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Introduction, motivation (1)

• Topological objects: non-trivial structures in field configurations, which
cannot be removed by continuous deformations, while keeping the action

finite (their position can be changed and they can be deformed).

• Analogy: a knot in a rope.

• Topological charge: “number of topological objects” in a field
configuration.
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Introduction, motivation (2)

• Examples of field theories, where topological objects/charge exist(s):

– 1D QM on a circle.

– U(1) gauge theory and the Schwinger model in 2D.

– SU(2)/SU(3) Yang-Mills theory and QCD in 4D.
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Introduction, motivation (3)

• Typical lattice simulation algorithms might have difficulties changing the
topological charge/sector (→ topology freezing).

• Reasons:

– Field configurations are updated in a nearly continuous way.

– Topological sectors are separated by large action barriers (in the

continuum by infinite barriers).

• Topology changes are strongly suppressed, when

– using overlap sea quarks,
[S. Aoki et al. [JLQCD Collaboration], Phys. Rev. D 78, 014508 (2008) [arXiv:0803.3197 [hep-lat]]]

[S. Aoki et al., PTEP 2012, 01A106 (2012)]

– the lattice spacing is small (a <∼ 0.05 fm, i.e. close to the continuum).

[M. Lüscher and S. Schaefer, JHEP 1107, 036 (2011) [arXiv:1105.4749 [hep-lat]]]

[S. Schaefer, PoS LATTICE 2012, 001 (2012) [arXiv:1211.5069 [hep-lat]]]
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Introduction, motivation (4)

• The simulation of a path integral requires averaging over field configurations
from all topological sectors,

ZV ≡
∫

DADψDψ̄ e−SE [A,ψ̄,ψ] , . . .

• When topology is fixed,

ZQ,V ≡
∫

DADψDψ̄ δQ,Q[A]e
−SE [A,ψ̄,ψ] , . . . ,

results exhibit systematic errors; in particular two-point correlation functions

are not proportional e−MHt for large temporal separations t.

• These errors are proportional to 1/V (V : spacetime volume); their behavior

can be calculated as a power series in 1/V ; using the results one can
determine physical quantities, e.g. hadron masses, from correlation functions
from fixed topology simulations.
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Introduction, motivation (5)

• There are also cases, where one might fix topology on purpose.

• Example: using a mixed action setup of high quality overlap quarks and

computationally inexpensive Wilson (tm) quarks at light quark masses ...

– ... at light quark masses and Q 6= 0 the valence overlap Dirac matrix has

near zero modes (Atiyah-Singer index theorem) ...

– ... which are not present (and, therefore, compensated) in the sea Wilson
(tm) Dirac matrix ...

– ... the consequence is an ill-behaved continuum limit.

[K. Cichy, G. Herdoiza and K. Jansen, Nucl. Phys. B 847, 179 (2011) [arXiv:1012.4412 [hep-lat]]]

[K. Cichy et al., Nucl. Phys. B 869, 131 (2013) [arXiv:1211.1605 [hep-lat]]]

• A possible solution to this problem might be to fix topology to Q = 0,where

also the valence overlap Dirac matrix has no near zero modes.
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Introduction, motivation (6)

• Topology can be fixed by

– either sorting the generated field configurations according to

their topological charge

– or by employing topology fixing actions.
[H. Fukaya et al., Phys. Rev. D 73, 014503 (2006) [hep-lat/0510116]]

[W. Bietenholz et al., JHEP 0603, 017 (2006) [hep-lat/0511016]]

[F. Bruckmann et al., Eur. Phys. J. A 43, 303 (2010) [arXiv:0905.2849 [hep-lat]]]
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Part 1

The behavior of two-point correlation
functions at fixed topology



Literature

• Idea:

– Topology fixing causes systematic errors, which are finite volume

corrections.

– Expand two-point correlation functions at fixed topology CQ,V (t) (which
are used to determine hadron masses) as a power series in 1/V .

• Seminal paper: expansion of CQ,V (t) up to O(1/V ) and in part up to
O(1/V 2).

