Tetraquarks with two heavy quarks from lattice QCD

"Deciphering Strong-Interaction Phenomenology through Precision Hadron-Spectroscopy" – MIAPP, Germany

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

http://th.physik.uni-frankfurt.de/~mwagner/

in collaboration with Pedro Bicudo, Marco Cardoso, Nuno Cardoso, Krzystof Cichy, Antje Peters, Martin Pflaumer, Jonas Scheunert, Björn Wagenbach

October 25, 2019

Part 1: $\bar{b}\bar{b}qq$ tetraquarks

(part 2 is about $\bar{b}b\bar{q}q$ tetraquarks)

Basic idea: lattice QCD + BO (1)

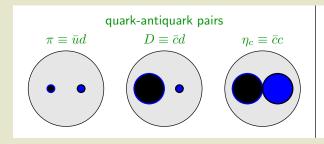
- Study heavy-heavy-light-light tetraquarks $\overline{bb}qq$ in two steps.
 - (1) Compute potentials of two static quarks \overline{bb} in the presence of two lighter quarks qq ($q \in \{u, d, s, c\}$) using lattice QCD.
 - (2) Check, whether these potentials are sufficiently attractive to host bound states or resonances (→ tetraquarks) by using techniques from quantum mechanics and scattering theory.
 - $((1) + (2) \rightarrow Born-Oppenheimer approximation).$

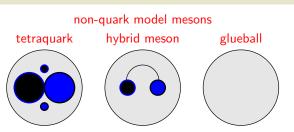
Basic idea: lattice QCD + BO (2)

- The talk summarizes:
 - [P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]
 - [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
 - [P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]
 - [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]]
 - [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., Phys. Rev. D 96, 054510 (2017) [arXiv:1704.02383]]
 - [P. Bicudo, M. Cardoso, N. Cardoso, M.W. [arXiv:1910.04827]]
- For recent work from other groups using a similar approach cf. e.g.:
 - [W. Detmold, K. Orginos, M. J. Savage, Phys. Rev. D 76, 114503 (2007) [arXiv:hep-lat/0703009]]
 - [G. Bali, M. Hetzenegger, PoS LATTICE2010, 142 (2010) [arXiv:1011.0571]]
 - [Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012) [arXiv:1210.1953]]
 - [S. Prelovsek, H. Bahtiyar and J. Petkovic [arXiv:1909.02356]]
- Related work on quarkonium (non-exotic and exotic):
 - [N. Brambilla, A. Pineda, J. Soto and A. Vairo, Phys. Rev. D 63, 014023 (2001) [hep-ph/0002250]]
 - [A. Pineda and A. Vairo, Phys. Rev. D 63, 054007 (2001) [hep-ph/0009145]]
 - [N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) [hep-ph/0410047]]
 - [E. Braaten, C. Langmack and D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438]]
- More related work, in particular on heavy hybrid mesons, ...

Why are such studies important? (1)

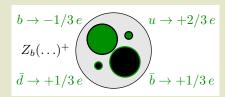
- **Meson**: system of quarks and gluons with integer total angular momentum $J=0,1,2,\ldots$
- Most mesons seem to be **quark-antiquark pairs** $\bar{q}q$, e.q. $\pi \equiv \bar{u}d$, $D \equiv \bar{c}d$, $\eta_s \equiv \bar{c}c$ (quark-antiquark model calculations reproduce the majority of experimental results).
- Certain mesons are poorly understood (e.g. significant discrepancies between experimental results and quark model calculations), could have a more complicated structure, e.g.
 - 2 quarks and 2 antiquarks (tetraquark),
 - a quark-antiquark pair and gluons (hybrid meson),
 - only gluons (glueball).





Why are such studies important? (2)

- Indications for tetraquark structures:
 - Electrically charged mesons $Z_b(10610)^+$ and $Z_b(10650)^+$:
 - * Mass suggests a $b\bar{b}$ pair ...
 - * ... but $b\bar{b}$ is electrically neutral ...?
 - * Easy to understand, when assuming a tetraquark structure: $Z_b(\ldots)^+ \equiv b\bar{b}u\bar{d} \ (u \to +2/3 \, e, \ \bar{d} \to -1/3 \, e).$



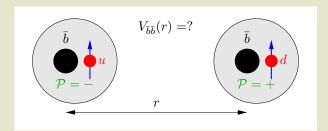
- Electrically charged Z_c states:
 - * Similar to Z_b states.
- Mass ordering of light scalar mesons:
 - * E.g. $m_{\kappa} > m_{a_0(980)}$...?

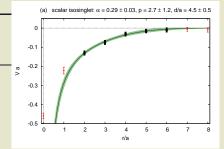
Outline (for part 1)

- $\bar{b}\bar{b}qq$ / BB potentials.
- Lattice setup.
- $\bar{b}\bar{b}qq$ tetraquarks.
- ullet Quantum numbers of the predicted $\bar{b}\bar{b}qq$ tetraquark.
- Inclusion of heavy spin effects.
- $\bar{b}\bar{b}qq$ tetraquark resonances.

