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Zusammenfassung

In dieser Arbeit wird ein effektives Modell für SU(2)-Yang-Mills-Theorie vorgestellt, der Pseudo-
teilchen-Ansatz. Die Grundidee besteht darin, das Pfadintegral auf diejenigen Eichfeldkonfi-
gurationen zu beschränken, die als Summe einer kleinen Anzahl von Pseudoteilchen dargestellt
werden können, und die Integration über alle Feldkonfigurationen durch eine Integration über
Pseudoteilchen-Freiheitsgrade zu ersetzen, beispielsweise Amplituden und Farbausrichtungen.

Es wird gezeigt dass der Pseudoteilchen-Ansatz bei geeigneter Wahl der Bausteine, zum Beispiel
400 Instantone, Antiinstantone und Akyronen, wesentliche SU(2)-Yang-Mills-Eigenschaften re-
produziert:

• Das statische Quark-Antiquark-Potential ist linear für große Abstände mit einer attrak-
tiven 1/R-Korrektur wie vom bosonischen String-Bild vorausgesagt.

• Die Stringspannung ist eindeutig positiv, was ein klares Signal für Confinement ist.

• Die Stringspannung, die topologische Suszeptibilität und die kritische Temperatur des
Confinement-Deconfinement-Phasenübergangs zeigen konsistente Skalierungseigenschaften
bezogen auf die Kopplungskonstante.

• Dimensionslose Verhältnise bestehend aus Stringspannung, topologischer Suszeptibilität
und kritischer Temperatur sind in qualitativer Übereinstimmung mit Gitterergebnissen.

Um die Wichtigkeit gewisser Klassen von Eichfeldkonfigurationen in Bezug auf Confinement
festzustellen, werden unterschiedliche Pseudoteilchen-Ensembles verglichen. Die Ergebnisse deu-
ten darauf hin dass topologische Ladung ebenso wie langreichweitige Wechselwirkungen zwischen
Pseudoteilchen wesentliche Eigenschaften von Feldkonfigurationen sind, die für Confinement
verantwortlich sind.





Abstract

We present an effective model for SU(2) Yang-Mills theory, the pseudoparticle approach. The
basic idea is to restrict the path integral to those gauge field configurations, which can be written
as a sum over a small number of pseudoparticles, and to replace the integration over all field
configurations by an integration over pseudoparticle degrees of freedom, e.g. amplitudes and
color orientations.

We demonstrate that the pseudoparticle approach with a suitable choice of building blocks, e.g.
400 instantons, antiinstantons and akyrons, is able to reproduce many essential features of SU(2)
Yang-Mills theory:

• The static quark antiquark potential is linear for large separations with an attractive
1/R-correction as predicted by the bosonic string picture.

• The string tension is unambiguously positive, which is a clear indication of confinement.

• The string tension, the topological susceptibility and the critical temperature of the con-
finement deconfinement phase transition exhibit consistent scaling behaviors with respect
to the coupling constant.

• Dimensionless ratios involving the string tension, the topological susceptibility and the
critical temperature are in qualitative agreement with lattice results.

To determine the importance of certain classes of gauge field configurations with respect to
confinement, we compare different pseudoparticle ensembles. Our findings indicate that topo-
logical charge as well as long range interactions between pseudoparticles are essential properties
of confining gauge field configurations.





Contents

1 Introduction 5

1.1 The basic principle of the pseudoparticle approach . . . . . . . . . . . . . . . . . 6

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Pseudoparticle ensembles in SU(2) Yang-Mills theory 9

2.1 Building blocks of pseudoparticle ensembles: instantons, antiinstantons and akyrons 9

2.2 Pseudoparticle ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 A-ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 AC-ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 S12-ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Ultraviolet regulators and the role of the coupling constant . . . . . . . . 13

2.3 Numerical realization of pseudoparticle ensembles . . . . . . . . . . . . . . . . . . 14

2.3.1 Monte-Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1.1 A single Monte-Carlo step in the Metropolis algorithm . . . . . 15

2.3.1.2 Calculating the action numerically . . . . . . . . . . . . . . . . . 15

2.3.1.3 A single Monte-Carlo simulation . . . . . . . . . . . . . . . . . . 17

2.3.1.4 The whole procedure for generating field configurations . . . . . 18

2.3.2 Boundary effects and how to exclude them . . . . . . . . . . . . . . . . . 18

2.4 Varying the number of pseudoparticles . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Compact degrees of freedom versus non-compact degrees of freedom . . . . . . . 21

3 Calculating observables 23

3.1 The static quark antiquark potential . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Calculating the string tension σ and the Coulomb coefficient α . . . . . . 25

3.1.1.1 Method 1: area perimeter fits . . . . . . . . . . . . . . . . . . . . 25

3.1.1.2 Method 2: Creutz ratios . . . . . . . . . . . . . . . . . . . . . . 27

1



CONTENTS

3.1.1.3 Method 3: generalized Creutz ratios . . . . . . . . . . . . . . . . 30

3.1.1.4 Method 4: fitting the Wilson loop ansatz to − ln〈W(R,T )〉 . . . . 32

3.1.1.5 Comparison of method 1 to 4 . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Calculating the static quark antiquark potential . . . . . . . . . . . . . . 34

3.2 The topological susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 The critical temperature of the confinement deconfinement phase transition . . . 37

3.3.1 The pseudoparticle approach in finite temperature SU(2) Yang-Mills theory 37

3.3.1.1 Periodic pseudoparticles . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1.2 The spacetime region . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1.3 The pseudoparticle density . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 The ensemble average of the Polyakov loop as order parameter . . . . . . 40

4 Applications 45

4.1 Pseudoparticle excitations and gauge field distributions . . . . . . . . . . . . . . 45

4.1.1 The distribution of instanton, antiinstanton and akyron amplitudes . . . . 45

4.1.2 The distribution of the transverse part and the longitudinal part of the
gauge field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Pseudoparticles of different size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Gaussian localized pseudoparticles of different size . . . . . . . . . . . . . . . . . 49

4.4 The effect of instantons, antiinstantons and akyrons . . . . . . . . . . . . . . . . 51

4.5 Very large pseudoparticle ensembles . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 The pseudoparticle approach in quantum mechanics . . . . . . . . . . . . . . . . 55

4.6.1 Calculating energy levels in the path integral formalism . . . . . . . . . . 55

4.6.2 Application of the pseudoparticle approach . . . . . . . . . . . . . . . . . 56

5 Summary and outlook 59

5.1 The pseudoparticle approach as a successful effective model for SU(2) Yang-Mills
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Applications of the pseudoparticle approach . . . . . . . . . . . . . . . . . . . . . 60

5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Euclidean SU(2) Yang-Mills theory 63

B Data analysis and error bars 65

B.1 Error bars for ensemble averages (〈s〉, 〈|Aa
‖|〉, 〈|Aa

⊥|〉, 〈W(R,T )〉, 〈Q2
V 〉 and 〈L〉β) . 65

2



CONTENTS

B.2 Error bars for − ln〈W(R,T )〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.3 Error bars for σ and α (fitting methods) and Vqq̄(R) . . . . . . . . . . . . . . . . 66

B.4 Error bars for − ln(ΓX(R1, . . . , T4)), σ and α (generalized Creutz ratios) . . . . . 66

B.5 Error bars for Tcritical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.6 Error bars for χ1/4/σ1/2 and Tcritical/σ
1/2 . . . . . . . . . . . . . . . . . . . . . . 66

C Color orientation matrices 67

D Any linear superposition of akyrons has vanishing topological charge density 69

E The Fourier transform of a pseudoparticle 71

E.1 Instantons and antiinstantons form transverse gauge fields, akyrons form longi-
tudinal gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

F The continuum limit in the pseudoparticle approach 73

F.1 The gauge field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

F.2 The integration measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

F.3 Approximations with the correct naive continuum limit . . . . . . . . . . . . . . 75

F.3.1 “A-ensembles” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

F.3.2 “S12-ensembles” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

G Calculating Wilson loops numerically 77

G.1 Choosing an appropriate number of sample points . . . . . . . . . . . . . . . . . 78

3



CONTENTS

4



Chapter 1

Introduction

When Richard P. Feynman published his famous path integral paper in 1948 [1], a new formalism
for quantum mechanics and quantum field theory was born. Meanwhile, the path integral
formalism is a standard tool in quantum field theory, both for perturbative calculations, where
path integrals permit a simple and straightforward derivation of Feynman rules, and for non-
perturbative calculations, where observables are expressed in terms of Euclidean path integrals,
which can be computed numerically.