[R. Brower, S. Chandrasekharan, J. W. Negele and U. J. Wiese, Phys. Lett. B 560, 64 (2003)

[hep-lat/0302005]]

• General discussion of n-point functions at fixed topology including also

higher orders in 1/V .
[S. Aoki, H. Fukaya, S. Hashimoto and T. Onogi, Phys. Rev. D 76, 054508 (2007)

[arXiv:0707.0396 [hep-lat]]]

• Our contribution: expansion of CQ,V (t) up to O(1/V 3).

[A. Dromard and M. Wagner, arXiv:1404.0247 [hep-lat]]
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ZQ,V (Z at fixed Q and finite V ) (1)

• In the following: expansion of

ZQ,V ≡
∫

DADψDψ̄ δQ,Q[A]e
−SE [A,ψ̄,ψ],

the partition function at fixed topological charge Q and spacetime volume V ,
in powers of 1/V (QCD at fixed topology is not a quantum theory).

• ZQ,V is the Fourier transform of Zθ,V , the partition function at vacuum angle
θ (SE,θ[A, ψ̄, ψ] ≡ SE [A, ψ̄, ψ] + iθQ[A]; θ = 0 ↔ ordinary QCD):

ZQ,V =

∫

DADψDψ̄
( 1

2π

∫ +π

−π
dθ ei(Q−Q[A])θ

)

e−SE[A,ψ̄,ψ] =

=
1

2π

∫ +π

−π
dθ eiQθ

∫

DADψDψ̄ e−SE,θ[A,ψ̄,ψ]

︸ ︷︷ ︸

≡Zθ,V

=
1

2π

∫ +π

−π
dθ eiQθZθ,V .

(QCD at θ 6= 0 is a quantum theory, e.g. a Hamiltonian and states exist, ...).
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ZQ,V (Z at fixed Q and finite V ) (2)

• One can show En(+θ, Vs) = En(−θ, Vs); it implies (d/dθ)En(θ, Vs)|θ=0 = 0.

• One can show χt = e
(2)
0 (θ)|θ=0 (the second derivative of the vacuum energy

density at θ = 0),

χt ≡ lim
V→∞

〈Q2〉
V

= − lim
V→∞

1

Zθ,V V

d2

dθ2
Zθ,V

∣
∣
∣
θ=0

=

= − lim
V→∞

1

Zθ,V V

d2

dθ2

∑

n

e−En(θ,Vs)T
∣
∣
∣
θ=0

=

= lim
V→∞

1

Zθ,V Vs

∑

n

d2En(θ, Vs)

dθ2
e−En(θ,Vs)T

∣
∣
∣
θ=0

=

= lim
Vs→∞

E
(2)
0 (θ, Vs)

Vs

∣
∣
∣
θ=0

= e
(2)
0 (θ)

∣
∣
∣
θ=0

(ordinary finite size effects neglected, e.g. E0(θ, Vs) = e0(θ)Vs).

• This calculation explains the appearance of χt in the following equations.
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ZQ,V (Z at fixed Q and finite V ) (3)

• Zθ,V is dominated by the vacuum at large temporal extension T ,

ZQ,V =
1

2π

∫ +π

−π
dθ eiQθZθ,V =

=
1

2π

∫ +π

−π
dθ eiQθe−E0(θ,Vs)T

(

1 +O(e−∆E(θ)T )
)

. (1)

• The vacuum energy E0(θ, Vs) can be written as a power series in θ,

E0(θ, Vs)T = e0(θ)V =
( ∞∑

n=0

E2n
(2n)!

θ2n
)

V ,

where En ≡ e
(n)
0 (θ)

∣
∣
∣
θ=0

, in particular E2 = χt.

