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Introduction (1)

@ Long-term goal (for many researchers in our field): Compute the phase diagram of QCD.
o Extremely difficult ...
o ... e.g. “sign problem” in lattice QCD for chemical potential p # 0, computations
very challenging/impossible.
@ QCD-inspired models in the Ny — oo limit:

QCD-inspired = symmetries similar as in QCD, e.g. chiral symmetry
Nf — oo limit = infinite number of flavors

o Inhomogeneous phases at large 1 and small temperature T.
inhomogeneous phase = phase with a spatially non-constant order parameter
o Analytical results for the Gross-Neveu (GN) model in 1+1 dimensions.
[O. Schnetz, M. Thies and K. Urlichs, Annals Phys. 314, 425 (2004) [hep-th/0402014]]
@ Are there inhomogeneous phases in QCD?
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Introduction (2)

@ Project “Inhomogeneous phases at high density” of the CRC-TR 211
“Strong-interaction matter under extreme conditions” (universities of CRC-TR2n

Strong-interaction matter

Bielefeld, Darmstadt, Frankfurt): under extreme conditions

o Goals:

o Study the phase diagrams of various QCD-inspired models (GN, chiral GN,
Nambu-Jona-Lasinio (NJL), quark-meson model) with particular focus on
inhomogeneous phases.

@ Are there inhomogeneous phases in 2+1 or 341 dimensions?

Are there inhomogeneous phases with 2- or 3-dimensional modulations?

o Determine the spatial modulation of the condensates (= order parameters)
without using specific ansitze (e.g. no restriction to a chiral density wave).

o Phase structure not only with respect to u and T but also isospin and
strangeness chemical potential py, ps.

@ Are there inhomogeneous phases at finite N¢?

o Methods:
@ Lattice field theory.
* Lattice field theory computations in the Ny — oo limit (this talk).
* Lattice field theory simulations at finite N¢ (this talk).
o Functional Renormalization Group (not part of this talk ... M. Buballa, D.
Rischke, ...).

©
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Outline

o

o GN model in 2+1 dimensions

o Technical aspects
@ Discrete symmetry 0 — —o and fermion representation
@ Fermion discretization
o Efficient computation of det(Q) and minimization of Ser/N
@ Inhomogeneous phases and finite volume

o Numerical results

Q

o GN model in 141 dimensions

o Ensembles

o Numerical results
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Part 1:
241 dimensions, N — oo
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At the moment we study the GN model 241 dimensions.

@ Do inhomogeneous phases exist in 2+1 dimensions?
@ Is the phase diagram in 2+1 dimensions similar to the analytically known phase
diagram in 1+1 dimensions?
@ Are there inhomogeneous phases with 2-dimensional modulations?
[M. Winstel, J. Stoll, M. Wagner, arXiv:1909.00064]

Action:

Ne g2 Ne 2
s =[x (T o(won o) - £ (i) ).
j=1 j=1
After introducing a scalar field o and performing the integration over fermionic fields

1
St = Nf (ﬁ /d3x o? —1In (det('yuau + Yo + cr)))
-Q
zZ = /Da e_se“,
where A\ = N¢g?2.
One can show o oc (XN &;4).

J
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GN model in 2+1 dimensions, Nf — oo (2)

Q@ Nf — oc:
@ Only “a single field configuration” important in [ Do e et (global minimum of
Ser/ N).

o Assume t-independence of this field configuration, i.e. o = o(x,y).
@ For numerical treatment the degrees of freedom have to be reduced to a finite number.
— Finite volume and discretization needed.
o For example lattice field theory.
o There are other possibilities to discretize, e.g. finite mode discretization,

discretization by piecewise polynomial functions, etc.

[M. Wagner, Phys. Rev. D 76, 076002 (2007) [arXiv:0704.3023]]
[A. Heinz, F. Giacosa, M. Wagner, D. H. Rischke, Phys. Rev. D 93, 014007 (2016) [arXiv:1508.06057]]

@ Technical aspects:

o Discrete symmetry ¢ — —o and fermion representation: 2-component irreducible
versus 4-component reducible representation?

o Fermion discretization: Fermion doubling problem? Explicit breaking of chiral
symmetry? Unphysical zero modes?

o Efficient computation of det(Q) and minimization of Se/N: After discretization, Q
is a large matrix.

o Inhomogeneous phases and finite volume: Not just exponentially small corrections
(size of the inhomogeneous structures versus size of the volume).
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Discrete symmetry ¢ — —o and fermion representation

@ One can show Seg[+0] = Sef[—0] (i-e. Sefr has a discrete symmetry).
N -
o o (SN Ty
141 dimensions:
o A possible irreducible 2 x 2 representation for the v matrices is

© ©

Y =01 , 71 =02

@ o # 0 would indicate spontaneous breaking of the symmetry 1; — o31);.
o Since o3 anticommutes with vy and 71, it is appropriate to define 45 = o3 and to
interpret the symmetry as discrete chiral symmetry.

