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Introduction (1)

Long-term goal (for many researchers in our field): Compute the phase diagram of QCD.
Extremely difficult ...
... e.g. “sign problem” in lattice QCD for chemical potential µ 6= 0, computations
very challenging/impossible.

QCD-inspired models in the Nf →∞ limit:
QCD-inspired = symmetries similar as in QCD, e.g. chiral symmetry

Nf →∞ limit = infinite number of flavors

Inhomogeneous phases at large µ and small temperature T .
inhomogeneous phase = phase with a spatially non-constant order parameter

Analytical results for the Gross-Neveu (GN) model in 1+1 dimensions.
[O. Schnetz, M. Thies and K. Urlichs, Annals Phys. 314, 425 (2004) [hep-th/0402014]]

Are there inhomogeneous phases in QCD?
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Introduction (2)

Project “Inhomogeneous phases at high density” of the CRC-TR 211
“Strong-interaction matter under extreme conditions” (universities of
Bielefeld, Darmstadt, Frankfurt):

Goals:

Study the phase diagrams of various QCD-inspired models (GN, chiral GN,
Nambu-Jona-Lasinio (NJL), quark-meson model) with particular focus on
inhomogeneous phases.
Are there inhomogeneous phases in 2+1 or 3+1 dimensions?
Are there inhomogeneous phases with 2- or 3-dimensional modulations?
Determine the spatial modulation of the condensates (= order parameters)
without using specific ansätze (e.g. no restriction to a chiral density wave).
Phase structure not only with respect to µ and T but also isospin and
strangeness chemical potential µI , µS .
Are there inhomogeneous phases at finite Nf ?

Methods:

Lattice field theory.
* Lattice field theory computations in the Nf →∞ limit (this talk).
* Lattice field theory simulations at finite Nf (this talk).
Functional Renormalization Group (not part of this talk ... M. Buballa, D.
Rischke, ...).
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Outline

1 Part 1: 2+1 dimensions, Nf →∞
GN model in 2+1 dimensions
Technical aspects

Discrete symmetry σ → −σ and fermion representation
Fermion discretization
Efficient computation of det(Q) and minimization of Seff/N
Inhomogeneous phases and finite volume

Numerical results

2 Part 2: 1+1 dimensions, finite Nf

GN model in 1+1 dimensions
Ensembles
Numerical results
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Part 1:
2+1 dimensions, Nf →∞
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GN model in 2+1 dimensions, Nf →∞ (1)

At the moment we study the GN model 2+1 dimensions.

Do inhomogeneous phases exist in 2+1 dimensions?
Is the phase diagram in 2+1 dimensions similar to the analytically known phase
diagram in 1+1 dimensions?
Are there inhomogeneous phases with 2-dimensional modulations?

[M. Winstel, J. Stoll, M. Wagner, arXiv:1909.00064]

Action:

S =

∫
d3x

( Nf∑
j=1

ψ̄j

(
γν∂ν + γ0µ

)
ψj −

g2

2

( Nf∑
j=1

ψ̄jψj

)2)
.

After introducing a scalar field σ and performing the integration over fermionic fields

Seff = Nf

(
1

2λ

∫
d3x σ2 − ln

(
det(γν∂ν + γ0µ+ σ︸ ︷︷ ︸

=Q

)
))

Z =

∫
Dσ e−Seff ,

where λ = Nf g
2.

One can show σ ∝ 〈
∑Nf

j=1 ψ̄jψj 〉.
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GN model in 2+1 dimensions, Nf →∞ (2)

Nf →∞:

Only “a single field configuration” important in
∫
Dσ e−Seff (global minimum of

Seff/N).
Assume t-independence of this field configuration, i.e. σ = σ(x , y).

For numerical treatment the degrees of freedom have to be reduced to a finite number.

→ Finite volume and discretization needed.