$\overline{b}\overline{b}qq$ / BB potentials (1)

- Spins of static antiquarks $\bar{b}\bar{b}$ are irrelevant (they do not appear in the Hamiltonian).
- At large $\bar{b}\bar{b}$ separation r, the four quarks will form two static-light mesons $\bar{b}q$ and $\bar{b}q$.
- Consider only pseudoscalar/vector mesons $(j^P = (1/2)^-, PDG: B, B^*)$ and scalar/pseudovector mesons $(j^P = (1/2)^+, PDG: B_0^*, B_1^*)$, which are among the lightest static-light mesons (j: spin of the light degrees of freedom).
- ullet Compute and study the dependence of $b\bar{b}$ potentials in the presence of qq on
 - the "light" quark flavors $q \in \{u, d, s, c\}$ (isospin, flavor),
 - the "light" quark spin (the static quark spin is irrelevant),
 - the type of the meson B, B^* and/or B_0^* , B_1^* (parity).
 - ightarrow Many different channels: attractive as well as repulsive, different asymptotic values ...

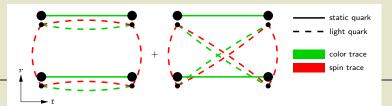




- ullet Rotational symmetry broken by static quarks $\bar{b}\bar{b}.$
- Remaining symmetries and quantum numbers:
 - $-j_z \equiv \Lambda$: rotations around the separation axis (e.g. z axis).
 - $-P \equiv \eta$: parity.
 - $-P_x \equiv \epsilon$: reflection along an axis perpendicular to the separation axis (e.g. x axis).
- To extract the potential(s) of a given sector $(I, I_z, |j_z|, P, P_x)$, compute the temporal correlation function of the trial state(s)

$$\left(C\Gamma\right)_{AB}\left(C\tilde{\Gamma}\right)_{CD}\left(\bar{Q}_{C}(-\mathbf{r}/2)q_{A}^{(1)}(-\mathbf{r}/2)\right)\left(\bar{Q}_{D}(+\mathbf{r}/2)q_{B}^{(2)}(+\mathbf{r}/2)\right)|\Omega\rangle.$$

- $-q^{(1)}q^{(2)} \in \{ud du, uu, dd, ud + du, ss, cc\}$ (isospin I, I_z , flavor).
- $-\Gamma$ is an arbitrary combination of γ matrices (spin $|j_z|$, parity P, P_x).
- $-\tilde{\Gamma} \in \{(1-\gamma_0)\gamma_5, (1-\gamma_0)\gamma_j\}$ (irrelevant).



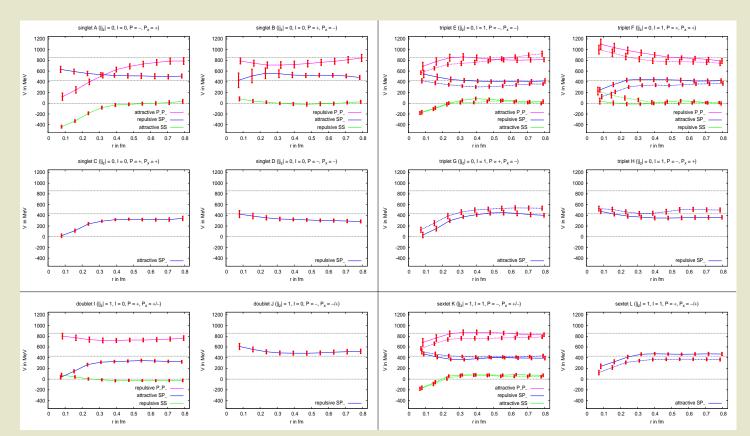
Lattice setup for bbqq / BB

- ETMC gauge link ensembles:
 - $-N_f=2$ dynamical quark flavors.
 - Lattice spacing $a \approx 0.079$ fm.
 - $-24^3 \times 48$, i.e. spatial lattice extent ≈ 1.9 fm.
 - Three different pion masses $m_{\pi} \approx 340 \, \text{MeV}$, $m_{\pi} \approx 480 \, \text{MeV}$, $m_{\pi} \approx 650 \, \text{MeV}$.

[R. Baron et al. [ETM Collaboration], JHEP 1008, 097 (2010) [arXiv:0911.5061 [hep-lat]]

$\bar{b}\bar{b}qq$ / BB potentials (3)

• I=0 (left) and I=1 (right); $|j_z|=0$ (top) and $|j_z|=1$ (bottom).



$\overline{b}\overline{b}qq$ / BB potentials (4) to (7)

- Why are there three different asymtotic values?
 - They correspond to $B^{(*)}B^{(*)}$ potentials, to $B^{(*)}B^*_{0,1}$ potentials and $B^*_{0,1}B^*_{0,1}$ potentials.
- Why are certain channels attractive and others repulsive?

```
- (I=0,j=0) and (I=1,j=1) \rightarrow attractive \bar{b}\bar{b}qq / BB potentials.
```

- (I=0,j=1) and (I=1,j=0) \rightarrow repulsive $\overline{bb}qq$ / BB potentials.
- Because of the Pauli principle and (assuming) "1-gluon exchange" at small r.
- 24 different (i.e. non-degenerate) $\overline{bb}qq / BB$ potentials.

$\overline{b}\overline{b}qq$ / BB potentials (4)

Why are there three different asymtotic values?