@ 241 dimensions:
o A possible irreducible 2 x 2 representation for the v matrices is

Y =01 , Y1=02 , 72 =03.

o It is impossible to find a corresponding appropriate 5 matrix, i.e. a matrix, which
anticommutes with vp, 1 and 7.

o Consequently, a non-vanishing o cannot be interpreted as a signal for chiral
symmetry breaking.

o A possibility to retain the interpretation of o as chiral order parameter is to use a
reducible 4 x 4 representation.

o One can show that the phase diagrams for the irreducible 2 x 2 representation and
the reducible 4 X 4 representation are identical.
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Fermion discretization (1)

@ Various discretizations tested.

@ Expansion in a set of basis functions, e.g. plane waves,

P(x, t) — Z Cmy,my ! (Pmy t+Pmy x) , o(x) — Z dmxeipmxx
me,mx my

with pm, = 2w(me — 1/2)/Lt, pm, = 2wmx/Lx, dm, = (d—m,)*.

[M. Wagner, Phys. Rev. D 76, 076002 (2007) [arXiv:0704.3023]]

(—) Requires det(Q) = det(Q"), not the case e.g. for y1; # 0 or us # 0.
o det(Q) — det({fa|Q|f,/)), where f, are basis functions, e.g.
fmtamx — ei Pmy t+Pmy X)
o Problem: span{f,} # span{Qf,}, which causes artificially small eigenvalues or
zero modes in (fy|Q|f,/) not present in Q.
— Wrong and weird results.
o Increasing the number of basis functions does not cure the problem.
o Solution: In(det(Q)) — (1/2) In(det(QT Q)) (requires det(Q) = det(QT)).
(=) Number of spatial modes in ¥(x, t) should be larger than number of modes in o(x).
o @ depends on o(x); basis functions representing 1(x, t) must be able to
resolve more detail for an accurate approximation of det(Q).
(+) No fermion doubling.
(+) Resulting condensates o(x) are continuous functions.
(When using lattice field theory, o(x) is represented by a set of points ox.)
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Fermion discretization (2)

@ Lattice discretization:
o Naively discretized fermions.

w(X7 t) N d’xyt , 8X¢(X7 t) s wx+a,t z_a'lz)x—a,t ,
(x,t=0,a,2a,...; a: lattice spacing).
(=) Fermion doubling.
o Naively discretized with non-symmetric derivatives.
(=) No fermion doubling, but other severe problems.
o Staggered fermions.
[P. de Forcrand and U. Wenger, PoS LATTICE 2006, 152 (2006) [hep-lat/0610117]]
(—) Fermion doubling still present.
°

@ Most promising seems to be a combination of two approaches:
o Plane wave expansion in t direction.
(+) Easy analytical simplifications possible, e.g. det(Q) factorizes.
o Naive lattice discretization in x direction.
(+) Fermion doubling not a problem in the large-N limit (“2 X co = c0”).

P(x,t) — P(t) = waymeip'"t , o(x) — ox
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© Q=9.0y +op + o is a large matrix, e.g. O(10%) x O(10°) entries.
O Efficient computation of det(Q) and minimization of

(L [ (@))

need

o preparatory analytical simplifications, e.g. to factorize det(Q),
o efficient algorithms and codes.

@ Work in progress.

@ Details are rather technical, beyond the scope of this presentation.
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Inhomogeneous phases and finite volume (1)

O Periodic modulation of the inhomogeneous condensate, wave length A depends on (p, T)
(left figure [for 14+1 dimensions]).
Extent of the finite volume L typically fixed.
If L is a multiple of \, i.e. L~ n\, n € N4
no particular problems with the finite volume, correct results.
Q If L~ (n—1/2)\, n€ N4
modulation of the inhomogeneous condensate does not fit into the finite volume,
severely distorted results (see right figure, oscillating dashed line).

© ©
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right figure [for 141 dimensions] from [P. de Forcrand and U. Wenger, PoS LATTICE 2006, 152 (2006) [hep-lat/0610117]]
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Inhomogeneous phases and finite volume (2)

@ Infinite volume phase boundaries can be extracted from finite volume results.

@ Phase boundary between inhomogeneous phase and restored phase:
o Characterized by the appearance/disappearance of negative eigenvalues of the
Hessian matrix

o 0
ny = —S eff
B0 0oy =0
o Lowest eigenvalue of H as a function of p oscillates in a finite volume (red curve in

left figure):
@ Minima: L~ n)\, n € Ny, essentially identical to the infinite volume result.
o Maxima: L~ (n—1/2)\, n € Ny, significantly different from the infinite
volume result.
o Fitting a smooth curve (e.g. a 2nd order polynomial) from below (green curve in
left figure [for 141 dimensions]) approximates the infinite volume result.

lowest eigenvalue(op) — A =1.153, ..., T/og = 0.126 phase diagram for inhomogeneous ¢ — A =1.153, Ly = 144
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Numerical results, 1+1-dimensional GN model (1)

@ Phase diagram with restriction to homogeneous condensate o.
(A Test of our method and implementation.)

