Lattice investigation of inhomogeneous phases in the Gross-Neveu model

Marc Wagner

in collaboration with Julian Lenz, Laurin Pannullo, Jonas Stoll, Björn Wellegehausen, Marc Winstel, Andreas Wipf

> Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik http://th.physik.uni-frankfurt.de/~mwagner/

> > Lattice seminar, CERN

November 28, 2019

Introduction (1)

- Long-term goal (for many researchers in our field): Compute the phase diagram of QCD.
 - Extremely difficult ...
 - ... e.g. "sign problem" in lattice QCD for chemical potential $\mu \neq 0$, computations very challenging/impossible.
- QCD-inspired models in the $N_f \rightarrow \infty$ limit:

QCD-inspired = symmetries similar as in QCD, e.g. chiral symmetry $N_f \rightarrow \infty$ limit = infinite number of flavors

• Inhomogeneous phases at large μ and small temperature T.

inhomogeneous phase = phase with a spatially non-constant order parameter

- Analytical results for the Gross-Neveu (GN) model in 1+1 dimensions.
 [O. Schnetz, M. Thies and K. Urlichs, Annals Phys. 314, 425 (2004) [hep-th/0402014]]
- Are there inhomogeneous phases in QCD?

Introduction (2)

 Project "Inhomogeneous phases at high density" of the CRC-TR 211 "Strong-interaction matter under extreme conditions" (universities of Bielefeld, Darmstadt, Frankfurt):

- Goals:
 - Study the phase diagrams of various QCD-inspired models (GN, chiral GN, Nambu-Jona-Lasinio (NJL), quark-meson model) with particular focus on inhomogeneous phases.
 - Are there inhomogeneous phases in 2+1 or 3+1 dimensions?
 - Are there inhomogeneous phases with 2- or 3-dimensional modulations?
 - Determine the spatial modulation of the condensates (= order parameters) without using specific ansätze (e.g. no restriction to a chiral density wave).
 - Phase structure not only with respect to μ and T but also isospin and strangeness chemical potential μ_l, μ_S.
 - Are there inhomogeneous phases at finite N_f ?
- Methods:
 - Lattice field theory.
 - * Lattice field theory computations in the $N_f \rightarrow \infty$ limit (this talk).
 - * Lattice field theory simulations at finite N_f (this talk).
 - Functional Renormalization Group (not part of this talk ... M. Buballa, D. Rischke, ...).

3/31

Outline

Part 1: 2+1 dimensions, $N_f ightarrow \infty$

- GN model in 2+1 dimensions
- Technical aspects
 - ${\color{black}\bullet}$ Discrete symmetry $\sigma \to -\sigma$ and fermion representation
 - Fermion discretization
 - Efficient computation of det(Q) and minimization of $S_{\rm eff}/N$
 - Inhomogeneous phases and finite volume
- Numerical results

Part 2: 1+1 dimensions, finite N_f

- GN model in 1+1 dimensions
- Ensembles
- Numerical results

Part 1: 2+1 dimensions, $N_f \rightarrow \infty$

GN model in 2+1 dimensions, $N_f \rightarrow \infty$ (1)

- At the moment we study the GN model 2+1 dimensions.
 - Do inhomogeneous phases exist in 2+1 dimensions?
 - Is the phase diagram in 2+1 dimensions similar to the analytically known phase diagram in 1+1 dimensions?
 - Are there inhomogeneous phases with 2-dimensional modulations?
 - [M. Winstel, J. Stoll, M. Wagner, arXiv:1909.00064]
- Action:

$$S = \int d^3x \left(\sum_{j=1}^{N_f} \overline{\psi}_j \left(\gamma_{\nu} \partial_{\nu} + \gamma_0 \mu \right) \psi_j - \frac{g^2}{2} \left(\sum_{j=1}^{N_f} \overline{\psi}_j \psi_j \right)^2 \right).$$

• After introducing a scalar field σ and performing the integration over fermionic fields

$$S_{\text{eff}} = N_f \left(\frac{1}{2\lambda} \int d^3 x \, \sigma^2 - \ln \left(\det(\underbrace{\gamma_{\nu} \partial_{\nu} + \gamma_0 \mu + \sigma}_{=Q}) \right) \right)$$
$$Z = \int D\sigma \, e^{-S_{\text{eff}}},$$

where $\lambda = N_f g^2$.