In order to calculate path integrals numerically, one usually introduces a discretized spacetime
lattice to reduce them to ordinary multidimensional integrals. In the case of quantum chromo-
dynamics the corresponding theory is known as lattice gauge theory. Since its first formulation
by Wilson in 1974 [2] and the pioneering numerical work of Creutz [3, 4, 5, 6], enormous progress
has been made. Today at least the gauge sector, that is the pure gluonic theory, can be handled
very efficiently and is well understood from a numerical point of view.

Although solving path integrals on the lattice to produce numerical values for physical quantities
is an important and interesting field, physicists are also interested in getting a sound understand-
ing of the underlying mechanisms. Especially the striking phenomenon of confinement, emerging
already from the deceptively simple Yang-Mills Lagrangian, is not well understood yet. A com-
mon approach to tackle this problem is to replace the path integral by an integration over a
subclass of gauge field configurations. By doing so, one can study the effect of these field config-
urations on certain observables, in particular on the string tension and on the quark antiquark
potential. This in turn might help to clarify the physical mechanism responsible for confinement.

Many such attempts, most of them considering pure SU(2) Yang-Mills theory instead of full
QCD, have been made: there are ensembles of singular gauge instantons, instanton gas models
and instanton liquid models, and ensembles of calorons (there are numerous papers on this
subject; c.f. e.g. [7] and references therein), ensembles of regular gauge instantons and ensembles
of merons [8, 9], or the identification and removal of center vortices on the lattice (c.f. e.g. [10]),
just to name a few of them. Some of these approaches have analytical aspects but most of them
extensively resort to numerical methods.

In this work we generalize the idea of studying certain classes of gauge field configurations,
especially their importance with regard to confinement. To this end, we introduce the pseu-
doparticle approach [11], an effective model for SU(2) Yang-Mills theory. The basic principle of
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1.1. THE BASIC PRINCIPLE OF THE PSEUDOPARTICLE APPROACH

this method is to represent the gauge field in the path integral as a sum over a fixed number
of pseudoparticles, typically around 400, and to replace the integration over all field configu-
rations by an integration over the pseudoparticle degrees of freedom. The intention is to use
a significantly smaller number of degrees of freedom than in lattice calculations (≈ 400 in the
pseudoparticle approach compared to e.g. 164 × 12 = 786, 432 on a 164-lattice) but to produce
results, which are in qualitative agreement with lattice results. We specify a couple of pseu-
doparticle ensembles and demonstrate that they are able to reproduce many essential features of
SU(2) Yang-Mills theory, particularly confinement. We also consider pseudoparticle ensembles,
which do not yield confinement. Comparing these results gives evidence that topological charge
and long range interactions between pseudoparticles are necessary properties of confining gauge
field configurations.

1.1 The basic principle of the pseudoparticle approach

In contrast to a particle, which is localized in space but not in time, a pseudoparticle is a field
configuration, which is localized in space as well as in time. When talking about pseudoparticles
in SU(2) Yang-Mills theory, one usually thinks about instantons and antiinstantons (c.f. (A.10)
and (A.11)), which have been a very successful tool for many years and which are therefore
widely known. An instanton/antiinstanton is a solution of the classical Yang-Mills equations
of motion (A.9). It is the minimum action field configuration with topological charge Q = ±1.
However, this work is not about instantons and antiinstantons in particular. In our context, a
pseudoparticle can be any localized gauge field configuration. It is not necessarily a solution of
the classical equations of motion. In general it is rather far from that.

The pseudoparticle approach is a numerical technique to approximate path integrals in Euclidean
SU(2) Yang-Mills theory (c.f. Appendix A):

〈

O
〉

=
1

Z

∫

DAO[A]e−S[A] , Z =

∫

DAe−S[A] (1.1)

with the action S defined by (A.1). The basic idea behind the pseudoparticle approach is to
represent the gauge field Aa

µ as a linear superposition of a small number of pseudoparticles, typi-
cally around 400, where each of the pseudoparticles has a position and certain other parameters,
e.g. an amplitude and/or a color orientation. Written in a very general form the gauge field is
given by

Aa
µ(x) =

∑

i

(ρ(i)a)aµ(x − z(i)) +
∑

j

(ρ(j)ã)aµ(x − z(j)) + . . . , (1.2)

where the values of the indices i and j are from different ranges, a and ã are different types of
pseudoparticles, ρ(i) contains the parameters of the i-th pseudoparticle and z(i) is the position
of the i-th pseudoparticle. Figure 1.1 shows (1.2) in a graphical way. It is important to stress
that such a sum of pseudoparticles is not supposed to be close to a solution of the classical Yang-
Mills equations, like it is the case e.g. in instanton gas models. Even if every building block
on its own is a solution of the classical equations of motion, we usually pack them together so
tightly that the resulting sum is far from that. The intention of the pseudoparticle approach is
to describe full quantum physics and not only certain semiclassical corrections.
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CHAPTER 1. INTRODUCTION

x0 x0

x1 x1

+ +

x1

x0

(ρ(3)a)a

µ
(x − z(3))(ρ(2)a)a

µ
(x − z(2))(ρ(1)a)a

µ
(x − z(1))

=

x0

x1

Aa

µ
(x)

Figure 1.1: (1.2) illustrated graphically. In this specific example there are only three pseudopar-
ticles, which are of the same type.

The integration over all field configurations in the path integral is replaced by an integration
over the parameters ρ(i) of the pseudoparticles:

∫

DA . . . →
∫
∏

i

dρ(i) . . . (1.3)

When considering a spacetime region with a finite number of pseudoparticles, this is an ordinary
multidimensional integral, which can be computed by Monte-Carlo methods.

Note that the pseudoparticle approach is a very general technique, which can also be applied to
other quantum field theories with only minor modifications. An example, the harmonic oscillator
in quantum mechanics, is discussed in section 4.6.

The starting point of this work has been [8, 9]. However, there are two important generalizations
of the techniques presented therein:

• We do not restrict our approach to instantons and merons. In the following a pseudoparti-
cle can be any localized gauge field configuration. For example we also employ pseudopar-
ticles without topological charge, so called akyrons (c.f. (2.3)), and Gaussian localized
pseudoparticles, that is pseudoparticles without long range interactions (c.f. section 4.3).

• In addition to a color orientation matrix we also assign each pseudoparticle a variable
amplitude. Due to that amplitude the pseudoparticles are able to model small quantum
fluctuations.

Parts of this work have already been published [11].

1.2 Outline

This work is organized as follows.

In Chapter 2 we specify the pseudoparticles and pseudoparticle ensembles, which we will consider
for the major part of this work. We also discuss the numerical realization of pseudoparticle
ensembles.