- Differences ≈ 400 MeV, approximately the mass difference of $B^{(*)}$ (P=-) and $B^*_{0,1}$ (P=+).
- Suggests that the three different asymtotic values correspond to $B^{(*)}B^{(*)}$ potentials, to $B^{(*)}B^*_{0,1}$ potentials and $B^*_{0,1}B^*_{0,1}$ potentials.
- Can be checked and confirmed, by rewriting the $\bar{b}\bar{b}qq$ creation operators in terms of meson-meson creation operators (Fierz transformation).
- Example: uu, $\Gamma = \gamma_3$ (attractive, lowest asymptotic value),

$$(C\gamma_3)_{AB} (\bar{Q}_C(-\mathbf{r}/2)q_A^{(u)}(-\mathbf{r}/2)) (\bar{Q}_D(+\mathbf{r}/2)q_B^{(u)}(+\mathbf{r}/2)) \propto$$

$$\propto (B^{(*)})_{\uparrow}(B^{(*)})_{\downarrow} + (B^{(*)})_{\downarrow}(B^{(*)})_{\uparrow} - (B_{0,1}^*)_{\uparrow}(B_{0,1}^*)_{\downarrow} - (B_{0,1}^*)_{\downarrow}(B_{0,1}^*)_{\uparrow}.$$

• Example: uu, $\Gamma = 1$ (repulsive, medium asymptotic value),

$$\begin{pmatrix} C1 \end{pmatrix}_{AB} \left(\bar{Q}_C(-\mathbf{r}/2) q_A^{(u)}(-\mathbf{r}/2) \right) \left(\bar{Q}_D(+\mathbf{r}/2) q_B^{(u)}(+\mathbf{r}/2) \right) \propto \\
\propto (B^{(*)})_{\uparrow} (B_{0,1}^*)_{\downarrow} - (B^{(*)})_{\downarrow} (B_{0,1}^*)_{\uparrow} + (B_{0,1}^*)_{\uparrow} (B^{(*)})_{\downarrow} - (B_{0,1}^*)_{\downarrow} (B^{(*)})_{\uparrow}.$$

$\overline{b}\overline{b}qq$ / BB potentials (5)

Why are certain channels attractive and others repulsive? (1)

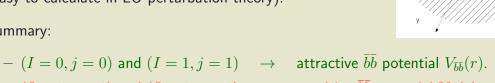
- Fermionic wave function must be antisymmetric (Pauli principle); in quantum field theory/QCD automatically realized.
- qq isospin: I=0 antisymmetric, I=1 symmetric.
- qq angular momentum/spin: j=0 antisymmetric, j=1 symmetric.
- qq color:
 - -(I=0,j=0) and (I=1,j=1): must be antisymmetric, i.e., a triplet $\bar{3}$.
 - -(I=0,j=1) and (I=1,j=0): must be symmetric, i.e., a sextet 6.
- The four quarks $\bar{b}\bar{b}qq$ must form a color singlet:
 - -qq in a color triplet $\bar{3} \rightarrow \text{static quarks } b\bar{b}$ also in a triplet $\bar{3}$.
 - -qq in a color sextet $6 \rightarrow \text{static quarks } \overline{bb}$ also in a sextet $\overline{6}$.

bbqq / BB potentials (6)

Why are certain channels attractive and others repulsive? (2)

- Assumption: attractive/repulsive behavior of \overline{bb} at small separations r is mainly due to 1-gluon exchange,
 - color triplet 3 is attractive, $V_{b\bar{b}}(r) = -2\alpha_s/3r$,
 - color sextet $\bar{6}$ is repulsive, $V_{b\bar{b}}(r) = +\alpha_s/3r$

(easy to calculate in LO perturbation theory).



- Summary:
 - -(I=0,j=1) and (I=1,j=0) \rightarrow repulsive \overline{bb} potential $V_{bb}(r)$.
- Expectation consistent with the obtained lattice results.
- Pauli principle and assuming "1-gluon exchange" at small r explains, why certain channels are attractive and others repulsive.

$\bar{b}\bar{b}qq$ / BB potentials (7)

• Summary of $\bar{b}\bar{b}qq$ / BB potentials:

```
B^{(*)}B^{(*)} \text{ potentials:} \quad \text{attractive:} \quad 1 \oplus 3 \oplus 6 \\ \text{repulsive:} \quad 1 \oplus 3 \oplus 2 \\ B^{(*)}B^*_{0,1} \text{ potentials:} \quad \text{attractive:} \quad 1 \oplus 1 \oplus 3 \oplus 3 \oplus 2 \oplus 6 \\ \text{repulsive:} \quad 1 \oplus 1 \oplus 3 \oplus 3 \oplus 2 \oplus 6 \\ B^*_{0,1}B^*_{0,1} \text{ potentials:} \quad \text{attractive:} \quad 1 \oplus 3 \oplus 6 \\ \text{repulsive:} \quad 1 \oplus 3 \oplus 6 \\ \text{repulsive:} \quad 1 \oplus 3 \oplus 2 \\ \end{pmatrix} \quad \text{(10 states)}.
```

- 2-fold degeneracy due to spin $j_z = \pm 1$.
- 3-fold degeneracy due to isospin $I=1, I_z=-1,0,+1$.
- ightarrow 24 different $\bar{b}\bar{b}qq$ / BB potentials.