• One can show $\sigma \propto \langle \sum_{j=1}^{N_f} \bar{\psi}_j \psi_j \rangle$.

GN model in 2+1 dimensions, $N_f \rightarrow \infty$ (2)

- $N_f \to \infty$:
 - Only "a single field configuration" important in $\int D\sigma e^{-S_{\rm eff}}$ (global minimum of $S_{\rm eff}/N$).
 - Assume *t*-independence of this field configuration, i.e. $\sigma = \sigma(x, y)$.
- For numerical treatment the degrees of freedom have to be reduced to a finite number.
 - \rightarrow Finite volume and discretization needed.
 - For example lattice field theory.
 - There are other possibilities to discretize, e.g. finite mode discretization, discretization by piecewise polynomial functions, etc.

[M. Wagner, Phys. Rev. D 76, 076002 (2007) [arXiv:0704.3023]]

[A. Heinz, F. Giacosa, M. Wagner, D. H. Rischke, Phys. Rev. D 93, 014007 (2016) [arXiv:1508.06057]]

Technical aspects:

- Discrete symmetry σ → −σ and fermion representation: 2-component irreducible versus 4-component reducible representation?
- Fermion discretization: Fermion doubling problem? Explicit breaking of chiral symmetry? Unphysical zero modes?
- Efficient computation of det(Q) and minimization of S_{eff}/N: After discretization, Q is a large matrix.
- Inhomogeneous phases and finite volume: Not just exponentially small corrections (size of the inhomogeneous structures versus size of the volume).

Discrete symmetry $\sigma \to -\sigma$ and fermion representation

- One can show $S_{\text{eff}}[+\sigma] = S_{\text{eff}}[-\sigma]$ (i.e. S_{eff} has a discrete symmetry).
- $\sigma \propto \langle \sum_{j=1}^{N_f} \bar{\psi}_j \psi_j \rangle.$
- 1+1 dimensions:
 - A possible irreducible 2 \times 2 representation for the γ matrices is

$$\gamma_0 = \sigma_1 \quad , \quad \gamma_1 = \sigma_2.$$

- $\sigma \neq 0$ would indicate spontaneous breaking of the symmetry $\psi_i \rightarrow \sigma_3 \psi_i$.
- Since σ_3 anticommutes with γ_0 and γ_1 , it is appropriate to define $\gamma_5 = \sigma_3$ and to interpret the symmetry as discrete chiral symmetry.

2+1 dimensions:

• A possible irreducible 2 \times 2 representation for the γ matrices is

 $\gamma_0 = \sigma_1$, $\gamma_1 = \sigma_2$, $\gamma_2 = \sigma_3$.

- It is impossible to find a corresponding appropriate γ_5 matrix, i.e. a matrix, which anticommutes with γ_0 , γ_1 and γ_2 .
- Consequently, a non-vanishing σ cannot be interpreted as a signal for chiral symmetry breaking.
- A possibility to retain the interpretation of σ as chiral order parameter is to use a reducible 4 × 4 representation.
- One can show that the phase diagrams for the irreducible 2×2 representation and the reducible 4×4 representation are identical.

Fermion discretization (1)

- Various discretizations tested.
- Expansion in a set of basis functions, e.g. plane waves,

$$\psi(x,t) \rightarrow \sum_{m_t,m_x} c_{m_t,m_x} e^{i(p_{m_t}t+p_{m_x}x)} , \quad \sigma(x) \rightarrow \sum_{m_x} d_{m_x} e^{ip_{m_x}x}$$

with $p_{m_t} = 2\pi (m_t - 1/2)/L_t$, $p_{m_x} = 2\pi m_x/L_x$, $d_{m_x} = (d_{-m_x})^*$.