In Chapter 3 we show how certain observables can be calculated in the pseudoparticle approach:
the quark antiquark potential, the topological susceptibility and the critical temperature of
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1.2. OUTLINE

the confinement deconfinement phase transition. We also present numerical results, which are
in qualitative agreement with lattice results. Our results demonstrate that the pseudoparticle
approach with an appropriate choice of pseudoparticles is able to reproduce many essential
features of SU(2) Yang-Mills theory.

In Chapter 4 we compare different pseudoparticle ensembles, where some of them are confining
and others are not. The intention is to find out necessary properties of confining gauge field
configurations. We also consider very large pseudoparticle ensembles and discuss possible con-
nections to non-compact lattice gauge theory. Finally, we apply the pseudoparticle approach to
quantum mechanics.

In Chapter 5 we summarize our results and give a brief outlook regarding further research.

There is a short review of Euclidean SU(2) Yang-Mills theory in Appendix A. It might be helpful
to clarify our notation and conventions.

In Appendix B we deal with data analysis. We explain in detail how error bars appearing in the
plots throughout this work have been generated.
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Chapter 2

Pseudoparticle ensembles in SU(2)
Yang-Mills theory

2.1 Building blocks of pseudoparticle ensembles: instantons,
antiinstantons and akyrons

A pseudoparticle is a gauge field configuration, which is localized in space and in time. For the
most part of this work we consider pseudoparticles

Aa
µ(x) = A(i)Cab(i)ab

µ,instanton(x − z(i)) , ab
µ,instanton(x) = ηb

µν

xν

x2 + λ2
(2.1)

Aa
µ(x) = A(i)Cab(i)ab

µ,antiinstanton(x − z(i)) , ab
µ,antiinstanton(x) = η̄b

µν

xν

x2 + λ2
(2.2)

Aa
µ(x) = A(i)Cab(i)ab

µ,akyron(x − z(i)) , ab
µ,akyron(x) = δb1 xµ

x2 + λ2
(2.3)

(c.f. Figure 2.1) with ηb
µν = ǫbµν + δbµδ0ν − δbνδ0µ and η̄b

µν = ǫbµν − δbµδ0ν + δbνδ0µ. Each

pseudoparticle has an index i, an amplitude A(i) ∈ R, a color orientation matrix Cab(i) ∈ SO(3),
a position z(i) ∈ R

4 and a size λ ∈ R
+. When considering a single pseudoparticle, the color

-4

-2

0

2

4
-4

-2

0

2

4

-4

-2

0

2

4
-4

-2

0

2

4

Aa

µ

xµ

Figure 2.1: the gauge field of a single instanton, antiinstanton or akyron (λ = 1.0) plotted
against suitably chosen spacetime directions.

9



2.1. BUILDING BLOCKS OF PSEUDOPARTICLE ENSEMBLES: ...

orientation matrix is a global gauge transformation of the corresponding aa
µ,.... Since such a

global gauge transformation can be specified by an element of SU(2), for which we can choose
the three sphere as parameter space, it can be expressed in terms of (c0(i), . . . , c3(i)) ∈ S3, i.e.
c0(i), . . . , c3(i) ∈ [−1, 1], c0(i)

2 + c(i)2 = 1:

Cab(i) = δab
(

c0(i)
2 − c(i)2

)

+ 2ca(i)cb(i) + 2ǫabcc0(i)cc(i) (2.4)

(c.f. Appendix C). We do not consider spatial rotations, because the effect of any spatial rotation
can also be achieved by applying a suitably chosen color orientation matrix [12]. Ensembles
containing such pseudoparticles are Lorentz invariant and globally gauge invariant.

Setting A(i) = 2 in (2.1) yields an instanton in regular gauge. Although we are aware that for
A(i) 6= 2 such pseudoparticles are not actually instantons, we will nevertheless refer to them by
that term. For A(i) = 2 the action of an instanton is S = 8π2/g2, otherwise it is S = ∞. The
topological charge is given by

Q =
1

4
A(i)2

(

3 −A(i)
)

. (2.5)

With exception of a sign reversal in (2.5) the same applies for antiinstantons (2.2).

A single akyron is a pure gauge1, that is S = 0 and Q = 0. Note that for a linear superposition
of akyrons S 6= 0 in general. However, any such superposition has vanishing topological charge
density (c.f. Appendix D).

A common and essential property of instantons, antiinstantons and akyrons is their long range
nature. For large |x| the corresponding gauge fields decrease like 1/|x|. As a consequence these
pseudoparticles have the ability to interact over large distances.

Why this particular choice of pseudoparticles?

An important reason for considering pseudoparticles (2.1) and (2.2) is their similarity to regular
gauge instantons and merons, which are known to exhibit confinement [8, 9]. Therefore, using
such pseudoparticles is certainly a good starting point.

Additionally we include akyrons (2.1) so that the gauge field has both a transverse part and a
longitudinal part (superpositions of instantons and antiinstantons form transverse gauge fields,
whereas superpositions of akyrons form longitudinal gauge fields; c.f. Appendix E.1). Further-
more, one can show that in the continuum limit, i.e. the limit of infinitely many pseudoparticles,
instantons, antiinstantons and akyrons almost form a basis of all gauge field configurations (c.f.
Appendix F.1).

Finally, numerous “computer experiments” with different types of pseudoparticles have shown
that observables in the pseudoparticle approach are not very sensitive to moderate changes in
the definition of the pseudoparticles. For example if we replace in (2.1) to (2.3) 1/(x2 + λ2) by
exp(−x2/2λ2) we get similar results for sufficiently large λ (c.f. section 4.3). It seems that results
in the pseudoparticle approach hardly depend on details but rather on certain “global pseudopar-
ticle properties”, like their ability to interact over sufficiently large distances or whether they
carry topological charge or not.

1Ancient Greek: akyros = pure gauge (literally “without effect”).
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CHAPTER 2. PSEUDOPARTICLE ENSEMBLES IN SU(2) YANG-MILLS ...

2.2 Pseudoparticle ensembles

We place N pseudoparticles with randomly and uniformly chosen positions inside a hyperspher-
ical spacetime volume (c.f. Figure 2.2). In the following we denote the radius of this spacetime
hypersphere by rspacetime and its volume by Vspacetime. These quantities are related according to
Vspacetime = (π2/2)r4

spacetime. The pseudoparticle density is given by n = N/Vspacetime. For the
most part of this work we consider around 400 pseudoparticles (2.1) to (2.3) with size λ = 0.5.
Usually the density is n = 1.0, which amounts to rspacetime ≈ 3.0.

The intention of the pseudoparticle approach is to use a significantly smaller number of degrees
of freedom than in typical lattice calculations (when applying around 400 pseudoparticles this
is the case; e.g. a 164-lattice has 164 × 12 = 786, 432 degrees of freedom), but to produce
results, which are in qualitative agreement. In other words, the pseudoparticles are chosen such
that they represent essential degrees of freedom of SU(2) Yang-Mills theory with respect to
certain observables, in particular the quark antiquark potential for large separations. Using a
significantly smaller number of pseudoparticles, i.e. N ≪ 100, is impossible, because to extract
physically meaningful results we require a sufficiently large spacetime region, where border effects
are negligible (c.f. Figure 2.2 and section 2.3.2).

In this work we consider three types of pseudoparticle ensembles, A-ensembles, AC-ensembles
and S12-ensembles.

region of negligible
boundary effects

region of strong
boundary effects

x

x0

boundary of spacetime

4-dimensional
spacetime hypersphere

rboundary

rspacetime

Figure 2.2: a spacetime hypersphere of radius rspacetime with N = 20 pseudoparticles (pseu-
doparticles are symbolized by dark gray circles).