For example lattice field theory.
There are other possibilities to discretize, e.g. finite mode discretization,
discretization by piecewise polynomial functions, etc.
[M. Wagner, Phys. Rev. D 76, 076002 (2007) [arXiv:0704.3023]]

[A. Heinz, F. Giacosa, M. Wagner, D. H. Rischke, Phys. Rev. D 93, 014007 (2016) [arXiv:1508.06057]]

Technical aspects:

Discrete symmetry σ → −σ and fermion representation: 2-component irreducible
versus 4-component reducible representation?
Fermion discretization: Fermion doubling problem? Explicit breaking of chiral
symmetry? Unphysical zero modes?
Efficient computation of det(Q) and minimization of Seff/N: After discretization, Q
is a large matrix.
Inhomogeneous phases and finite volume: Not just exponentially small corrections
(size of the inhomogeneous structures versus size of the volume).
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Discrete symmetry σ → −σ and fermion representation

One can show Seff[+σ] = Seff[−σ] (i.e. Seff has a discrete symmetry).

σ ∝ 〈
∑Nf

j=1 ψ̄jψj 〉.
1+1 dimensions:

A possible irreducible 2× 2 representation for the γ matrices is

γ0 = σ1 , γ1 = σ2.

σ 6= 0 would indicate spontaneous breaking of the symmetry ψj → σ3ψj .
Since σ3 anticommutes with γ0 and γ1, it is appropriate to define γ5 = σ3 and to
interpret the symmetry as discrete chiral symmetry.

2+1 dimensions:

A possible irreducible 2× 2 representation for the γ matrices is

γ0 = σ1 , γ1 = σ2 , γ2 = σ3.

It is impossible to find a corresponding appropriate γ5 matrix, i.e. a matrix, which
anticommutes with γ0, γ1 and γ2.
Consequently, a non-vanishing σ cannot be interpreted as a signal for chiral
symmetry breaking.
A possibility to retain the interpretation of σ as chiral order parameter is to use a
reducible 4× 4 representation.
One can show that the phase diagrams for the irreducible 2× 2 representation and
the reducible 4× 4 representation are identical.
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Fermion discretization (1)

Various discretizations tested.

Expansion in a set of basis functions, e.g. plane waves,

ψ(x , t) →
∑

mt ,mx

cmt ,mx e
i(pmt t+pmx x) , σ(x) →

∑
mx

dmx e
ipmx x

with pmt = 2π(mt − 1/2)/Lt , pmx = 2πmx/Lx , dmx = (d−mx )∗.

[M. Wagner, Phys. Rev. D 76, 076002 (2007) [arXiv:0704.3023]]

(−) Requires det(Q) = det(Q†), not the case e.g. for µI 6= 0 or µs 6= 0.

det(Q)→ det(〈fn|Q|fn′ 〉), where fn are basis functions, e.g.
fmt ,mx = e i(pmt t+pmx x).
Problem: span{fn} 6= span{Qfn}, which causes artificially small eigenvalues or
zero modes in 〈fn|Q|fn′ 〉 not present in Q.
→ Wrong and weird results.
Increasing the number of basis functions does not cure the problem.
Solution: ln(det(Q))→ (1/2) ln(det(Q†Q)) (requires det(Q) = det(Q†)).

(−) Number of spatial modes in ψ(x , t) should be larger than number of modes in σ(x).

Q depends on σ(x); basis functions representing ψ(x , t) must be able to
resolve more detail for an accurate approximation of det(Q).

(+) No fermion doubling.
(+) Resulting condensates σ(x) are continuous functions.

(When using lattice field theory, σ(x) is represented by a set of points σx .)
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Fermion discretization (2)

Lattice discretization:

Naively discretized fermions.

ψ(x , t) → ψx,t , ∂xψ(x , t) →
ψx+a,t − ψx−a,t

2a
, ...

(x , t = 0, a, 2a, . . .; a: lattice spacing).

(−) Fermion doubling.

Naively discretized with non-symmetric derivatives.

(−) No fermion doubling, but other severe problems.

Staggered fermions.

[P. de Forcrand and U. Wenger, PoS LATTICE 2006, 152 (2006) [hep-lat/0610117]]

(−) Fermion doubling still present.

...

Most promising seems to be a combination of two approaches:

Plane wave expansion in t direction.

(+) Easy analytical simplifications possible, e.g. det(Q) factorizes.

Naive lattice discretization in x direction.