[M. Wagner, Phys. Rev. D 76, 076002 (2007) [arXiv:0704.3023]]

- (-) Requires $det(Q) = det(Q^{\dagger})$, not the case e.g. for $\mu_I \neq 0$ or $\mu_s \neq 0$.
 - det(Q) \rightarrow det($\langle f_n | Q | f_n' \rangle$), where f_n are basis functions, e.g. $f_{m_t,m_{\chi}} = e^{i(\rho_{m_t}t + \rho_{m_{\chi}} \times)}$.
 - Problem: span{f_n} ≠ span{Qf_n}, which causes artificially small eigenvalues or zero modes in ⟨f_n|Q|f_n/⟩ not present in Q.
 We may and write a sector.
 - \rightarrow Wrong and weird results.
 - Increasing the number of basis functions does not cure the problem.
 - Solution: $\ln(\det(Q)) \rightarrow (1/2) \ln(\det(Q^{\dagger}Q))$ (requires $\det(Q) = \det(Q^{\dagger})$).
- (-) Number of spatial modes in $\psi(x, t)$ should be larger than number of modes in $\sigma(x)$.
 - Q depends on σ(x); basis functions representing ψ(x, t) must be able to resolve more detail for an accurate approximation of det(Q).
- (+) No fermion doubling.
- (+) Resulting condensates $\sigma(x)$ are continuous functions.

(When using lattice field theory, $\sigma(x)$ is represented by a set of points σ_x .)

Fermion discretization (2)

- Lattice discretization:
 - Naively discretized fermions.

$$\psi(x,t) \rightarrow \psi_{x,t}$$
 , $\partial_x \psi(x,t) \rightarrow \frac{\psi_{x+a,t}-\psi_{x-a,t}}{2a}$, ...

 $(x, t = 0, a, 2a, \ldots; a:$ lattice spacing).

(-) Fermion doubling.

• Naively discretized with non-symmetric derivatives.

(-) No fermion doubling, but other severe problems.

• Staggered fermions.

 $[P. \ de \ Forcrand \ and \ U. \ Wenger, \ PoS \ LATTICE \ 2006, \ 152 \ (2006) \ [hep-lat/0610117]]$

• ...

- Most promising seems to be a combination of two approaches:
 - Plane wave expansion in t direction.

(+) Easy analytical simplifications possible, e.g. det(Q) factorizes.

• Naive lattice discretization in x direction.

(+) Fermion doubling not a problem in the large-N limit (" $2 \times \infty = \infty$ ").

$$\psi(x,t) \rightarrow \psi_x(t) = \sum_m \psi_{x,m} e^{ip_m t} , \quad \sigma(x) \rightarrow \sigma_x.$$

- $Q = \gamma_{\nu}\partial_{\nu} + \gamma_{0}\mu + \sigma$ is a large matrix, e.g. $\mathcal{O}(10^{5}) \times \mathcal{O}(10^{5})$ entries.
- Efficient computation of det(Q) and minimization of

$$\frac{S_{\rm eff}}{N_f} = \left(\frac{1}{2\lambda}\int d^2x\,\sigma^2 - \ln\left(\det(Q)\right)\right)$$

need

- preparatory analytical simplifications, e.g. to factorize det(Q),
- efficient algorithms and codes.
- Work in progress.
- Details are rather technical, beyond the scope of this presentation.

Inhomogeneous phases and finite volume (1)

- Periodic modulation of the inhomogeneous condensate, wave length λ depends on (μ, T) (left figure [for 1+1 dimensions]).
- Extent of the finite volume *L* typically fixed.
- If L is a multiple of λ, i.e. L ≈ nλ, n ∈ N₊ no particular problems with the finite volume, correct results.
- If $L \approx (n-1/2)\lambda$, $n \in \mathbb{N}_+$

modulation of the inhomogeneous condensate does not fit into the finite volume, severely distorted results (see right figure, oscillating dashed line).

right figure [for 1+1 dimensions] from [P. de Forcrand and U. Wenger, PoS LATTICE 2006, 152 (2006) [hep-lat/0610117]]

2/31

Inhomogeneous phases and finite volume (2)