• The integral in (1) can be solved (calculating order by order in 1/V ) using
standard techniques:

∫ +π

−π dθ →
∫ +∞
−∞ dθ (exponentially suppressed errors) ...

residue theorem ... Gaussian integrals (“saddle point approximation”) ...
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ZQ,V (Z at fixed Q and finite V ) (4)

• The calculation is lengthy ... details not suited for a talk ...
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ZQ,V (Z at fixed Q and finite V ) (5)

• Result for ZQ,V up to 1/V 3:

ZQ,V =

=
1√

2πE2V
(

exp
(

− E0(0, Vs)T − 1

E2V
1

2
Q2 − 1

(E2V )3
E4
24E2

Q4
)

(

1− 1

(E2V )2
E4
2E2

Q2
)−1/2

(

1− 1

E2V
E4
8E2

+
1

(E2V )2

(

− E6
48E2

+
35E42
384E22

)

+
1

(E2V )3

(

− E8
384E2

+
7E4E6
256E22

− 385E43
3072E23

+
( E6
16E2

− E42
3E22

)

Q2
)

+O
( 1

E24V 4
,

1

E24V 4
Q2 ,

1

E24V 4
Q4

))

.

– Parameters also present at unfixed topology: E0(0, Vs).

– New “fixed topology parameters”: E2 = χt, E4, E6.
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CQ,V (t) (C(t) at fixed Q and finite V ) (1)

• In the following: expansion of

CQ,V (t) ≡ 1

ZQ,V

∫

DADψDψ̄ δQ,Q[A]O
†(t)O(0)e−SE[A,ψ̄,ψ],

the two-point correlation function at fixed topological charge Q and
spacetime volume V , in powers of 1/V .

• O is a suitably normalized hadron creation operator,

O ≡ 1√
Vs

∫

d3r O′(r)
(

e.g. O ≡ 1√
Vs

∫

d3r d̄(r)γ5u(r) for the pion
)

,

where O′(r) is a local operator (parity P is not a symmetry at θ 6= 0).

• Then

α(θ) ≡
∣
∣
∣〈H; θ|O|0; θ〉

∣
∣
∣

2

=

∞∑

k=0

α(2k)(0)θ2k

(2k)!
= α(0) exp

( ∞∑

k=1

β(2k)(0)θ2k

(2k)!

)

.
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CQ,V (t) (C(t) at fixed Q and finite V ) (2)

• Result for CQ,V (t) up to 1/V 3:

CQ,V (t) =
α(0)

√

1 + x2/E2V
exp

(

−MH (0)t−
1

E2V

(

1

1 + x2/E2V
− 1

)

1

2
Q2 −

1

(E2V )3
E4

24E2

(

1 + x4/E4V

(1 + x2/E2V )4
− 1

)

Q4

)

(

1−
1

(E2V )2
E4

2E2
Q2

)+1/2(

1−
1

(E2V )2
E4(1 + x4/E4V )

2E2(1 + x2/E2V )3
Q2

)−1/2GC

G
+O

(

1

(E2V )4
Q4

)

GC = 1−
1

E2V

E4(1 + x4/E4V )

8E2(1 + x2/E2V )2
+

1

(E2V )2

(

−
E6(1 + x6/E6V )

48E2(1 + x2/E2V )3
+

35E42(1 + x4/E4V )2

384E22(1 + x2/E2V )4

)

+
1

(E2V )3

(

−
E8(1 + x8/E8V )

384E2(1 + x2/E2V )4
+

7E4(1 + x4/E4V )E6(1 + x6/E6V )

256E22(1 + x2/E2V )5
−

385E43(1 + x4/E4V )3

3072E23(1 + x2/E2V )6

+

(

E6(1 + x6/E6V )

16E2(1 + x2/E2V )4
−

E42(1 + x4/E4V )2

3E22(1 + x2/E2V )5

)

Q2

)

+O

(

1

(E2V )4
,

1

(E2V )4
Q2

)

G = 1−
1

E2V

E4

8E2
+

1

(E2V )2

(

−
E6

48E2
+

35E42

384E22

)

+
1

(E2V )3

(

−
E8

384E2
+

7E4E6

256E22
−

385E43

3072E23
+

(

E6

16E2
−

E42

3E22

)

Q2

)

+O

(

1

(E2V )4
,

1

(E2V )4
Q2

)

.