2.2.1 A-ensembles

The gauge field is a superposition of instantons, antiinstantons and akyrons:

Aa
µ(x) =

∑

i

A(i)Cab(i)ab
µ,instanton(x − z(i)) +

∑

j

A(j)Cab(j)ab
µ,antiinstanton(x − z(j)) +

11



2.2. PSEUDOPARTICLE ENSEMBLES

∑

k

A(k)Cab(k)ab
µ,akyron(x − z(k)) (2.6)

(here and in the following the indices i, j and k assume values from different ranges). In
accordance with the ratio of transverse and longitudinal gauge field components, which is 3 : 1,
we choose Ninstanton : Nantiinstanton : Nakyron = 3 : 3 : 2 (Ninstanton, Nantiinstanton and Nakyron are
the corresponding pseudoparticle numbers). We consider an equal number of instantons and
antiinstantons so that the ensemble is symmetric with respect to the topological charge (c.f.
(2.5)).

The color orientations Cab(i) are chosen randomly and uniformly on S3.

The integration over all gauge field configurations in the path integral is approximated by

∫

DA . . . ∝
∫
(
∏

i

dA(i)

)

. . . (2.7)

We refer to such ensembles as A-ensembles (integration over Amplitudes).

2.2.2 AC-ensembles

We consider ensembles, which are extensions of A-ensembles.

As before, the gauge field is given by (2.6) but the integration is performed not only over
amplitudes but also over color orientations:

∫

DA . . . =

∫
(
∏

i

dA(i) dC(i)

)

. . . (2.8)

We refer to such ensembles as AC-ensembles (integration over Amplitudes and Color orienta-
tions).

2.2.3 S12-ensembles

We consider ensembles, where nine instantons and three akyrons at a time share the same
spacetime point. The gauge field is given by

Aa
µ(x) =

=
∑

i

( 9∑

j=1

A(i, j)Cab(i, j)

︸ ︷︷ ︸

=Sab(i)

ab
µ,instanton(x − z(i)) +

12∑

k=10

A(i, k)Ca1(i, k)

︸ ︷︷ ︸

=Sa0(i)

a1
µ,akyron(x − z(i))

)

=

12
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=
∑

i

(

Sab(i)ab
µ,instanton(x − z(i)) + Sa0(i)a1

µ,akyron(x − z(i))
)

=

=
∑

i

SaB(i)aB
µ,S12(x − z(i)), (2.9)

where

aB
µ,S12(x) =

{
aB

µ,instanton(x) if B = 1, 2, 3

a1
µ,akyron(x) if B = 0

. (2.10)

We refer to aB
µ,S12 as a pseudoparticle cluster (such a cluster is equivalent to a sum of nine

instantons and three akyrons). Note that there is no difference for the gauge field whether a
pseudoparticle cluster is made up from instantons or from antiinstantons.

The functions SaB(i) = (Sa0(i),Sab(i)), which we have defined in (2.9), are the “amplitudes”
of the i-th pseudoparticle cluster. It can be shown that any SaB(i) can be realized by suitably
chosen amplitudes A(i, j) and A(i, k) and color orientation matrices Cab(i, j) and Ca1(i, k) (c.f.
Appendix C). The integration over all field configurations (F.9) is approximated by

∫

DA . . . ∝
∫



∏

i,a,B

dSaB(i)



 . . . (2.11)

We refer to such ensembles as S12-ensembles (a pseudoparticle cluster is a Sum of 12 pseudopar-
ticles).

Numerically it is less time consuming to calculate observables in an S12-ensemble than in an
A-ensemble or an AC-ensemble with the same number of pseudoparticles.

2.2.4 Ultraviolet regulators and the role of the coupling constant

In lattice calculations there is one ultraviolet regulator, the lattice spacing. In physical units it
can be adjusted by choosing appropriate values for the coupling constant g. The scale is usually
set by identifying the string tension σ with the physical value 4.2/fm2.

In the pseudoparticle approach the minimum size of ultraviolet fluctuations is determined by the
pseudoparticle size λ and the average pseudoparticle distance d̄ = 1/n1/4. Therefore, there are
two ultraviolet regulators. We expect that a variation of the coupling constant g has a similar
effect in the pseudoparticle approach as it has in lattice calculations: λ and d̄ in physical units
are changed (as is any other dimensionful quantity) but their ratio remains constant.

However, in contrast to lattice calculations we also have to specify the ratio λ/d̄. A priori it
is not clear how to choose that ratio. A sensible requirement is certainly that λ and d̄ are of
the same order of magnitude. For our standard choice, λ = 0.5 and d̄ = 1/n1/4 = 1.0, this
is the case. Ultimately, numerical calculations are necessary to check whether a certain ratio
yields meaningful results. For λ/d̄ = λn1/4 = 0.2 . . . 1.1 numerical calculations have shown
that physical quantities are pretty stable with respect to a variation of λ/d̄ and that there is
qualitative agreement with lattice results (c.f. section 4.2).

13
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2.3 Numerical realization of pseudoparticle ensembles

We approximate path integral expectation values by ensemble averages of either an A-ensemble,
an AC-ensemble or an S12-ensemble (c.f. section 2.2.1 to 2.2.3). In each of the three cases the
integral over all field configurations is replaced by a finite dimensional integral (c.f. (2.7), (2.8)
and (2.11)), which can be computed by Monte-Carlo simulations. Only the action inside the
spacetime hypersphere is considered for such a “path integral”.

Putting everything together, the ensemble average of a quantity O in an A-ensemble is given by

〈

O
〉

=
1

Z

∫
(

N∏

i=1

dA(i)

)

O(A(i))e−S(A(i)) , Z =

∫
(

N∏

i=1

dA(i)

)

e−S(A(i)) (2.12)

S(A(i)) =

∫

Vspacetime

d4x s(A(i)) (2.13)

(the quantity O, the action S and the action density s can be expressed in terms of A(i) via
(2.6)). Analogous formulas hold for AC-ensembles and for S12-ensembles.

2.3.1 Monte-Carlo simulations

In order to calculate multidimensional integrals like (2.12), we resort to Monte-Carlo simulations.
A Monte-Carlo simulation is a stochastic method for obtaining an “adequate approximation” of
such a multidimensional integral in a “reasonable time”.

The idea behind a Monte-Carlo simulation is to generate a representative set of field configu-
rations. Such a representative set of field configurations is a set, where the elements “seem to
be distributed” according to the probability density e−S/Z. Once a representative set of n field
configurations is available, which is of the form

{

(A(i))1 , (A(i))2 , . . . , (A(i))n

}

(2.14)

when considering an A-ensemble, an estimate for 〈O〉 can be obtained by

〈

O
〉

≈ 1

n

n∑

j=1

O((A(i))j). (2.15)

If the field configurations in (2.14) are stochastic independent, which is often a plausible as-
sumption, the maximum likelihood estimate for the standard deviation of 〈O〉 is given by

σ(O) ≈




1

n(n − 1)

n∑

j=1

(

O((A(i))j) −
〈

O
〉)2





1/2

. (2.16)

For large n this quantity decreases like 1/
√

n.

There exist many different Monte-Carlo algorithms. In this work we apply the Metropolis
algorithm (c.f. e.g. [13]).

14
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2.3.1.1 A single Monte-Carlo step in the Metropolis algorithm

In a single Monte-Carlo step the pseudoparticles or, in the case of an S12-ensemble, the pseu-
doparticle clusters are updated one by one in fixed order.

A Metropolis update is performed as follows: let Aa
µ be the current field configuration. A new

field configuration Aa
µ
′ is generated randomly according to certain rules, which will be specified

below. If S[A] ≥ S[A′] the current field configuration is replaced by the new field configuration.
If S[A] < S[A′] the current field configuration is replaced by the new field configuration with
probability e−S[A′]/e−S[A].