- Infinite volume phase boundaries can be extracted from finite volume results.
- Phase boundary between inhomogeneous phase and restored phase:
 - Characterized by the appearance/disappearance of negative eigenvalues of the Hessian matrix

$$H_{xy} = \frac{\partial}{\partial \sigma_x} \frac{\partial}{\partial \sigma_y} S_{\text{eff}} \bigg|_{\sigma=0}$$

- Lowest eigenvalue of H as a function of µ oscillates in a finite volume (red curve in left figure):
 - Minima: $L \approx n\lambda$, $n \in \mathbb{N}_+$, essentially identical to the infinite volume result.
 - Maxima: $L \approx (n 1/2)\lambda$, $n \in \mathbb{N}_+$, significantly different from the infinite volume result.
- Fitting a smooth curve (e.g. a 2nd order polynomial) from below (green curve in left figure [for 1+1 dimensions]) approximates the infinite volume result.

Marc Wagner

Numerical results, 1+1-dimensional GN model (1)

 Phase diagram with restriction to homogeneous condensate σ. (A Test of our method and implementation.)

analytical results first obtained in [U. Wolff, Phys. Lett. B 157, 303 (1985)]

/ 31

Numerical results, 1+1-dimensional GN model (2)

- $S_{\text{eff}}(\sigma)$ for homogeneous condensate σ .
 - Left: far inside the broken phase ($\mu/\sigma_0 = 0.20$, $T = T_c/3$).
 - Center: in the broken phase close to the 1st order phase boundary ($\mu/\sigma_0=0.65,$ $T=T_c/3$).
 - Right: in the symmetric phase ($\mu/\sigma_0 = 1.20$, $T = T_c/3$).

9 15/3

Numerical results, 2+1-dimensional GN model (1)

- Phase diagram:
 - Black dots: restriction to homogeneous condensate $\sigma = \text{const}$ (in agreement with available analytical results).

[K. Urlichs, PhD thsis, University of Erlangen-Nuremberg (2007)]

- **Red dots**: restriction to 1-dimensional modulations, $\sigma = \sigma(x)$.
 - Phase boundary via eigenvalues of the Hessian matrix ("stability analysis").
 - At finite volume, i.e. no extrapolation to infinite volume.

Numerical results, 2+1-dimensional GN model (2)

- Phase diagram:
 - Black dots: restriction to homogeneous condensate $\sigma = const.$
 - **Red dots**: restriction to 1-dimensional modulations, $\sigma = \sigma(x)$.
 - Phase boundary via eigenvalues of the Hessian matrix ("stability analysis").
 - At finite volume, i.e. no extrapolation to infinite volume.
 - Blue dots: restriction to 1-dimensional modulations, $\sigma = \sigma(x)$.
 - Phase boundary via eigenvalues of the Hessian matrix ("stability analysis").
 - Extrapolated to infinite volume (see right figure; smallest eigenvalue of the Hessian matrix as a function of μ at fixed T).

Numerical results, 2+1-dimensional GN model (3)

Directions of instability for the condensate in the inhomogeneous phase at

•
$$(\mu/\sigma_0, T/\sigma_0) = (1.025, 0.055)$$
 (left figure)

•
$$(\mu/\sigma_0, T/\sigma_0) = (1.166, 0.055)$$
 (right figure)

(restriction to 1-dimensional modulations, $\sigma = \sigma(x)$).

• For increasing μ the wavelength decreases (as for the 1+1-dimensional GN model).

Numerical results, 2+1-dimensional GN model (4)

- Comparison of the phase diagram of the 1+1-dimensional (left figure) and the 2+1-dimensional (right figure) GN model.
 - Inhomogeneous phase in 2+1 dimensions smaller than for 1+1 dimensions.
 - Could become larger, when allowing 2-dimensional modulations, $\sigma = \sigma(x, y) \dots$?

Marc Wagner

Lattice investigation of inhomogeneous phase

November 2

• Explore lattice spacing dependence in detail.