– Parameters also present at unfixed topology: MH(0), α(0).

– New “fixed topology parameters”: En (E2 = χt),

xn ≡M
(n)
H (0)t+ β(n)(0), n = 2, 4, 6, 8 (i.e. 12 parameters).
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CQ,V (t) (C(t) at fixed Q and finite V ) (3)

• For some applications it might be of interest to have CQ,V (t) up to 1/V 3 in
the form

CQ,V (t) = const × exp

(

−MH (0)t+ fixed topology corrections as a power series in 1/E2V

)

,

which can be obtained by straightforward expansions in 1/V :

CQ,V (t) = α(0) exp

(

−MH(0)t −
1

E2V

x2

2
−

1

(E2V )2

(

x4 − 2(E4/E2)x2 − 2x2
2

8
−

x2

2
Q2

)

−
1

(E2V )3

(

16(E4/E2)2x2 + x6 − 3(E6/E2)x2 − 8(E4/E2)x4 − 12x2x4 + 18(E4/E2)x2
2 + 8x2

3

48

−
x4 − 3(E4/E2)x2 − 2x2

2

4
Q2

)

+O

(

1

(E2V )4
,

1

(E2V )4
Q2 ,

1

(E2V )4
Q4

)

.

– Parameters also present at unfixed topology: MH(0), α(0).

– New “fixed topology parameters”: En (E2 = χt),

xn ≡M
(n)
H (0)t+ β(n)(0), n = 2, 4, 6 (i.e. 9 parameters).
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CQ,V (t) (C(t) at fixed Q and finite V ) (4)

• To reduce the number of parameters, one can also consider lower orders in
1/V , e.g. CQ,V (t) up to 1/V ,

CQ,V (t) =
α(0)

√

1 + x2/E2V
exp

(

−MH (0)t−
1

E2V

(

1

1 + x2/E2V
− 1

)

1

2
Q2

)

GC

G

GC = 1−
1

E2V

E4(1 + x4/E4V )

8E2(1 + x2/E2V )2
, G = 1−

1

E2V

E4

8E2
.

– Parameters: MH(0), α(0), En (E2 = χt), xn ≡M
(n)
H (0)t+ β(n)(0),

n = 2, 4.

• Another strategy is to set certain parameters to zero (i.e. to just ignore the
corresponding fixed topology corrections), e.g.

CQ,V (t) =
α(0)

√

1 + x2/E2V
exp

(

−MH(0)t −
1

E2V

(

1

1 + x2/E2V
− 1

)

1

2
Q2

)

,

which is the 1/V 3 result with x2 ≡M
(2)
H (0)t and En = 0, M

(n)
H (0) = 0,

n = 4, 6, 8, β(n)(0) = 0, n = 2, 4, 6, 8.

– Parameters: MH(0), α(0), E2 = χt, M
(2)
H (0).
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Validity of the expansion of CQ,V (t)

• The presented expansions are good approximations, if the following four
conditions are fulfilled:

(C1) 1/E2V ≪ 1 , |Q|/E2V ≪ 1.
The volume V must be large, the topological charge Q may not be too

large.

(C2) |x2| = |M (2)
H (0)t+ β(2)(0)| <∼ 1.

The temporal separation may not be too large.

(C3) mπ(θ)L >∼ 3 . . . 5 ≫ 1

No ordinary finite size effects.

(C4) (M∗
H(θ)−MH(θ))t≫ 1 , MH(θ)(T − 2t) ≫ 1.

No contamination from excited states or particles propagating backwards
in time.
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Part 2

Quantum mechanics on a circle, the
Schwinger model and SU(2) Yang-Mills

theory at fixed topology



QM on a circle

• Lagrangian parameterized by the angle ϕ:

L ≡ mr2

2
ϕ̇2 − U(ϕ) =

I

2
ϕ̇2 − U(ϕ),

(m: mass; r: radius; I ≡ mr2: moment of inertia; U(ϕ): potential).