In the following we specify the rules for generating new field configurations.

Updating amplitudes A(i) (A-ensemble and AC-ensemble): when updating a pseudopar-
ticle with an amplitude A(i), a new amplitude A(i)′ = A(i) + δA is generated, where δA
is a random number chosen uniformly in [A(i) − ∆A,A(i) + ∆A].

Updating color orientation matrices Cab(i) (AC-ensemble): as already explained, a color
orientation matrix Cab(i) can be specified by (c0(i), . . . , c3(i)) ∈ S3 (c.f. Appendix C).
When updating a pseudoparticle with a variable color orientation given by (c0(i), . . . , c3(i)),
a point (δc0, . . . , δc3) is chosen uniformly inside a 4-dimensional hypersphere with radius
∆C. (δc0, . . . , δc3) is added to (c0(i), . . . , c3(i)) and the result is normalized so that it is
an element of S3 again. This is the new color orientation, i. e.

(c0(i)
′, . . . , c3(i)

′) =
(c0(i), . . . , c3(i)) + (δc0, . . . , δc3)

|(c0(i), . . . , c3(i)) + (δc0, . . . , δc3)|
. (2.17)

Updating pseudoparticle clusters (S12-ensemble): when updating a pseudoparticle clus-
ter with “amplitudes” SaB(i), new “amplitudes” SaB(i)′ = SaB(i) + δSaB are generated,
where δSaB are random numbers chosen uniformly in [SaB(i) − ∆S,SaB(i) + ∆S].

It can be shown that a Metropolis algorithm with these update rules generates a representative
set of field configurations after a sufficiently long thermalization phase.

The amount of time, needed to generate a representative set of field configurations, is highly
dependent on ∆A, ∆C and ∆S. These parameters in turn depend on the details of the considered
ensemble, e.g. the number of pseudoparticles or the coupling constant. A heuristic criterion
for choosing “optimal” parameters is to adjust them so that the acceptance rate of new field
configurations roughly 50% [14]. To achieve that, we multiply the parameters ∆A, ∆C and ∆S
after every Monte-Carlo step with 1.5 if the acceptance rate has been greater than 70%, and we
divide by 1.5 if the acceptance rate has been less than 30%. To assure that this heuristic does
not spoil the generation of a representative set of field configurations, we only employ it during
the first part of the thermalization phase. Reasonable initial values are ∆A = 1.0, ∆C = 0.4,
∆S = 1.0.

2.3.1.2 Calculating the action numerically

In order to decide whether to accept or to reject a randomly generated new field configura-
tion, it is necessary to determine the action of the current and the new field configuration
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(c.f. section 2.3.1.1). As already mentioned, we only consider the action inside the spacetime
hypersphere (c.f. (2.13)). An approximate value of this action can be obtained by ordinary
Monte-Carlo integration.

To this end, sample points are chosen randomly and uniformly inside the spacetime hypersphere
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Figure 2.3: AC-ensemble, N = 400, n = 1.0, λ = 0.5, g = 4.0, for 40 . . . 400 sample points.
a) 〈s〉 plotted against the distance to the center of the spacetime hypersphere. b) 〈|Aa

‖ |〉 plotted

against the distance to the center of the spacetime hypersphere. c) − ln〈W(R,T )〉|R/T=1/2 plotted
against the area. d) σ obtained by area perimeter fits plotted against the number of sample
points (R/T = 1/2, dcutoff = 1.3, rboundary = 2.6; c.f. section 3.1.1.1). e) χ plotted against the
number of sample points (rboundary = 2.0). f) χ1/4/σ1/2 plotted against the number of sample
points.
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at the beginning of each Monte-Carlo simulation. In order to save computation time, these
sample points are never changed during a Monte-Carlo simulation. The number of sample points
is chosen as small as possible but large enough so that effects arising from insufficient sampling
are negligible. Numerical calculations have shown that 400 sample points are an acceptable
tradeoff for most ensembles.

Figure 2.3 shows for a typical ensemble how certain quantities are affected by the number
of sample points. For more than 200 sample points the results appear to be stable. For a
detailed explanation of how the quantities shown in Figure 2.3 have been obtained, we refer to
section 2.3.2 and to Chapter 3.

2.3.1.3 A single Monte-Carlo simulation

A single Monte-Carlo simulation is composed of a sequence of nMC Monte-Carlo steps. The
first nMC,thermalization Monte-Carlo steps are thermalization steps, that is field configurations
generated during these steps are not used for calculating ensemble averages. Even after the
thermalization phase is complete, only field configurations separated by nMC,out Monte-Carlo
steps are considered for the representative set (2.14). We do not consider field configurations
after every Monte-Carlo step, because such field configurations are usually very similar and,
therefore, do not provide a significant amount of new information.

In order to speed up thermalization, we only use a small number of sample points for the Monte-
Carlo integration of the action density at the beginning of each Monte-Carlo simulation. During
the thermalization phase this number is increased until the total number of sample points,
typically 400, is reached. To be more specific, we use the following heuristic rules:

• Monte-Carlo step 1 to nMC,1:
number of sample points used = (1/16)× total number of sample points.

• Monte-Carlo step nMC,1 + 1 to nMC,2:
number of sample points used = (1/8)× total number of sample points.

• Monte-Carlo step nMC,2 + 1 to nMC,3:
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Figure 2.4: AC-ensemble, N = 400, n = 1.0, λ = 0.5, g = 4.0. The average action inside the
spacetime hypersphere plotted against the number of the Monte-Carlo step.
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number of sample points used = (1/4)× total number of sample points.

• Monte-Carlo step nMC,3 + 1 to nMC,4:
number of sample points used = (1/2)× total number of sample points.

• Monte-Carlo step nMC,4 + 1 to nMC:
number of sample points used = total number of sample points.

Most of the results presented throughout this work have been generated with nMC = 200,
nMC,thermalization = 100, nMC,out = 5, nMC,1 = 20, nMC,2 = 40, nMC,3 = 50 and nMC,4 = 60.

Halfway between Monte-Carlo step nMC,4 and nMC,thermalization, that is several steps before
generating field configurations that will be used for calculating ensemble averages, the parameters
∆A, ∆C and ∆S are no longer updated by the method explained in section 2.3.1.1.

In Figure 2.4 we plotted the average action inside the spacetime hypersphere against the number
of the Monte-Carlo step for a typical ensemble. For the averaging we considered 6, 000 indepen-
dent Monte-Carlo simulations. From such plots we can determine when Monte-Carlo simulations
have reached approximate thermal equilibrium. For the example shown in Figure 2.4 this is the
case after roughly 100 Monte-Carlo steps.

2.3.1.4 The whole procedure for generating field configurations

In order to average over pseudoparticle positions and in the case of an AC-ensemble also over
color orientations, we perform a large number of independent Monte-Carlo simulations. At the
beginning of each of these Monte-Carlo simulations the positions z(i) of the pseudoparticles are
chosen randomly and uniformly inside the spacetime hypersphere, as are the color orientation
matrices Cab(i) on S3. All amplitudes A(i) and SaB(i) are set to zero.

Most of the time we have calculated ensemble averages from 6, 000 independent Monte-Carlo
simulations. Together with our standard choice of parameters, nMC = 200,
nMC,thermalization = 100 and nMC,out = 5, this amounts to a total of 6, 000 × 20 = 120, 000 field
configurations for the representative set (2.14).