(Results were obtained at a single lattice spacing. Recent results from a Ginzburg-Landau stability analysis with a Pauli-Villars regularization as well as crude lattice results indicate a strong cutoff dependence ... the inhomogeneous phase might even disappear in the continuum limit.)

- Are there inhomogeneous phases with 2-dimensional modulations?
- Extend studies to 3+1 dimensions.
- Study the phase diagram of more realistic QCD-inspired models (chiral GN, Nambu-Jona-Lasinio (NJL), quark-meson model, ...) with particular focus on inhomogeneous phases.
 - \rightarrow Phase structure not only with respect to μ and T but also isospin and strangeness chemical potential μ_{I}, μ_{S} ...?

Part 2: 1+1 dimensions, finite N_f

/ 31

GN model in 1+1 dimensions, finite N_f (1)

- At the moment we study the GN model 1+1 dimensions.
 - Do inhomogeneous phases exist in 1+1 dimensions at finite N_f ?
 - Is the phase diagram similar to the analytically known phase diagram for $N_f \rightarrow \infty$?
 - [L. Pannullo, J. Lenz, M. Wagner, B. Wellegehausen and A. Wipf, arXiv:1902.11066]
 - [L. Pannullo, J. Lenz, M. Wagner, B. Wellegehausen and A. Wipf, arXiv:1909.11513]
- Action:

$$S = \int d^2x \left(\sum_{j=1}^{N_f} \bar{\psi}_j \left(\gamma_{\nu} \partial_{\nu} + \gamma_0 \mu \right) \psi_j - \frac{g^2}{2} \left(\sum_{j=1}^{N_f} \bar{\psi}_j \psi_j \right)^2 \right).$$

• After introducing a scalar field σ (= condensate) and performing the integration over fermionic fields

$$\begin{split} S_{\rm eff} &= N_f \left(\frac{1}{2\lambda} \int d^2 x \, \sigma^2 - \ln \left(\det(\underbrace{\gamma_{\nu} \partial_{\nu} + \gamma_0 \mu + \sigma}_{=Q}) \right) \right) \\ Z &= \int D\sigma \, e^{-S_{\rm eff}}, \end{split}$$

where $\lambda = N_f g^2$.

• One can show $\langle \sigma \rangle \propto \langle \sum_{j=1}^{N_f} \bar{\psi}_j \psi_j \rangle$, i.e. $\langle \sigma \rangle$ is proportional to the chiral condensate.

GN model in 1+1 dimensions, finite N_f (2)

- Simulations with two different fermion discretizations, which do not break chiral symmetry:
 - Naive fermions:

$$\partial_{\mu}^{\mathrm{naive}}(x,y) = rac{\delta_{x+e_{\mu},y} - \delta_{x-e_{\mu},y}}{2a}.$$

N_f is a multiple of 8 (because of HMC algorithm and fermion doubling).
 SLAC fermions:

$$\begin{split} \partial_{\mu}^{\mathrm{SLAC}}(x,y) &= \left(1 - \delta_{x,y}\right) \frac{\pi}{N_{\mu}} \frac{(-1)^{x_{\mu} - y_{\mu}}}{\sin((x_{\mu} - y_{\mu})\pi/N_{\mu})} \\ \to \mathcal{F}\Big(\partial_{\mu}^{\mathrm{SLAC}}\psi\Big)(p) &= ip_{\mu}\mathcal{F}\Big(\psi\Big)(p). \end{split}$$

- N_f is a multiple of 2 (because of HMC algorithm; no fermion doubling).
- Non-local, rarely used, ...

[S. D. Drell, M. Weinstein and S. Yankielowicz, Phys. Rev. D 14, 487 (1976)]

- \rightarrow Important cross-check of numerical results (for $N_f = 8$).
- \rightarrow Allows to study also a small number of fermion flavors, $N_f = 2$.