(+) Fermion doubling not a problem in the large-N limit (“2×∞ =∞”).

ψ(x , t) → ψx (t) =
∑
m

ψx,me
ipmt , σ(x) → σx .
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Efficient computation of det(Q) and ...

Q = γν∂ν + γ0µ+ σ is a large matrix, e.g. O(105)×O(105) entries.

Efficient computation of det(Q) and minimization of

Seff

Nf
=

(
1

2λ

∫
d2x σ2 − ln

(
det(Q)

))
need

preparatory analytical simplifications, e.g. to factorize det(Q),
efficient algorithms and codes.

Work in progress.

Details are rather technical, beyond the scope of this presentation.
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Inhomogeneous phases and finite volume (1)

Periodic modulation of the inhomogeneous condensate, wave length λ depends on (µ,T )
(left figure [for 1+1 dimensions]).

Extent of the finite volume L typically fixed.

If L is a multiple of λ, i.e. L ≈ nλ, n ∈ N+

no particular problems with the finite volume, correct results.

If L ≈ (n − 1/2)λ, n ∈ N+

modulation of the inhomogeneous condensate does not fit into the finite volume,
severely distorted results (see right figure, oscillating dashed line).

right figure [for 1+1 dimensions] from [P. de Forcrand and U. Wenger, PoS LATTICE 2006, 152 (2006) [hep-lat/0610117]]
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Inhomogeneous phases and finite volume (2)

Infinite volume phase boundaries can be extracted from finite volume results.

Phase boundary between inhomogeneous phase and restored phase:
Characterized by the appearance/disappearance of negative eigenvalues of the
Hessian matrix

Hxy =
∂

∂σx

∂

∂σy
Seff

∣∣∣∣
σ=0

.

Lowest eigenvalue of H as a function of µ oscillates in a finite volume (red curve in

left figure):
Minima: L ≈ nλ, n ∈ N+, essentially identical to the infinite volume result.
Maxima: L ≈ (n − 1/2)λ, n ∈ N+, significantly different from the infinite
volume result.

Fitting a smooth curve (e.g. a 2nd order polynomial) from below (green curve in
left figure [for 1+1 dimensions]) approximates the infinite volume result.
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Numerical results, 1+1-dimensional GN model (1)

Phase diagram with restriction to homogeneous condensate σ.
(A Test of our method and implementation.)
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Numerical results, 1+1-dimensional GN model (2)

Seff(σ) for homogeneous condensate σ.

Left: far inside the broken phase (µ/σ0 = 0.20, T = Tc/3).
Center: in the broken phase close to the 1st order phase boundary (µ/σ0 = 0.65,
T = Tc/3).
Right: in the symmetric phase (µ/σ0 = 1.20, T = Tc/3).
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Numerical results, 2+1-dimensional GN model (1)

Phase diagram:

Black dots: restriction to homogeneous condensate σ = const (in agreement with
available analytical results).
[K. Urlichs, PhD thsis, University of Erlangen-Nuremberg (2007)]

Red dots: restriction to 1-dimensional modulations, σ = σ(x).

Phase boundary via eigenvalues of the Hessian matrix (“stability analysis”).
At finite volume, i.e. no extrapolation to infinite volume.
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Numerical results, 2+1-dimensional GN model (2)

Phase diagram:

Black dots: restriction to homogeneous condensate σ = const.

Red dots: restriction to 1-dimensional modulations, σ = σ(x).

Phase boundary via eigenvalues of the Hessian matrix (“stability analysis”).
At finite volume, i.e. no extrapolation to infinite volume.

Blue dots: restriction to 1-dimensional modulations, σ = σ(x).

Phase boundary via eigenvalues of the Hessian matrix (“stability analysis”).
Extrapolated to infinite volume (see right figure; smallest eigenvalue of the
Hessian matrix as a function of µ at fixed T ).
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Numerical results, 2+1-dimensional GN model (3)

Directions of instability for the condensate in the inhomogeneous phase at

(µ/σ0,T/σ0) = (1.025, 0.055) (left figure)
(µ/σ0,T/σ0) = (1.166, 0.055) (right figure)

(restriction to 1-dimensional modulations, σ = σ(x)).