2.3.2 Boundary effects and how to exclude them

In principle we would like to consider ensembles of infinite spatial and temporal extension.
However, due to numerical reasons we have to restrict spacetime to hyperspheres of finite size.
The question arises whether there is a region inside a finite spacetime hypersphere, where physics
is approximately the same as it is in a system of infinite extension. A necessary requirement
for such a region, which can be checked numerically, is translational invariance of physically
meaningful quantities. To put it another way, we have to assure that there is a spacetime
region, where boundary effects are negligible. Samples of physically meaningful quantities may
not be taken outside this region.

In order to check whether there is such a region, we calculate the quantities 〈s〉, 〈|Aa
‖ |〉 and

〈|Aa
⊥|〉 as functions of the distance to the center of the spacetime hypersphere:

• 〈s〉 is the average action density.
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• 〈|Aa
‖ |〉 is the average absolute value of those gauge field components tangential to a spherical

surface centered around the origin.

• 〈|Aa
⊥|〉 is the average absolute value of those gauge field components perpendicular to a

spherical surface centered around the origin.

Although the quantities 〈|Aa
‖ |〉 and 〈|Aa

⊥|〉 are not gauge invariant and, therefore, not physi-
cally meaningful, we nevertheless expect them to be constant in regions where border effects
are negligible. As long as 〈s〉, 〈|Aa

‖ |〉 and 〈|Aa
⊥|〉 are approximately constant, we consider the

corresponding hyperspherical spacetime region to be equivalent to a spacetime of infinite exten-
sion. That is in such a spacetime region boundary effects are considered to be negligible. In the
following we denote the corresponding radius by rboundary (c.f. Figure 2.2).

A typical example is shown in Figure 2.5 (AC-ensemble, N = 400, n = 1.0, λ = 0.5 and g = 4.0).
We consider the spacetime region inside a hypersphere of radius rboundary = 2.0 . . . 2.6 to be a
region where boundary effects are negligible.

2.4 Varying the number of pseudoparticles

An important issue is to check the stability of physical quantities in the pseudoparticle ap-
proach against a variation of the pseudoparticle number N , while the pseudoparticle density
n = N/Vspacetime is kept constant. This is tantamount to studying identical ensembles of dif-
ferent size. One might suspect that due to the long range nature of instantons, antiinstantons
and akyrons such a variation will lead to considerable changes in numerical results. However,
numerical calculations have shown that this is not the case. Apparently the action forces the
pseudoparticles to chose their amplitudes and color orientations such that physical quantities
remain stable.

In Figure 2.6 we considered a typical example, AC-ensembles with n = 1.0, λ = 0.5, g = 4.0 and
different pseudoparticle numbers N ∈ {100 , 200 , . . . , 800}.
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Figure 2.6: AC-ensemble, n = 1.0, λ = 0.5, g = 4.0, for different pseudoparticle numbers
N ∈ {100 , 200 , . . . , 800}. a) 〈s〉 plotted against the distance to the center of the spacetime
hypersphere. b) 〈|Aa

‖|〉 plotted against the distance to the center of the spacetime hypersphere.

c) − ln〈W(R,T )〉|R/T=1/2 plotted against the area. d) σ plotted against N . e) χ plotted against

N . f) χ1/4/σ1/2 plotted against N .

Figure 2.6a shows that the average action density 〈s〉 near the center of the spacetime hyper-
sphere varies by less than 25%, although the number of pseudoparticles has been increased by a
factor of 8. 〈|Aa

‖ |〉 is even more stable with respect to N (c.f. Figure 2.6b). Figure 2.6c demon-
strates that varying the pseudoparticle number has essentially no effect on Wilson loops. In
order to determine the string tension, we performed area perimeter fits to − ln〈W(R,T )〉|R/T=1/2

(R/T = 1/2, dcutoff = 1.0, rboundary has been chosen individually so that the width of the
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boundary is 0.72 for all N ; c.f. section 3.1.1.1). The results are shown in Figure 2.6d. Although
ensemble averages of Wilson loops are essentially independent of the pseudoparticle number,
the string tension σ is increasing for decreasing N . This is the case, because for small N the
area perimeter fit can only be performed to data points with small Wilson loop areas. Such
data points include cutoff effects, which give rise to an unphysically large value of σ. The
topological susceptibility χ is pretty stable with respect to the pseudoparticle number, as is the
dimensionless ratio χ1/4/σ1/2 (c.f. Figure 2.6e and Figure 2.6f).

2.5 Compact degrees of freedom versus non-compact degrees of
freedom

In this section we illustrate that there is a big difference between non-compact degrees of freedom
(amplitudes A(i) and SaB(i)) and compact degrees of freedom (color orientation matrices Cab(i)).
We demonstrate that ensemble averages mainly depend on non-compact degrees of freedom,
whereas compact degrees of freedom play a subdominant role. To this end, we compare the
following ensembles with N = 360, n = 1.0, λ = 0.5 and g = 4.0:

• A-ensemble (360 non-compact degrees of freedom).

• AC-ensemble (360 non-compact and 360 × 3 = 1080 compact degrees of freedom).

• S12-ensemble (30 × 12 = 360 non-compact degrees of freedom).

Note that all three ensembles have the same number of non-compact degrees of freedom.

Figure 2.7a and 2.7b show 〈s〉 and 〈|Aa
‖ |〉 plotted against the distance to the center of the

spacetime hypersphere. Although the number of degrees of freedom in the AC-ensemble is four
times the number of degrees of freedom in the A-ensemble (there is a difference of 1080 compact
degrees of freedom), the results for these ensembles are indistinguishable within statistical errors.
The implication is that compact degrees of freedom have little effect. 〈s〉 and 〈|Aa

‖|〉 in the S12-

ensemble are roughly 10% smaller. This is due to the clustering of pseudoparticles (recall, that
an S12-ensemble is identical to an A-ensemble with the exception that twelve pseudoparticles at
a time share the same spacetime point). Figure 2.7c shows − ln〈W(R,T )〉|R/T=1/2 as a function of
the area. For all three ensembles the results are nearly identical. The topological susceptibility
is within statistical errors the same in the A-ensemble and the AC-ensemble, but it is larger by
a factor of approximately 1.7 in the S12-ensemble. Although clustering pseudoparticles reduces
the average action, it seems to have an opposite effect on the topological charge.

Our findings have been supported by a couple of similar computations, which have also shown
that numerical results mainly depend on the number of non-compact degrees of freedom, i.e. the
number of instantons, antiinstantons and akyrons. On the other hand, there is little difference
whether we consider an A-ensemble, an AC-ensemble or an S12-ensemble.

We conclude that in our pseudoparticle ensembles non-compact degrees of freedom play the
dominant role, whereas compact degrees of freedom are nearly negligible. Since the computation
time for a Monte-Carlo update of a pseudoparticle cluster is significantly less then the time
needed to update nine instantons or antiinstantons and three akyrons, we resort to S12-ensembles
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whenever we want to study systems with a large number of non-compact degrees of freedom (c.f.
e.g. section 4.5).

Since within statistical errors we have not observed any differences between results obtained
in A-ensembles and results obtained in AC-ensembles, we do do not consider A-ensembles any
further. We exclusively concentrate on AC-ensembles and S12-ensembles.
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Chapter 3

Calculating observables

3.1 The static quark antiquark potential

For large separations the potential of a pair of infinitely heavy quarks cannot be obtained in
perturbation theory. Therefore, one has to resort to numerical methods. Lattice results (c.f. e.g.
[15, 16, 17]) strongly indicate that this potential is linear for large separations with an attractive
1/R-correction as predicted by the bosonic string picture [18, 19]. It is an interesting quantity,
which is closely connected to the striking phenomenon of confinement.