Ensembles

N _f	$N_t = 1/T_a$	$N_s = L/a$	$\mid \lambda_{ ext{naive}}$	$a\sigma_0$	$\mid \lambda_{ m SLAC}$	$a\sigma_0$
2	$\begin{array}{c} 4, 6, \dots, 24, 28, 32, \\ 40, \dots, 64 \end{array}$	64		_	1.022	0.4100(5)
8	4, 6,, 24, 28, 32, 40,, 64, 80	32, 64, 128	3.91 4.84 5.28	0.4096(3) 0.2527(3) 0.2015(3)	5.20 6.20 6.85	0.4100(5) 0.2495(5) 0.195(5)
16	$\begin{array}{c} 4, 6, \dots, 24, 28, 32, \\ 40, \dots, 64 \end{array}$	64		_	10.7	0.4100(5)

• Simulation of a large number of ensembles:

Scale setting via

$$\sigma_0 = \lim_{L \to \infty} \left\langle \left| \overline{\sigma} \right| \right\rangle \Big|_{\mu=0, T=0} \quad \left(\overline{\sigma} = \frac{1}{N_t N_s} \sum_{t,x} \sigma(x,t) \right).$$

("the condensate at $\mu = 0$ and T = 0 deep inside the homogeneously broken phase").

Marc Wagner

Lattice investigation of inhomogeneous phase

November 2

$\langle \overline{\sigma}^2 angle$, homogeneously broken phase ($N_f=8)$

- ⟨σ̄²⟩ can distinguish a homogeneously broken phase from a symmetric phase and an inhomogeneous phase.
- Homogeneously broken phase at $N_f = 8$ (blue region) has similar shape as for $N_f \to \infty$ (indicated by the red line), but is smaller (plot for naive fermions).

Correlation function C(x) ($N_f = 8$) (1)

- (σ(t, x)) might not be suited to detect an inhomogeneous phase ("inhomogeneous field configurations" could be spatially shifted relative to each other).
- Use spatial correlation function

$$C(x) = \frac{1}{N_t N_s} \sum_{t,y} \left\langle \sigma(t, y + x) \sigma(t, y) \right\rangle,$$

to detect a possibly existing inhomogeneous phase.

- Expectation:
 - Symmetric phase: $C(x) \sim 0$.
 - Homogeneously broken phase: $C(x) \sim \sigma_0^2$.
 - Inhomogeneous phase: C(x) is an oscillating function (similar to a kink-antikink or a cosinus).

Correlation function C(x) ($N_f = 8$) (2)

 $C(x) = \frac{1}{N_t N_s} \sum_{t,y} \left\langle \sigma(t, y + x) \sigma(t, y) \right\rangle.$

Wavelength in the inhomogeneous phase decreases for

2.0

ģ 1.5

. Č 10

0.5

Correlation function C(x), phase diagram $(N_f = 8)$

Phase diagram via

$$\min_{x} C(x) \begin{cases} \approx 0 & \text{inside a symmetric phase} \\ \gg 0 & \text{inside a homogeneously broken phase} \\ \ll 0 & \text{inside an inhomogeneous phase} \end{cases}$$

(plot for naive fermions).

• Similar to the $N_f \to \infty$ phase diagram.

Marc Wagner

28 /

"Continuum and infinite volume limit" $(N_f = 8)$

- Increasing spatial volume (at fixed lattice spacing): top to bottom. \downarrow
- Decreasing lattice spacing (at constant spatial volume): top left to bottom right.
- Phase diagram stable under variations of the lattice spacing and the spatial volume (plots for naive fermions).

Marc Wagner

, 2019 29

Aligned condensate $\Sigma(x)$ ($N_f = 8$)

 Aligned condensate: field configurations are matched by spatial translations x → x − Δx, before the ensemble average is computed,

$$\Sigma(x) = rac{1}{N_t} \sum_{t=0}^{N_t} \Big\langle \sigma(t, x - \Delta x) \Big\rangle.$$

• Suited to visualize both homogeneous and inhomogeneous condensates (plots for SLAC fermions, $T/\sigma_0 = 0.031$).

N_f dependence

Phase diagram for N_f = 2 (SLAC fermions).

• $\langle |\overline{\sigma}| \rangle$ at $\mu = 0$ for $N_f \in \{2, 8, 16\}$ and for $N_f \to \infty$.

/ 31