• A periodic time with extension T implies ϕ(t+ T ) = ϕ(t) + 2πQ, Q ∈ Z,
and gives rise to topological charge

1

2π

∫ T

0

dt ϕ̇ =
1

2π
(ϕ(T )− ϕ(0)) = Q.

• QM on a circle at fixed topology;

ZQ,T ≡
∫

DϕδQ,Q(ϕ)e
−SE [ϕ].

Marc Wagner, “Extracting hadron masses from fixed topology simulations”, Apr 28, 2014

�

 �(t)

�

 �(t)

Q=0 Q=1



QM on a circle, free particle

• Can be solved analytically, also at fixed topology (hadron creation operator
O ≡ sin(ϕ), hadron mass MH(θ) ≡ E1(θ)− E0(θ)).

• The expansions of CQ,V (t) from part 1 disagree with the analytical results.

• Reason: either assumption
En(+θ) = En(−θ)

or condition
(C2) |M (2)

H (0)t+ β(2)(0)| <∼ 1
not fulfilled (a particularity of the free case).

• One can derive the expansions of CQ,V (t) from part 1 for the more general

case En(+θ) 6= En(−θ); then there is perfect agreement.
[A. Dromard and M. Wagner, arXiv:1404.0247 [hep-lat]]

Marc Wagner, “Extracting hadron masses from fixed topology simulations”, Apr 28, 2014



QM on a circle, square well potential (1)

• Square well potential:

U(ϕ) ≡
{

0 if − ρ/2 < ϕ < +ρ/2
U0 otherwise

.

• Can be solved numerically up to arbitrary precision (no simulations required),
also at fixed topology

→ ideal to test the expansions of CQ,V (t) from part 1.

• In the following: Û0 = U0I = 5.0, ρ = 0.9× 2π.

n Ên M̂
(n)
H (0) α(n)(0) β(n)(0)

0 +0.11708 +0.40714 +0.50419

2 +0.00645 −0.03838 −0.00357 +0.00709
4 −0.00497 +0.04983 +0.00328 −0.00636
6 +0.00042 −0.13191 −0.04721 +0.09308

8 +0.00834 +0.95631 +0.91037 −1.77931
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QM on a circle, square well potential (2)

• Effective masses

M̂ eff
Q,T̂

(t̂) ≡ − d

dt̂
ln (CQ,T̂ (t̂))

for different topological sectors Q and T̂ = T/I = 6.0/Ê2 ≈ 930.2.

• At small temporal separations M̂ eff
Q,T̂

(t̂) quite large and strongly decreasing,

due to the presence of excited states.

• At large temporal separations severe deviations from a constant behavior.
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QM on a circle, square well potential (3)

• Effective masses M̂ eff
Q,T̂

derived from the 1/V expansions of two-point

correlation functions for different topological sectors Q and

T̂ = 6.0/Ê2 ≈ 930.2.

– O(1/V ): 7 parameters.

– O(1/V 2): 10 parameters.

– O(1/V 3): 13 parameters.
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QM on a circle, square well potential (4)

• Similar as before ... this time using expansions of the form

CQ,V (t) = const× exp (−MH(0)t+ fixed topology corrections).

– O(1/V ): 4 parameters.

– O(1/V 2): 7 parameters.

– O(1/V 3): 10 parameters.
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QM on a circle, square well potential (5)

• Similar as before ... this time using only three parameters (MH(0), E2 = χt,

M
(2)
H (0)), all other parameters set to zero (seems to be a good compromise).

– (3.18) → expansion as sketched in part 1.

– (3.20) → const× exp(−MH(0)t+ fixed topology corrections).

– hep-lat/0302005 →
[R. Brower, S. Chandrasekharan, J. W. Negele and U. J. Wiese, Phys. Lett. B 560, 64 (2003)

[hep-lat/0302005]]
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QM on a circle, square well potential (6)

• Determination of physical hadron masses (hadron masses at unfixed
topology) from fixed topology simulations based on the 1/V expansions from

part 1:

1. Perform simulations at fixed topology for different topological charges Q
and spacetime volumes V . Determine “fixed topology hadron masses”

defined e.g. via

MQ,V ≡ M eff
Q,V (tM) = − d

dt
ln (CQ,V (t))|t=tM

(tM should be chosen such that the expansions used in step 2 are good
approximations).