N; =8, T, =16.000, L =384, A = 0.480
c

06 I ' ' ' anal)'/tical results - . ]
g numerical results (2nd order) =
B numerical results (1st order) =
0.5 ' b
o .
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analytical results first obtained in [U. Wolff, Phys. Lett. B 157, 303 (1985)]
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Numerical results, 1+1-dimensional GN model (2)

O Se(0) for homogeneous condensate o.
o Left: far inside the broken phase (/09 = 0.20, T = T,/3).
o Center: in the broken phase close to the 1st order phase boundary (©/o¢ = 0.65,
T =T./3).
o Right: in the symmetric phase (u/o¢ = 1.20, T = T¢/3).
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Numerical results, 2+1-dimensional GN model (1)

@ Phase diagram:
o Black dots: restriction to homogeneous condensate o = const (in agreement with
available analytical results).
[K. Urlichs, PhD thsis, University of Erlangen-Nuremberg (2007)]
o Red dots: restriction to 1-dimensional modulations, o = o(x).
o Phase boundary via eigenvalues of the Hessian matrix ( “stability analysis”).
o At finite volume, i.e. no extrapolation to infinite volume.
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Numerical results, 2+1-dimensional GN model (2)

@ Phase diagram:
o Black dots: restriction to homogeneous condensate o = const.
o Red dots: restriction to 1-dimensional modulations, o = o(x).
o Phase boundary via eigenvalues of the Hessian matrix ( “stability analysis”).
o At finite volume, i.e. no extrapolation to infinite volume.
o Blue dots: restriction to 1-dimensional modulations, o = o(x).

o Phase boundary via eigenvalues of the Hessian matrix ( “stability analysis”).
o Extrapolated to infinite volume (see right figure; smallest eigenvalue of the
Hessian matrix as a function of yu at fixed T).
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Numerical results, 2+1-dimensional GN model (3)

@ Directions of instability for the condensate in the inhomogeneous phase at
o (p/oo, T/oog) = (1.025,0.055) (left figure)
o (p/o0, T/oo) = (1.166,0.055) (right figure)
(restriction to 1-dimensional modulations, o = o(x)).

@ For increasing u the wavelength decreases (as for the 1+1-dimensional GN model).
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Numerical results, 2+1-dimensional GN model (4)

@ Comparison of the phase diagram of the 1+1-dimensional (left figure) and the

2+1-dimensional (right figure) GN model.
o Inhomogeneous phase in 241 dimensions smaller than for 141 dimensions.
o Could become larger, when allowing 2-dimensional modulations, o = o(x,y) ...?
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Explore lattice spacing dependence in detail.

(Results were obtained at a single lattice spacing. Recent results from a Ginzburg-Landau
stability analysis with a Pauli-Villars regularization as well as crude lattice results indicate
a strong cutoff dependence ... the inhomogeneous phase might even disappear in the
continuum limit.)

Are there inhomogeneous phases with 2-dimensional modulations?
Extend studies to 341 dimensions.

Study the phase diagram of more realistic QCD-inspired models (chiral GN,

Nambu-Jona-Lasinio (NJL), quark-meson model, ...) with particular focus on

inhomogeneous phases.

— Phase structure not only with respect to  and T but also isospin and strangeness
chemical potential p;, ps ...7
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Part 2:
141 dimensions, finite N¢
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GN model in 1+1 dimensions, finite N¢ (1)

@ At the moment we study the GN model 141 dimensions.

@ Do inhomogeneous phases exist in 14+1 dimensions at finite N¢?
@ Is the phase diagram similar to the analytically known phase diagram for Ny — oo?

[L. Pannullo, J. Lenz, M. Wagner, B. Wellegehausen and A. Wipf, arXiv:1902.11066]
[L. Pannullo, J. Lenz, M. Wagner, B. Wellegehausen and A. Wipf, arXiv:1909.11513]

@ Action:

N¢ 2 Ny 2
s = /dzx (Z&,-(%Bﬁﬁou)tﬁj - %(Z%‘w/‘) )
j=1 j=1

O After introducing a scalar field o (= condensate) and performing the integration over
fermionic fields

Seit = N¢ (% /d2xa'2 —In (det('y,,&, -I—'yo,u—i-o)))
=Q
Z = /Da e Seff,

where X = N¢g?2.