$\overline{b}\overline{b}qq$ / BB potentials (8)

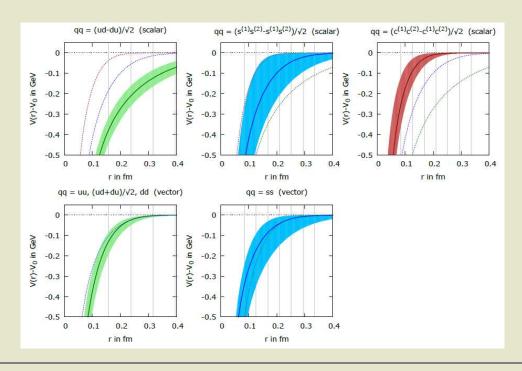
- Focus on the two attractive channels between B and B^* :
 - Scalar isosinglet ((I=0, j=0), more attractive): $qq = (ud-du)/\sqrt{2}$, $\Gamma = (1+\gamma_0)\gamma_5$.
 - Vector isotriplet ((I=1,j=1), less attractive): $qq \in \{uu, (ud+du)/\sqrt{2}, dd\}, \Gamma = (1+\gamma_0)\gamma_j.$
- Computations for qq = ll, ss, cc $(l \in \{u, d\})$ to study the mass dependence.
- ullet Parameterize lattice potential results by continuous functions obtained by χ^2 minimizing fits of

$$V_{\bar{b}\bar{b}}(r) = -\frac{\alpha}{r} \exp\left(-\left(\frac{r}{d}\right)^p\right) + V_0:$$

- -1/r: 1-gluon exchange at small $\bar{b}\bar{b}$ separations.
- $-\exp(-(r/d)^p)$: color screening at large $\bar{b}\bar{b}$ separations due to meson formation.
- Fit parameters α , d and V_0 ; p=2 from quark models.

$\overline{b}\overline{b}qq$ / BB potentials (9)

- Potentials for qq = ll, $l \in \{u, d\}$ are wider and deeper than potentials for qq = ss, cc.
 - ightarrow Good candidates to find tetraquarks are systems of two very heavy and two very light quarks, i.e., $\bar{b}\bar{b}ll$.

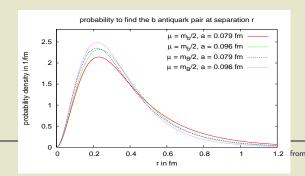


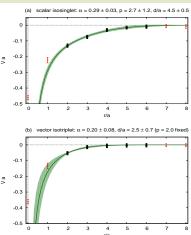
$\overline{b}\overline{b}qq$ tetraquarks (1)

• Solve the Schrödinger equation for the relative coordinate of the heavy quarks $\bar{b}\bar{b}$ using the previously computed $\bar{b}\bar{b}qq\ /\ BB$ potentials,

$$\left(-\frac{1}{2\mu}\Delta + V_{b\bar{b}}(r)\right)\psi(\mathbf{r}) = E\psi(\mathbf{r}) , \quad \mu = m_b/2.$$

- Possibly existing bound states, i.e. E < 0, indicate stable $\bar{b}\bar{b}qq$ tetraquarks.
- There is a bound state for $qq=(ud-du)/\sqrt{2}$ (i.e., the scalar isosinglet potential) and orbital angular momentum l=0 of $\bar{b}\bar{b}$, binding energy $E=-90^{+43}_{-36}\,\mathrm{MeV}$ with respect to the BB^* threshold, i.e. confidence level $\approx 2\,\sigma$.
- No further bound states, in particular not for qq = ss, cc (i.e., B_sB_s, B_cB_c).



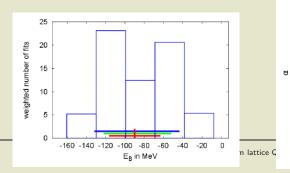


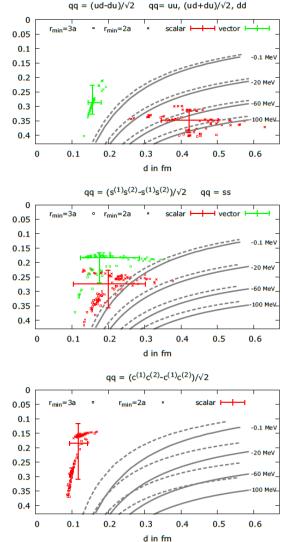
$\overline{bb}qq$ tetraquarks (2)

- Estimate the systematic error by varying input parameters:
 - the t fitting range to extract the potential from effective masses,
 - the r fitting range for

$$V_{\overline{bb}}(r) = -\frac{\alpha}{r} \exp\left(-\left(\frac{r}{d}\right)^p\right) + V_0.$$

- Right: isoline plots of the binding energy E for l=0.
- Bottom: histogram for the binding energy E for $qq=(ud-du)/\sqrt{2}$ and l=0.





$\overline{b}\overline{b}qq$ tetraquarks (3)

• To quantify "no binding", we list for each channel the factor, by which the reduced mass μ in the Schrödinger equation has to be multiplied, to obtain a tiny but negative energy E (again for l=0).

qq	spin	factor	
$(ud-du)/\sqrt{2}$	scalar	0.46	
uu , $(ud + du)/\sqrt{2}$, dd	vector	1.49	
$(s^{(1)}s^{(2)} - s^{(2)}s^{(1)})/\sqrt{2}$	scalar	1.20	
ss	vector	2.01	
$(c^{(1)}c^{(2)} - c^{(2)}c^{(1)})/\sqrt{2}$	scalar	2.57	

- Factors $\ll 1$ indicate strongly bound states, while for values $\gg 1$ bound states are excluded.
- Light quarks (u/d) are unphysically heavy (correspond to $m_{\pi} \approx 340 \, \text{MeV}$); physically light u/d quarks yield similar results.
- Mass splitting $m(B^*) m(B) \approx 50 \, \text{MeV}$, neglected at the moment, is expected to weaken binding (will be discussed below).