The common tool for studying the quark antiquark potential at zero temperature are Wilson
loops. A Wilson loop Wz is defined by

Wz[A] =
1

2
Tr

(

P

{

exp

(

i

∮

dzµ Aµ(z)

)})

, (3.1)

where z is a closed spacetime curve and P denotes path ordering (in the Taylor expansion of
the exponential function gauge field matrices are ordered from right to left according to their
appearance in the loop). In this work we mainly consider rectangular Wilson loops with spatial
extension R and temporal extension T , which we denote by W(R,T ). For a detailed discussion of
how to calculate Wilson loops numerically we refer to Appendix G.

It is well known that the potential of a static quark antiquark pair Vqq̄ with separation R at
zero temperature can be related to ensemble averages of rectangular Wilson loops:

Vqq̄(R) = − lim
T→∞

1

T
ln
〈

W(R,T )

〉

(3.2)

(c.f. e.g. [13, 20, 21]). Of course, in numerical calculations it is impossible to consider Wilson
loops of infinite temporal extension. However, there is numerical evidence that even for Wilson
loops of limited size (3.2) is still an accurate approximation. This allows us to determine the
quark antiquark potential numerically.

In the following we assume that for large separations the quark antiquark potential can be
parameterized by

Vqq̄(R) = V0 −
α

R
+ σR. (3.3)
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3.1. THE STATIC QUARK ANTIQUARK POTENTIAL

This ansatz is based on the bosonic string picture [18, 19] and various numerical results from
lattice calculations (c.f. e.g. [15, 16, 17]). There are three parameters:

• V0 is a constant shift of the potential, which has no physical relevance.

• α is the coefficient in front of the attractive 1/R-correction of the potential. We refer to
α as Coulomb coefficient.

• The string tension σ is the force between a quark and an antiquark at infinite separation.

There are two basically different approaches to determine the potential of a quark antiquark pair.
The first is to employ (3.2) to calculate the potential approximately from ensemble averages of
Wilson loops with sufficiently large temporal extension. To get quantitative results for the linear
part and the 1/R-correction, one usually performs a fit with (3.3) to determine the parameters
σ and α. This approach will be discussed in section 3.1.2.

In the second approach (c.f. section 3.1.1) one makes an assumption about the functional de-
pendence of ensemble averages of Wilson loops, which has to fulfill the following necessary
requirements:

• 〈W(R,T )〉 ≥ 0 (c.f. (3.2)). For the following it is convenient to define 〈W(R,T )〉 = e−F (R,T ).

• 〈W(R,T )〉 = 〈W(T,R)〉 since in Euclidean spacetime there is no difference between space and
time. This implies F (R,T ) = F (T,R).

• limT→∞ F (R,T ) = Vqq̄(R)T (c.f. (3.2)).

A possible but not unique candidate is

− ln
〈

W(R,T )

〉

= F (R,T ) = V0

(

R + T
)

− α

(
R

T
+

T

R

)

+ β + σRT (3.4)

[16]. It is a simple and plausible choice, which is consistent with existing numerical results. This
Wilson loop ansatz is fitted to Monte-Carlo data for − ln〈W(R,T )〉, to determine the parameters
V0, α, β and σ.

Since (3.4) reproduces the quark antiquark potential (3.3) when inserted in (3.2), it is only
trustworthy for sufficiently large R or T . Moreover, pseudoparticle ensembles are not able to
reproduce physical properties for Wilson loops with spatial and temporal extension not sig-
nificantly larger than the pseudoparticle size λ and the average distance between neighboring
pseudoparticles d̄ = 1/n1/4. The reason is that λ and d̄ determine the minimal size of the
ultraviolet fluctuations and, therefore, act as a cutoff. They play a similar role as the lattice
spacing in lattice calculations (c.f. section 2.2.4). Therefore, in the pseudoparticle approach the
ansatz (3.4) is only valid for R,T >

∼λ, d̄.

Before we explain how to calculate V0, α, β and σ in the pseudoparticle approach, we discuss
some general properties of these parameters and review some lattice results:

• Lattice calculations yield a positive value of the string tension σ, which implies the presence
of confinement (c.f. e.g. [5, 6, 15, 16]). Furthermore, σ is a monotonically increasing
function of the coupling constant g. When the scale is set by the string tension, the
physical extension of the lattice can be adjusted by choosing appropriate values for g.
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CHAPTER 3. CALCULATING OBSERVABLES

• The Coulomb coefficient α is a dimensionless quantity, which is independent of the coupling
constant. The bosonic string picture predicts αstring = π/12 ≈ 0.26 [18, 19]. In lattice
calculations αlattice ≈ 0.22 . . . 0.32 has been observed [16, 17].

• V0 and β are unphysical cutoff dependent constants. Since V0 is a dimensionful quantity,
it also depends on the coupling constant. V0 and β contain information about the overlap
between the ground state and a state containing a static quark antiquark pair at separation
R connected by a Wilson line [16]. Lattice calculations yield V0 > 0 and β < 0.

As will be shown in the following sections, we observe similar properties in the pseudoparticle
approach.

3.1.1 Calculating the string tension σ and the Coulomb coefficient α

In the following we apply four different methods to determine the string tension, which are all
based on the Wilson loop ansatz (3.4). Two of these methods are well known from literature,
area perimeter fits [5] and Creutz ratios [6]. The other two are generalizations, which have been
developed in the context of this work. With their help we are able to determine both the string
tension and the Coulomb coefficient.

Whenever we use physical units, we have set the scale by identifying the numerical value of the
string tension with the physical value 4.2/fm2.

3.1.1.1 Method 1: area perimeter fits

We consider ensemble averages of rectangular Wilson loops with R/T = c = constant as func-
tions of the area RT . The Wilson loop ansatz (3.4) reduces to an area perimeter function:

− ln
〈

W(R,T )

〉∣
∣
∣
R/T=c

= F (R,T )
∣
∣
∣
R/T=c

= V0

(

R + T
)

−α

(

c +
1

c

)

+ β

︸ ︷︷ ︸

=β̃

+σRT =

= V0

(√
c +

1√
c

)√
RT + β̃ + σRT. (3.5)

The parameters V0, β̃ and σ are obtained by fitting this area perimeter function to Monte-Carlo
data for − ln〈W(R,T )〉|R/T=c (c.f. Appendix B.3).

Results: AC-ensemble, N = 400, n = 1.0, λ = 0.5

Figure 3.1a shows − ln〈W(R,T )〉R/T=1/2 plotted against the area for different coupling constants
g ∈ {1.0 , 2.0 , . . . , 5.0} (the Wilson loops have been centered around the origin). All curves
clearly exhibit an area law, which amounts to a positive value of the string tension σ. This in
turn is an unambiguous sign of confinement. Furthermore, it is obvious from the figure that σ
is an increasing function of the coupling constant.

We obtained numerical values for V0, β̃ and σ by fitting (3.5) to the Monte-Carlo data of
Figure 3.1a (c.f. Appendix B.3). For σ these values are shown in Figure 3.1b. To avoid cutoff
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Figure 3.1: AC-ensemble, N = 400, n = 1.0, λ = 0.5, for different coupling constants
g ∈ {1.0 , 1.5 , . . . , 5.5}. a) − ln〈W(R,T )〉|R/T=1/2 plotted against the area. b) σ plotted against
g.

effects, only Wilson loops with R ≥ dcutoff = 1.3 have been considered for the fitting. For
R/T = 1/2 this corresponds to Wilson loop areas RT ≥ 3.38. Likewise, we have discarded
Wilson loops, which are not entirely inside a hypersphere of radius rboundary = 2.6 to exclude
boundary effects (c.f. section 2.3.2). For R/T = 1/2 this amounts to Wilson loop areas
RT ≤ 10.82. The interval 3.38 ≤ RT ≤ 10.82 is indicated by the dashed gray lines in Figure 3.1a.