@ One can show (o) (ZJN:fl ¥j9;), i.e. (o) is proportional to the chiral condensate.
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GN model in 1+1 dimensions, finite N¢ (2)

@ Simulations with two different fermion discretizations, which do not break chiral
symmetry:

o Naive fermions: s 5
X+eH,y_ X—€pu,y

8naive , —
(%) 5

o Nr is a multiple of 8 (because of HMC algorithm and fermion doubling).
o SLAC fermions:
S ) i
Ny sin((xu — yp)m/Ny)
= F(5)(p) = ipuF(¥)(p).

oA (xy) = (1-06cy)

o Ny is a multiple of 2 (because of HMC algorithm; no fermion doubling).
o Non-local, rarely used, ...
[S. D. Drell, M. Weinstein and S. Yankielowicz, Phys. Rev. D 14, 487 (1976)]
— Important cross-check of numerical results (for Nf = 8).
— Allows to study also a small number of fermion flavors, Ny = 2.
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Ensembles

@ Simulation of a large number of ensembles:

Nf Nt = 1/Ta Ns = L/a ‘ )\naivc aog ‘ )‘SLAC aog
4,6,...,24,28 32,
2 40,...,64 64 — — 1.022  0.4100(5)
3.091 0.4006(3) | 5.20 0.4100(5)
4,6,...,24,28,32
8 10, oago | 32.64,128 | 4.84 0.2527(3) | 6.20 0.2495(5)
T 528  0.2015(3) | 6.85 0.195(5)
4,6,...,24,28 32,
16 40,...,64 64 — — 10.7 0.4100(5)

@ Scale setting via

1

oo = Limoo <‘E‘>’u:O,T:0 (E A Z:U(x7 t)

t,x

)

(“the condensate at ;x =0 and T = 0 deep inside the homogeneously broken phase”).
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o <E2) can distinguish a homogeneously broken phase from a symmetric phase and an
inhomogeneous phase.

@ Homogeneously broken phase at Ny = 8 (blue region) has similar shape as for Ny — oo
(indicated by the red line), but is smaller (plot for naive fermions).

T
max(Xo?)

large-N; result

Tlog

Lattice investigation of inhomogeneous phase!
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Correlation function C(x) (Nf = 8) (1)

O (o(t,x)) might not be suited to detect an inhomogeneous phase (“inhomogeneous field
configurations” could be spatially shifted relative to each other).

@ Use spatial correlation function

() = S {olty +x)o(t,)),

NeNs £ "
to detect a possibly existing inhomogeneous phase.

@ Expectation:
o Symmetric phase: C(x) ~ 0.
o Homogeneously broken phase: C(x) ~ 0(2).
o Inhomogeneous phase: C(x) is an oscillating function (similar to a kink-antikink or

a cosinus).
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Correlation function C(x) (Nf = 8) (2)

symmetric phase (large T)
(n/o0, T/og) = (0.0,0.610)

90=0.41, p=0.0, N, =64, Ne=4

4 Naive
4 stac

T 2

5 5
Spatial Coordinate

hom. broken phase (small T, small )

(1/00. T/0) ~ (0.1,0.038)

06=0.41, y=0.1, N, =64, N;=64

@ Spatial

correlation function
1
C(x) =
N¢Ns

t,y

> {olt,y +x)o(t ).

@ Wavelength in the inhomogeneous phase decreases for
increasing p (as for N — 00).

@ Agreement of naive and SLAC fermions.

inhomogeneous phase (small T, large )

(n/o0, T/o0) = (0.7,0.038)

90=0.41, p=0.7, N, =64, N;=64

inhomogeneous phase (small T, large )

(n/o0, T/o0) = (1.0, 0.038)

90=0.41, p=1.0, N, =64, N;=64
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@ Phase diagram via

~ 0 inside a symmetric phase
min C(x){ >0 inside a homogeneously broken phase
X < 0 inside an inhomogeneous phase

(plot for naive fermions).

@ Similar to the Nf — oo phase diagram.
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“Continuum and infinite volume limit" (Nf = 8)

O Increasing spatial volume (at fixed lattice spacing): top to bottom. \l/
O Decreasing lattice spacing (at constant spatial volume): top left to bottom right. \‘
@ Phase diagram stable under variations of the lattice spacing and the spatial volume

(plots for naive fermions).
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@ Aligned condensate: field configurations are matched by spatial translations x — x — Ax,
before the ensemble average is computed,

1 &
Y(x) = N Z <0'(t,x — Ax)>.
t=0

Q@ Suited to visualize both homogeneous and inhomogeneous condensates (plots for SLAC

fermions, T /og = 0.031).
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O Phase diagram for Ny = 2 (SLAC

fermions). Nf — oo.
Crnin, L =64, 09=0.41 oo 10 — N=e
05 ® SLAC BoN=2
0.75 08 H 4 N=8
t Ne=16
04{0 O 0O O O O O O O O 0.50 \
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9 (o) at p =0 for Nf € {2,8,16} and for
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