uniformly distributed PPs!!!
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What is the reason for these bad results?

• PP effective action:

Seffective

N
=

L0L1

2λ
σ2 − ln

(

det〈Gj |
(

γ0(∂0 + µ) + γ1∂1 + σ
)

︸ ︷︷ ︸

=Q

|Gj′〉
)

.

• To expose the problem it is convenient to diagonalize the matrix:

Seffective

N
=

L0L1

2λ
σ2 − ln

(

det 〈G̃j |Q|G̃j′〉
︸ ︷︷ ︸

=diag(λ1,λ2,...)

)

, |G̃j〉 = Ujk|Gk〉.

• Problem (most extreme case): Q|G̃j〉 6= 0 but λj = 〈G̃j |Q|G̃j〉 = 0 because

Q|G̃j〉 ⊥ span{|G̃k〉}.

• These unphysical zero modes (low lying modes) spoil the results.

• In other words: applying the operator Q to the PPs |G̃j〉 yields results, which

are (partially) outside the PP function space.
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Solution

• Use eigenfunctions of Q as pseudoparticles?

– “Perfect solution” ... but in general, i.e. for non constant chiral

condensate σ, too time consuming (eigenfunctions depend on σ).

• Since det(Q) is real and positive det(Q) =
√

det(Q†Q).

• Avoid the above mentioned problem by applying the PP approach to
√

det(Q†Q) instead of det(Q):

– Effective action:

Seffective

N
=

L0L1

2λ
σ2 − ln

√

det〈Gj|Q†Q|Gj′〉.

– Both 〈Gj |Q
† and Q|Gj′〉 are (partially) outside the PP function space

but their overlap is computed in the same space.
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PP results (3)

Phase diagram for σ = constant and for non constant σ

• Spacetime volumes: L0 × L1 = 8 × 144 ... L0 × L1 = 48 × 144.

• One PP per unit volume for ψ(n), one PP per (3 × 3)-volume for σ.

• To set the scale: finite temperature computations at L0 = 8 and µ = 0

→ σ(λ) →
{

λ = 1.153 ↔ Tcritical = 1/8
}

.

• Computations of the chiral condensate σ at λ = 1.153 and at different

temperature T = 1/L0 and chemical potential µ yield the phase diagram.
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PP results (4)

Spatially non constant chiral condensate σ(x1)

• Analytical result:

σ(x1) = Aκ2 sn(Ax1, κ)cn(Ax1, κ)

dn(Ax1, κ)

(A = A(µ, T ), κ = κ(µ, T )).

• PP and analytical results at two arbitrarily chosen points in the crystal phase:
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Conclusions and outlook

• The PP approach has been applied to compute the phase diagram of the
1+1-dimensional Gross-Neveu model in the large-N -limit (both for

σ = constant and for spatially non constant σ): results are in excellent
agreement with analytical results.

• The next step is to apply the PP approach to QCD:

– Current research: chiral symmetry breaking by computing the low lying

eigenmodes of the Dirac operator in the quenched approximation
(Banks-Casher relation).

– Goal: obtain a model with a small number of degrees of freedom, which

exhibits chiral symmetry breaking and a confinement deconfinement
phase transition at the same time.

– Compute further observables: pion masses, ...
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