$\overline{b}\overline{b}qq$ tetraquarks (short version of ...)

ullet What are the quantum numbers of the predicted $b\bar{b}qq$ tetraquark?

$$-I(J^P) = 0(1^+).$$

- Will there still be a bound state, when heavy spin effects are taken into account?
 - Yes, binding energy $E=-59^{+38}_{-30}\,\mathrm{MeV}$ (without heavy spin effects $E=-90^{+43}_{-36}\,\mathrm{MeV}$).
 - Tetraquark is approximately a 50%/50% superposition of BB^* and B^*B^* .
- Tetraquark resonances can be studied in a similar way using standard methods from scattering theory.
 - There is a resonance for $qq = (ud du)/\sqrt{2}$ and l = 1.
 - Resonance mass $E=+17^{+4}_{-4}\,\mathrm{MeV}$ above the BB threshold.
 - Decay width $\Gamma_{\rightarrow B+B}=112^{+90}_{-103}\,\mathrm{MeV}.$
 - Quantum numbers $I(J^P) = 0(1^-)$.

Quantum numbers of the $\overline{b}\overline{b}qq$ tetraquark

What are the quantum numbers of the predicted $\bar{b}\bar{b}qq$ tetraquark?

- $I(J^P) = 0(1^+)$.
 - Light scalar isosinglet: $qq = (ud du)/\sqrt{2}$, I = 0, j = 0 in a color $\bar{3}$, $\bar{b}\bar{b}$ in a color $\bar{3}$ (antisymmetric) ... as discussed above.
 - Wave function of $\bar{b}\bar{b}$ must also be antisymmetric (Pauli principle).
 - * $\bar{b}\bar{b}$ is flavor symmetric.
 - * $\bar{b}\bar{b}$ spin must also be symmetric, i.e., $j_b=1$.
 - \rightarrow The predicted $\bar{b}\bar{b}qq$ tetraquark has isospin I=0, spin J=1.
 - We study a state, which correspond for large $\bar{b}\bar{b}$ separations to a pair of $B^{(*)}$ mesons in a spatially symmetric s-wave.
 - \rightarrow The predicted $\bar{b}\bar{b}qq$ tetraquark has parity P=+ (the product of the parity quantum numbers of the two mesons, which are both negative).

Inclusion of heavy spin effects

- Heavy spin effects have been neglected so far, e.g. mass splitting $m_{B^*} m_B \approx 46 \, \text{MeV}$.
- Mass splitting $m_{B^*} m_B$ is, however, of the same order of magnitude as the previously obtained binding energy $E = -90^{+43}_{-36} \, \text{MeV}$.
- Moreover, two competing effects:
 - The attractive $\bar{b}\bar{b}ud$ channel corresponds to a linear combination of BB^* and/or B^*B^* .
 - The BB^* interaction is a superposition of attractive and repulsive $\bar{b}\bar{b}ud$ potentials.
- Will there still be a bound state, when heavy spin effects are taken into account?
 - Yes.
 - We include heavy spin effects by solving a coupled channel Schrödinger equation.
 [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]]
 - Binding energy $E=-59^{+38}_{-30}\,\mathrm{MeV}.$
 - Tetraquark is approximately a 50%/50% superposition of BB^* and B^*B^* (strong attraction more important than light constituents).

$\overline{b}\overline{b}qq$ tetraquark resonances (1)

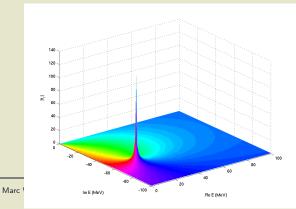
- Most hadrons are unstable, i.e., resonances.
- If a $\bar{b}\bar{b}qq$ potential $V_{\bar{b}\bar{b}}(r)$ is not sufficiently attractive to host a bound state, there could still be a clear resonance.
- Comparatively easy to investigate within our approach (since we have potentials $V_{b\bar{b}}(r)$, no Lüscher method etc. necessary).
- Use standard methods from scattering theory:
 - Solve Schrödinger equation with potential $V_{b\bar{b}}(r)$ and appropriate boundary conditions (incident plane wave, emergent spherical wave)
 - \rightarrow partial wave amplitudes $f_l(E)$.
 - Use partial wave amplitudes $f_l(E)$ to ...
 - st ... determine phase shifts and contributions of partial waves to total cross section
 - \rightarrow peak indicates resonance mass.
 - * ... determine poles of the S or the T matrix in the complex energy plane (correspond to poles of $f_l(E)$)
 - \rightarrow real part of a pole \equiv resonance mass
 - ightarrow imaginary part of a pole \equiv resonance width.

$\overline{b}\overline{b}qq$ tetraquark resonances (2)

- Exploratory study mostly for $qq=(ud-du)/\sqrt{2}$ (i.e., the scalar isosinglet potential) and orbital angular momentum l=1 of $\bar{b}\bar{b}$:
- There is a resonance for $qq = (ud du)/\sqrt{2}$ and l = 1:
 - Resonance mass $E = +17^{+4}_{-4} \,\text{MeV}$ above the BB threshold.
 - Decay width $\Gamma_{\to B+B} = 112^{+90}_{-103} \,\text{MeV}.$
 - Quantum numbers $I(J^P) = 0(1^-)$.

[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., Phys. Rev. D 96, 054510 (2017) [arXiv:1704.02383]]

• There do not seem to be resonances in other channels (l > 1, vector isotriplet potential, heavier quarks qq).