2. Determine MH(0) (the hadron mass at unfixed topology), E2 = χt,

M
(2)
H (0), ... by fitting an effective mass expression derived e.g. from

CQ,V (tM ) =
α(0)

√

1 + x2/E2V
exp

(

−MH(0)tM − 1

E2V
( 1

1 + x2/E2V
− 1

)1

2
Q2

)

,

(x2 ≡M
(2)
H (0)tM) to MQ,V obtained in step 1.
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QM on a circle, square well potential (7)

• Mimic the method to determine a physical hadron mass (at unfixed
topology) from fixed topology computations:

1. Use the exact result for the effective mass to generate M̂Q,T̂ values (at

t̂M = 20.0) for several topological charges Q = 0, 1, 2, 3, 4 and temporal
extensions T̂ = 2.0/Ê2, 3.0/Ê2, . . . , 10.0/Ê2.

2. Perform a single fit as explained on the previous slide (only those masses
M̂Q,T̂ enter the fit, for which the conditions (C1) and (C2) are fulfilled).
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QM on a circle, square well potential (8)

• Alternatively one could perform the fit directly on the “correlator level”:

1. Perform simulations at fixed topology for different topological charges Q

and spacetime volumes V . Determine CQ,V (t) for each simulation.

2. Determine the physical hadron mass MH(0) by performing a single χ2

minimizing fit of one of the 1/V expansions of CQ,V (t) to the numerical

results obtained in step 1. This input from step 1 is limited to those Q, V
and t values, for which the conditions (C1), (C2) and (C4) are fulfilled.
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QM on a circle, square well potential (9)

• M̂H(0) from fixed topology computations (exact result: MH = 0.40714):

fitting to M̂Q,T̂ fitting to correlators

expansion M̂H(0) result rel. error M̂H(0) result rel. error

1
χtV

, |Q|
χtV

≤ 0.5
hep-lat/0302005 0.40733 0.047% 0.40702 0.029%
1/V 3, 3 param. 0.40708 0.014% 0.40706 0.019%

1
χtV

, |Q|
χtV

≤ 0.3
hep-lat/0302005 0.40739 0.062% 0.40732 0.044%
1/V 3, 3 param. 0.40695 0.046% 0.40713 0.002%

• χ̂t from fixed topology computations (exact result: χ̂t = 0.00645):

fitting to M̂Q,T̂ fitting to correlators

expansion χ̂t result rel. error χ̂t result rel. error

1
χtV

, |Q|
χtV

≤ 0.5
hep-lat/0302005 0.00586 9.1% 0.00629 2.5%
1/V 3, 3 param. 0.00631 2.2% 0.00633 1.9%

1
χtV

, |Q|
χtV

≤ 0.3
hep-lat/0302005 0.00590 8.5% 0.00627 2.8%
1/V 3, 3 param. 0.00592 8.2% 0.00630 2.3%

• Expansions give rather accurate results for M̂H(0) (relative errors are below
0.1%) and reasonable results for χ̂t (relative errors of a few percent).

• Smaller relative errors for both M̂H(0) and χ̂t, when using “1/V 3, 3 param.”.
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Schwinger model (1)

• Schwinger model (2D Euclidean quantum electrodynamics):

L(ψ, ψ̄, A) =

Nf∑

f=1

ψ̄(f)(γµ(∂µ + igAµ) +m)ψ(f) +
1

4
FµνFµν.

• Several similarities to QCD:

– Topological charge:

Q =
1

π

∫

d2x ǫµνFµν .

– For Nf = 2 there is a rather light iso-triplet (pions).

– Fermion confinement.

• First determination of physical hadron masses (pion mass) from fixed
topology simulations by Bietenholz et. al.