For increasing µ the wavelength decreases (as for the 1+1-dimensional GN model).
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Numerical results, 2+1-dimensional GN model (4)

Comparison of the phase diagram of the 1+1-dimensional (left figure) and the

2+1-dimensional (right figure) GN model.
Inhomogeneous phase in 2+1 dimensions smaller than for 1+1 dimensions.
Could become larger, when allowing 2-dimensional modulations, σ = σ(x , y) ...?
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Next steps

Explore lattice spacing dependence in detail.
(Results were obtained at a single lattice spacing. Recent results from a Ginzburg-Landau
stability analysis with a Pauli-Villars regularization as well as crude lattice results indicate
a strong cutoff dependence ... the inhomogeneous phase might even disappear in the
continuum limit.)

Are there inhomogeneous phases with 2-dimensional modulations?

Extend studies to 3+1 dimensions.

Study the phase diagram of more realistic QCD-inspired models (chiral GN,
Nambu-Jona-Lasinio (NJL), quark-meson model, ...) with particular focus on
inhomogeneous phases.
→ Phase structure not only with respect to µ and T but also isospin and strangeness

chemical potential µI , µS ...?
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Part 2:
1+1 dimensions, finite Nf
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GN model in 1+1 dimensions, finite Nf (1)

At the moment we study the GN model 1+1 dimensions.

Do inhomogeneous phases exist in 1+1 dimensions at finite Nf ?
Is the phase diagram similar to the analytically known phase diagram for Nf →∞?

[L. Pannullo, J. Lenz, M. Wagner, B. Wellegehausen and A. Wipf, arXiv:1902.11066]

[L. Pannullo, J. Lenz, M. Wagner, B. Wellegehausen and A. Wipf, arXiv:1909.11513]

Action:

S =

∫
d2x

( Nf∑
j=1

ψ̄j

(
γν∂ν + γ0µ

)
ψj −

g2

2

( Nf∑
j=1

ψ̄jψj

)2)
.

After introducing a scalar field σ (= condensate) and performing the integration over
fermionic fields

Seff = Nf

(
1

2λ

∫
d2x σ2 − ln

(
det(γν∂ν + γ0µ+ σ︸ ︷︷ ︸

=Q

)
))

Z =

∫
Dσ e−Seff ,

where λ = Nf g
2.

One can show 〈σ〉 ∝ 〈
∑Nf

j=1 ψ̄jψj 〉, i.e. 〈σ〉 is proportional to the chiral condensate.
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GN model in 1+1 dimensions, finite Nf (2)

Simulations with two different fermion discretizations, which do not break chiral

symmetry:

Naive fermions:

∂naiveµ (x , y) =
δx+eµ,y − δx−eµ,y

2a
.

Nf is a multiple of 8 (because of HMC algorithm and fermion doubling).

SLAC fermions:

∂SLAC
µ (x , y) =

(
1− δx,y

) π

Nµ

(−1)xµ−yµ

sin((xµ − yµ)π/Nµ)

→ F
(
∂SLAC
µ ψ

)
(p) = ipµF

(
ψ
)

(p).

Nf is a multiple of 2 (because of HMC algorithm; no fermion doubling).
Non-local, rarely used, ...
[S. D. Drell, M. Weinstein and S. Yankielowicz, Phys. Rev. D 14, 487 (1976)]

→ Important cross-check of numerical results (for Nf = 8).
→ Allows to study also a small number of fermion flavors, Nf = 2.

Marc Wagner Lattice investigation of inhomogeneous phases in the Gross-Neveu modelNovember 28, 2019 23 / 31



Ensembles

Simulation of a large number of ensembles:

Nf Nt = 1/Ta Ns = L/a λnaive aσ0 λSLAC aσ0

2
4, 6, . . . , 24, 28, 32,

40, . . . , 64 64 — — 1.022 0.4100(5)

8
4, 6, . . . , 24, 28, 32,

40, . . . , 64, 80
32, 64, 128

3.91 0.4096(3) 5.20 0.4100(5)
4.84 0.2527(3) 6.20 0.2495(5)
5.28 0.2015(3) 6.85 0.195(5)

16
4, 6, . . . , 24, 28, 32,

40, . . . , 64 64 — — 10.7 0.4100(5)

Scale setting via
σ0 = lim

L→∞

〈
|σ|
〉∣∣∣
µ=0,T=0

(
σ =

1

NtNs

∑
t,x

σ(x , t)

)
.