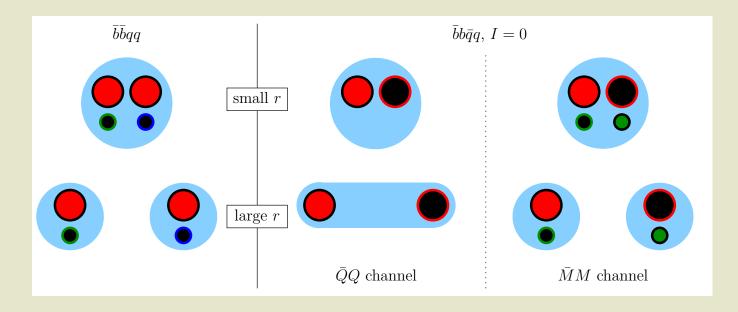


, 2019

Part 2: bottomonium, I = 0 (superposition of $\bar{b}b$ and $\bar{b}b\bar{q}q$)

Bottomonium, I=0: difference to $\bar{b}\bar{b}qq$

- Now bottomonium with I=0, i.e. $\bar{b}b$ and/or $\bar{b}b\bar{q}q$ (with $\bar{q}q=(\bar{u}u+\bar{d}d)/\sqrt{2}$). [P. Bicudo, M. Cardoso, N. Cardoso, M.W. [arXiv:1910.04827]].
- Technically more complicated than $\bar{b}\bar{b}qq$, because there are two channels:
 - Quarkonium channel, $\bar{Q}Q$ (with $Q \equiv b$).
 - Heavy-light meson-meson channel, $\bar{M}M$ (with $M=\bar{Q}q$).



Bottomonium, I=0: coupled channel SE

- Consider only the lightest decay channel to $\bar{B}^{(*)}B^{(*)}$, i.e. at the moment no decays to excited B mesons, e.g. to B_0^* and B_1^* .
- Symmetries and quantum numbers (heavy quark symmetry, S, L, P, C):
 - Spins of the heavy quarks \bar{Q} and Q irrelevant, can be ignored.
 - $ightarrow ar{Q}Q$ represented by a 1-component wave function $\psi_{ar{Q}Q}({f r}).$
 - $\bar{Q}Q$ (any orbital angular momentum L) can only decay to $\bar{M}M$ with light spin $S^{PC}_a=1^{--}$ and orbital angular momentum $L\pm 1.$
 - $ightarrow ar{M}M$ represented by a 3-component wave function $ec{\psi}_{ar{M}M}(\mathbf{r})$.
 - Wave function of the coupled channel Schrödinger equation has 4 components, $\psi(\mathbf{r}) = (\psi_{\bar{Q}Q}(\mathbf{r}), \psi_{\bar{M}M}(\mathbf{r}))$:

$$\left(-\frac{1}{2}\mu^{-1}\left(\partial_r^2 + \frac{2}{r}\partial_r - \frac{\mathbf{L}^2}{r^2}\right) + V(\mathbf{r}) + 2m_M - E\right)\psi(\mathbf{r}) = 0$$

with $\mu^{-1} = \text{diag}(\frac{1/\mu_Q}{\mu_Q}, 1/\mu_M, 1/\mu_M, 1/\mu_M)$ and

$$V(\mathbf{r}) = \begin{pmatrix} V_{\bar{Q}Q}(r) & V_{\min}(r)(1 \otimes \mathbf{e}_r) \\ V_{\min}(r)(\mathbf{e}_r \otimes 1) & V_{\bar{M}M,\parallel}(r)(\mathbf{e}_r \otimes \mathbf{e}_r) + V_{\bar{M}M,\perp}(r)(1 - \mathbf{e}_r \otimes \mathbf{e}_r) \end{pmatrix}.$$

Bottomonium, I=0: potentials (1)

• Use lattice QCD to compute the 4×4 potential matrix

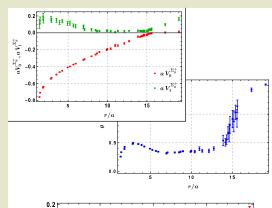
$$V(\mathbf{r}) = \begin{pmatrix} V_{\bar{Q}Q}(r) & V_{\text{mix}}(r)(1 \otimes \mathbf{e}_r) \\ V_{\text{mix}}(r)(\mathbf{e}_r \otimes 1) & V_{\bar{M}M,\parallel}(r)(\mathbf{e}_r \otimes \mathbf{e}_r) + V_{\bar{M}M,\perp}(r)(1 - \mathbf{e}_r \otimes \mathbf{e}_r) \end{pmatrix}.$$

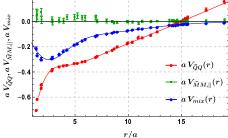
- ullet $V_{ar{Q}Q}(r)$, $V_{ar{M}M,\parallel}(r)$ (spin 1 of $ar{M}M$ parallel to ${f r}$), $V_{
 m mix}(r)$:
 - Lattice computation of string breaking with optimized $\bar{Q}Q$ and $\bar{M}M$ operators:
 - $o V_0^{\Sigma_g^+}(r)$ (ground state), $V_1^{\Sigma_g^+}(r)$ (first excitation), heta(r) (mixing angle).