[W. Bietenholz, I. Hip, S. Shcheredin and J. Volkholz, Eur. Phys. J. C 72, 1938 (2012)

[arXiv:1109.2649 [hep-lat]]]
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Schwinger model (2)

• Schwinger model on the lattice:

– Periodic spacetime lattice with N2
L lattice sites (extension of L = NLa,

spacetime volume V = L2).

– Nf = 2 flavors of Wilson fermions and the Wilson plaquette gauge
action.

– Dimensionful quantities are expressed in units of a, e.g. ĝ = ga and

m̂ = ma (it is common to also use the dimensionless inverse squared
coupling constant β = 1/ĝ2).

– Approach the continuum limit by increasing NL, while keeping the

dimensionless ratios gL = ĝNL and MπL = M̂πNL fixed (Mπ: pion
mass); this requires to decrease both ĝ and M̂π proportional to 1/NL

(for the latter m̂ has to be adjusted appropriately).
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Schwinger model (3)

• Schwinger model on the lattice:

– Geometric definition of topological charge on the lattice,

Q =
1

2π

∑

P

φ(P ),

where
∑

P denotes the sum over all plaquettes P = eiφ(P ) with
−π < φ(P ) ≤ +π (with this definition Q ∈ Z).

– Simulations at various values of β, m̂ and NL using a Hybrid Monte

Carlo (HMC) algorithm with multiple timescale
integration and mass preconditioning.

[https://github.com/urbach/schwinger]

– Figure: probability for a transition to another

topological sector per HMC trajectory, plotted
versus ĝ = 1/

√
β (proportional to a) and

m̂/ĝ = m̂
√
β (proportional to m̂/a), while

gL = ĝNL = NL/
√
β = 24/

√
5 = constant.
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Schwinger model (4)

• As for “QM on a circle” determine physical hadron masses from fixed
topology computations.

– Pion mass and static potential, hadron creation operators

Oπ =
∑

x

ψ̄(u)(x)γ1ψ
(d)(x) , Oq̄q = q̄(x1)U(x1, x2)q(x2).
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Schwinger model (5)

• Hadron masses (the pion mass, the static potential) can be determined
rather precisely (uncertainty ≪ 1%).

• There is a rather large error associated with the topological susceptibility
(uncertainty up to ≈ 20%).

observable β m̂ M̂ (fixed top.) M̂ (conv.) χ̂t (fixed top.) χ̂t (〈Q2〉/V̂ )

Mπ

3.0 -0.07
0.2659(3) 0.2663(3) 0.00292(54)

0.00454(6)VQQ̄(1) 0.1708(1) 0.17108(5) 0.0051(13)

VQQ̄(2) 0.2914(3) 0.2927(2) 0.00247(20)

Mπ

4.0 -0.03
0.2743(6) 0.2743(3) 0.00228(39)

0.00353(14)VQQ̄(1) 0.12552(7) 0.12551(4) 0.00313(26)

VQQ̄(2) 0.2250(2) 0.2247(2) 0.00329(15)
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SU(2) Yang-Mills theory

• SU(2) Yang-Mills theory:

L(Aµ) ≡ 1

4
F a
µνF

a
µν .

• Left plot: there is a significant discrepancy between the static potential from
computations restricted to a single topological sector and corresponding

results obtained at unfixed topology.

• Right plot: comparison of the static potential obtained from Wilson loops at

fixed topology and from standard lattice simulations.
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Conclusions, outlook

• The presented equations and techniques might be a starting point/might
help to overcome the problem of topology freezing in QCD (present for

overlap quarks and at small values of the lattice spacing).
[A. Dromard and M. Wagner, PoS LATTICE 2013, 339 (2013) [arXiv:1309.2483 [hep-lat]]]

[C. Czaban and M. Wagner, PoS LATTICE 2013, 465 (2013) [arXiv:1310.5258 [hep-lat]]]

[A. Dromard and M. Wagner, arXiv:1404.0247 [hep-lat]]

• Future plans are mainly focused on first tests in QCD.
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