(“the condensate at µ = 0 and T = 0 deep inside the homogeneously broken phase”).

0.1 0.2 0.3 0.4 0.5 0.6
Temperature T/ 0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ho
m

og
en

eo
us

 C
on

de
ns

at
e 

= 5.2, Ns = 64
= 5.2, Ns = 128
= 6.3, Ns = 64
= 6.3, Ns = 128

Marc Wagner Lattice investigation of inhomogeneous phases in the Gross-Neveu modelNovember 28, 2019 24 / 31



〈σ2〉, homogeneously broken phase (Nf = 8)

〈σ2〉 can distinguish a homogeneously broken phase from a symmetric phase and an
inhomogeneous phase.

Homogeneously broken phase at Nf = 8 (blue region) has similar shape as for Nf →∞
(indicated by the red line), but is smaller (plot for naive fermions).
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Correlation function C (x) (Nf = 8) (1)

〈σ(t, x)〉 might not be suited to detect an inhomogeneous phase (“inhomogeneous field
configurations” could be spatially shifted relative to each other).

Use spatial correlation function

C(x) =
1

NtNs

∑
t,y

〈
σ(t, y + x)σ(t, y)

〉
,

to detect a possibly existing inhomogeneous phase.

Expectation:

Symmetric phase: C(x) ∼ 0.
Homogeneously broken phase: C(x) ∼ σ2

0 .
Inhomogeneous phase: C(x) is an oscillating function (similar to a kink-antikink or
a cosinus).

Marc Wagner Lattice investigation of inhomogeneous phases in the Gross-Neveu modelNovember 28, 2019 26 / 31



Correlation function C (x) (Nf = 8) (2)

symmetric phase (large T )

(µ/σ0,T/σ0) ≈ (0.0, 0.610)

0 2 4 6 8 10 12
Spatial Coordinate

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
rre

la
to

r

0 0.41, 0.0, Nx = 64, Nt = 4
Naive
SLAC

Spatial correlation function

C(x) =
1

NtNs

∑
t,y

〈
σ(t, y + x)σ(t, y)

〉
.

Wavelength in the inhomogeneous phase decreases for
increasing µ (as for Nf →∞).

Agreement of naive and SLAC fermions.

hom. broken phase (small T , small µ)

(µ/σ0,T/σ0) ≈ (0.1, 0.038)
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Correlation function C (x), phase diagram (Nf = 8)

Phase diagram via

min
x

C(x)

 ≈ 0 inside a symmetric phase
� 0 inside a homogeneously broken phase
� 0 inside an inhomogeneous phase

(plot for naive fermions).

Similar to the Nf →∞ phase diagram.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T
/σ

0

µ/σ0

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

C
m

in
/σ

0

2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

Hom. broken phase
σ = const. ≠ 0

Restored phase
σ = 0

Inhom. phase
σ = σ(x)

 T
/σ

0

 µ/σ0

Marc Wagner Lattice investigation of inhomogeneous phases in the Gross-Neveu modelNovember 28, 2019 28 / 31



“Continuum and infinite volume limit” (Nf = 8)

Increasing spatial volume (at fixed lattice spacing): top to bottom. ↓
Decreasing lattice spacing (at constant spatial volume): top left to bottom right.↘
Phase diagram stable under variations of the lattice spacing and the spatial volume
(plots for naive fermions).
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Aligned condensate Σ(x) (Nf = 8)

Aligned condensate: field configurations are matched by spatial translations x → x −∆x ,
before the ensemble average is computed,

Σ(x) =
1

Nt

Nt∑
t=0

〈
σ(t, x −∆x)

〉
.

Suited to visualize both homogeneous and inhomogeneous condensates (plots for SLAC
fermions, T/σ0 = 0.031).
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Nf dependence

Phase diagram for Nf = 2 (SLAC
fermions).
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