$$\begin{split} & V_{\bar{Q}Q}(r) &= \cos^2(\theta(r)) V_0^{\Sigma_g^+}(r) + \sin^2(\theta(r)) V_1^{\Sigma_g^+}(r) \\ & V_{\bar{M}M,\parallel}(r) &= \sin^2(\theta(r)) V_0^{\Sigma_g^+}(r) + \cos^2(\theta(r)) V_1^{\Sigma_g^+}(r) \\ & V_{\rm mix}(r) &= \cos(\theta(r)) \sin(\theta(r)) \Big(V_0^{\Sigma_g^+}(r) - V_1^{\Sigma_g^+}(r) \Big). \end{split}$$

- We use existing results from:

[G. S. Bali et al. [SESAM Collaboration], Phys. Rev. D 71, 114513 (2005) [hep-lat/0505012]]





Bottomonium, I=0: potentials (2)

• Use lattice QCD to compute the 4×4 potential matrix

$$V(\mathbf{r}) = \begin{pmatrix} V_{\bar{Q}Q}(r) & V_{\min}(r)(1 \otimes \mathbf{e}_r) \\ V_{\min}(r)(\mathbf{e}_r \otimes 1) & V_{\bar{M}M,\parallel}(r)(\mathbf{e}_r \otimes \mathbf{e}_r) + V_{\bar{M}M,\perp}(r)(1 - \mathbf{e}_r \otimes \mathbf{e}_r) \end{pmatrix}.$$

- $V_{\bar{M}M,\perp}(r)$:
 - Simpler lattice computation with an optimized $\bar{M}M$ operator (no mixing with $\bar{Q}Q$).

Bottomonium, I=0: partial waves

- Ordinary Schrödinger equation (1 channel, no spin), V(r): PDE can be simplified to ODE for radial coordinate r and definite L (scattering: partial wave decomposition).
- Similar here, but technically more complicated (4 components, L and S).
- Specialize coupled channel Schrödinger equation to $\widetilde{J}^{PC}=0^{++}$, which is orbital angular momentum L^{PC} for $\bar{Q}Q$ ($\to S$ wave bottomonium) total light angular momentum for $\bar{M}M$:

$$\left(-\frac{1}{2}\begin{pmatrix} 1/\mu_{Q} & 0\\ 0 & 1/\mu_{M} \end{pmatrix} \partial_{r}^{2} + \frac{1}{2r^{2}}\begin{pmatrix} 0 & 0\\ 0 & 2/\mu_{M} \end{pmatrix} + V_{0}(r) + 2m_{M} - E\right)\begin{pmatrix} u(r)\\ \chi(r) \end{pmatrix} =$$

$$= -\begin{pmatrix} V_{\text{mix}}(r)\\ V_{\bar{M}M,\parallel}(r) \end{pmatrix} kr j_{1}(kr)$$

$$V_{0}(r) = \begin{pmatrix} V_{\bar{Q}Q}(r) & V_{\text{mix}}(r)\\ V_{\text{mix}}(r) & V_{\bar{M}M,\parallel}(r) \end{pmatrix},$$
(1)

i.e. 2 coupled ODEs (before 4 coupled PDEs).

- -u(r) and $\chi(r)$ are radial wave functions.
- Right hand side $\propto j_1(kr)$ from boundary conditions for scattering (plane incident wave and radial emergent wave).

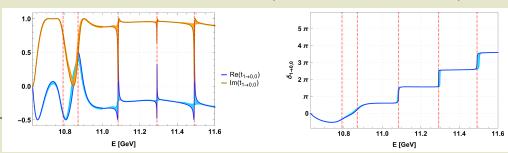
Bottomonium, I=0: bound states

- Solve coupled channel Schrödinger equation (1) for bound states with boundary conditions
 - -u(r)=0 for $r\to\infty$ (radial wave function for the $\bar{Q}Q$ channel),
 - $-\chi(r)=0$ for $r\to\infty$ (radial wave function for the $\bar{M}M$ channel).
- Four bound states, correspond to experimentally observed $\eta_b(1S) \equiv \Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, $\Upsilon(4S)$.
- Agreement up to expected precision: static limit, i.e. neglect of the spin of $\bar{b}b$, suggests a systematic error of order $m_{\Upsilon(1S)} m_{\eta_b(1S)} \approx 60 \, \text{MeV}$.

	from poles of $t_{1 o 0.0}$			from experiment		
n	$m = \operatorname{Re}(E) [GeV]$	$\operatorname{Im}(E)$ [MeV]	$\Gamma \; [{\rm MeV}]$	name	$m \; [GeV]$	$\Gamma \; [{\sf MeV}]$
1	9.478^{+3}_{-13}	0	-	$\eta_b(1S)$	9.399(2)	10(5)
				$\Upsilon_b(1S)$	9.460(0)	≈ 0
2	9.970^{+0}_{-8}	0	_	$\Upsilon_b(2S)$	10.023(0)	≈ 0
3	10.304^{+0}_{-6}	0	-	$\Upsilon_b(3S)$	10.355(1)	≈ 0
4	10.578_{-5}^{+0}	0	-	$\Upsilon_b(4S)$	10.579(1)	21(3)

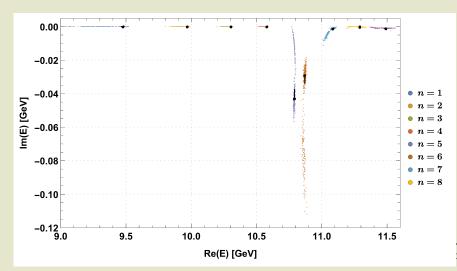
Bottomonium, I = 0: resonances (1)

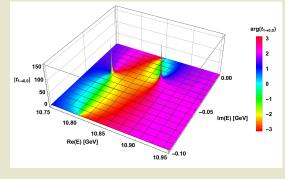
- Solve coupled channel Schrödinger equation (1) for resonances with boundary conditions
 - -u(r)=0 for $r\to\infty$ (radial wave function for the $\bar{Q}Q$ channel),
 - $-\chi(r)=it_{1\to0,0}krh_1^{(1)}(kr)$ for $r\to\infty$ (radial wave function for the emergent wave in the $\bar{M}M$ channel).
 - * For a given value of E the boundary condition is fulfilled for a specific corresponding value of $t_{1\to0.0}$, i.e. $t_{1\to0.0}$ is a function of E.
 - * Partial wave scattering amplitude: $t_{1\rightarrow0,0}kr$.
 - * Eigenvalue of the T matrix: $t_{1\rightarrow0,0}$.
 - * Partial wave scattering phase: $e^{2i\delta_{1}\to0,0}=1+2it_{1\to0,0}$.
- $t_{1\to 0,0}$ and $\delta_{1\to 0,0}$ for real energies E:
 - $-E \lesssim 11 \text{ GeV}$: clear indentification of resonances not possible.
 - $-E \gtrsim 11$ GeV: resonances not trustworthy (excited B mesons neglected).



Bottomonium, I = 0: resonances (2)

- Find poles of $t_{1\to0,0}$ in the complex energy plane to identify resonances clearly.
 - Resonance mass: m = Re(E).
 - Width: $\Gamma = -2\operatorname{Im}(E)$.
 - Four bound states on the real axis (n = 1, 2, 3, 4), previous results confirmed.
 - Two resonances, which can decay only to $\bar{B}^{(*)}B^{(*)}$, widths comparable to experimental widths (n=5,6).
 - Higher resonances not trustworthy, because excited B mesons neglected $(n \ge 7)$.





D", October 25, 2019

Bottomonium, I = 0: resonances (3)

- Resonance with n=6 rather close to experimentally observed $\Upsilon(10860)$.
 - \rightarrow Indication that $\Upsilon(10860)$ should be interpreted as $\Upsilon(5S)$.
- No resonance close to experimentally observed $\Upsilon(11020)$.
 - \rightarrow Indication that $\Upsilon(11020)$ is not an S wave resonance.
- New resonance close to the $\bar{B}^{(*)}B^{(*)}$ threshold predicted (n=5) with fully dynamical origin (disappears, when reducing the mixing between the $\bar{Q}Q$ and the $\bar{M}M$ channel).

	from poles of $t_{1 ightarrow 0,0}$			from experiment		
n	$m = \operatorname{Re}(E) [GeV]$		$\Gamma \; [\text{MeV}]$	name	$m \; [GeV]$	$\Gamma \; [\text{MeV}]$
1	9.478^{+3}_{-13}	0	_	$\eta_b(1S)$	9.399(2)	10(5)
				$\Upsilon_b(1S)$	9.460(0)	≈ 0
2	$\begin{array}{c} 9.970^{+0}_{-8} \\ 10.304^{+0}_{-6} \end{array}$	0	-	$\Upsilon_b(2S)$	10.023(0)	≈ 0
3	10.304_{-6}^{+0}	0	_	$\Upsilon_b(3S)$	10.355(1)	≈ 0
4	10.578_{-5}^{+0}	0	-	$\Upsilon_b(4S)$	10.579(1)	21(3)
5	10.790^{+2}_{-1}	$-42.9^{+5.3}_{-0.0}$	$85.9^{+10.6}_{-0.0}$			
6	10.870^{+1}_{-4}	$-42.9_{-0.0}^{+5.3} \\ -29.0_{-4.8}^{+0.0}$	$85.9_{-0.0}^{+10.6} \\ 58.0_{-0.0}^{+9.7}$	$\Upsilon(10860)$	10.890(3)	51(7)
7	11.084_{-4}^{+0}	$-1.3^{+0.0}_{-0.2}$	$2.5^{+0.0}_{-0.4}$	$\Upsilon(11020)$	10.993(1)	49(15)
8	11.292_{-6}^{-4}	$-0.3^{+0.0}_{-0.0}$	$0.5^{+0.1}_{-0.0}$			
9	11.491_{-8}^{+0}	$-1.1^{+0.0}_{-0.0}$	$0.5_{-0.0}^{+0.1} \\ 2.3_{-0.0}^{+0.1}$			

Bottomonium, I=0: outlook

- Work on bottomonium resonances with I=0 just a first step.
- ullet To get a complete and more precise picture of bottomonium resonances with I=0 ...
 - ... study also orbital angular momentum $L=1,2,\ldots$ for $\bar{Q}Q$... (at the moment only L=0, then e.g. investigation of possibly existing X_b [counterpart of $X_c(3872)$])
 - ... include decays to excited B mesons, e.g. to $\bar{B}^{(*)}B_{0,1}^*$... (at the moment resonances only trustworthy up to $\approx 11.0\,\mathrm{MeV}$, then up to $\approx 11.5\,\mathrm{MeV}$)
 - ... precise lattice QCD computation of all required static potentials with u and d quark mass closer to the physical value and at smaller lattice spacing ...
 - ... include $1/m_b$ corrections.