As already mentioned above, the numerical value of the string tension is identified with 4.2/fm2

and, therefore, determines the physical size of the spacetime hypersphere. From g = 1.0 to
g = 5.5 its diameter ranges approximately between 0.5 fm and 2.1 fm.

To test the stability of this method, we considered different ratios R/T for g = 4.0. As before,
dcutoff = 1.3 and rboundary = 2.6. Especially for small ratios R/T this leaves only a narrow win-
dow of permissable Wilson loop areas (c.f. Table 3.1). Figure 3.2a shows − ln〈W(R,T )〉|R/T=constant

as a function of the area for R/T ∈ {1.0/1.0 , 1.0/1.5 , . . . , 1.0/3.0} (for the sake of clarity
the curves have been shifted by suitably chosen constants). All curves exhibit approximately
the same area law, although they correspond to different ratios R/T .

R/T 1.0/1.0 1.0/1.5 1.0/2.0 1.0/2.5 1.0/3.0

minimum Wilson loop area 1.69 2.54 3.38 4.23 5.07

maximum Wilson loop area 13.52 12.48 10.82 9.32 8.11

Table 3.1: minimum and maximum Wilson loop areas for dcutoff = 1.3, rboundary = 2.6 and
different R/T ∈ {1.0/1.0 , 1.0/1.5 , . . . , 1.0/3.0}.

Figure 3.2b shows the string tension σ as a function of T/R. From T/R = 1.0/1.0 to
T/R = 3.0/1.0 it varies between σ = 0.25 and σ = 0.48. This variation is probably due to
a combination of cutoff and boundary effects, which have an especially strong influence on
curves − ln〈W(R,T )〉|R/T=constant with large values T/R. Both effects increase the curvature of
− ln〈W(R,T )〉|R/T=constant. For cutoff effects this is obvious when considering
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− ln〈W(R,T )〉|R/T=constant for small areas (c.f. e.g. Figure 3.2a). In regions, where boundary ef-
fects become relevant, the absolute value of the gauge field is larger on the average than in regions
without boundary effects (c.f. e.g. Figure 2.5). Due to the periodicity of the exponential function
in (3.1) this will result in a smaller value of 〈W(R,T )〉|R/T=constant , i.e. for large Wilson loops we
expect − ln〈W(R,T )〉|R/T=constant to get an additional positive but unphysical contribution. This
in turn increases the curvature. Therefore, cutoff and boundary effects give rise to a smaller
or even negative perimeter coefficient V0. Assuming that the slope is roughly the same for all
values of R/T , which is confirmed by Figure 3.2a, this will result in a significantly larger string
tension σ (c.f. (3.5)). To conclude, for g = 4.0 we expect the physical value of the string tension
to be rather σ ≈ 0.20 . . . 0.25 instead of e.g. σ ≈ 0.45 as obtained for T/R = 3.0/1.0. This result
is in agreement with what we have obtained by other methods, which will be discussed in the
following sections.

3.1.1.2 Method 2: Creutz ratios

Another method to determine the string tension from ensemble averages of rectangular Wilson
loops is to consider Creutz ratios, which are defined by

C(R,T, a) =

〈

W(R,T )

〉〈

W(R−a,T−a)

〉

〈

W(R−a,T )

〉〈

W(R,T−a)

〉 , (3.6)

where a < R, T is an arbitrary length, usually much smaller than R and T (in lattice calculations
a is the lattice spacing). When applying the Creutz ratio method, one usually makes the
assumption that ensemble averages of rectangular Wilson loops can be parameterized by

〈

W(R,T )

〉

= e−F̃ (R,T ) , F̃ (R,T ) = V0

(

R + T
)

+ β + σRT. (3.7)

This leads to

C(R,T, a) = exp(−σa2). (3.8)
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Note that (3.7) is merely a simplification of our previously discussed Wilson loop ansatz (3.4).
Using the latter instead of (3.7) yields

C(R,T, a) = exp

(

−σa2 − α

(
a2

T (T − a)
+

a2

R(R − a)

))

. (3.9)

In the limit a/R, a/T → 0 (3.8) and (3.9) become identical.

Solving (3.8) for σ results in

σ = − ln(C(R,T, a))

a2
. (3.10)

In the presence of confinement σ should approach a finite constant at least for sufficiently large
a/R and a/T , where the parameterization (3.7) is considered to be most trustworthy. This
constant is the “true value” of the string tension.

To calculate Creutz ratios for a large set of different values (R,T ), we resort to “Wilson loop
grids”, which are an efficient tool. An example is shown in Figure 3.3. The “links” of these
grids are ordinary Wilson lines of length a. From the links of an N × N -Wilson loop grid
with spacing a we can calculate ensemble averages of rectangular Wilson loops 〈W(R,T )〉 with
R,T ∈ {a , 2a , . . . , Na}. In general, there are many possibilities to construct a Wilson loop
of size (R,T ). We average over all combinations. The advantage of this method is that every
link contributes to several Wilson loops but has to be calculated only once, which in turn speeds
up the computation significantly.

region of strong
boundary effects

region of negligible
boundary effects

Rmax, Tmax

spacing a

rboundary

spacetime hypersphere

Figure 3.3: a 4 × 4-Wilson loop grid inside the spacetime hypersphere.

Results: AC-ensemble, N = 400, n = 1.0, λ = 0.5, g = 4.0

We calculated Creutz ratios from 12× 12-Wilson loop grids. Choosing rboundary = 2.6 results in
Rmax = Tmax =

√
2 rboundary = 3.68 and a = Rmax/12 = Tmax/12 = 0.31 (c.f. Figure 3.3).
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Figure 3.4a shows different estimates for the string tension σ obtained from Creutz ratios via
(3.10). Estimates calculated with the same T but different R are connected. The results indicate
a positive value of the string tension, which in turn is a clear signal of confinement. The
qualitative shape of

σ|T=constant = − ln(C(R,T, a))

a2

∣
∣
∣
∣
T=constant

(3.11)

as a function of RT is the same for all values of T . This shape can be explained as follows:

• For small values of RT the ensemble averages of Wilson loops, from which the Creutz
ratios are calculated, are subject to strong cutoff effects. Therefore, we cannot trust these
Creutz ratios when calculating the string tension. In Figure 3.4b we have discarded all
estimates for the string tension, where Wilson loops with R,T < dcutoff = 1.3 are involved.

• For large values of RT the ensemble averages of Wilson loops from which the Creutz ratios
are calculated contain certain boundary effects, i.e. by choosing rboundary = 2.6 we may
have slightly overestimated the region where boundary effects are negligible. Therefore,
in Figure 3.4b we have also discarded all estimates for the string tension, for which the
corresponding curves σ|T=constant in Figure 3.4a are increasing again.

• All remaining estimates for the string tension are plotted in Figure 3.4b. The fact that the
curves σ(R,T = constant) are decreasing for increasing R can be explained by a positive
Coulomb coefficient α (c.f. (3.9)). This is a first indication that the pseudoparticle approach
is not only able to reproduce the linear long range part of the quark antiquark potential
but also its 1/R-correction.

From Figure 3.4b we expect the string tension to be σ ≈ 0.20 . . . 0.25. This is in excellent
agreement with the result obtained by area perimeter fits (c.f. section 3.1.1.1).
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3.1.1.3 Method 3: generalized Creutz ratios

Generalized Creutz ratios are a natural extension of Creutz ratios.

The starting point is a set of ensemble averages of rectangular Wilson loops 〈W(R,T )〉 with
different ratios R/T :

{〈

W(R1,T1)

〉

,
〈

W(R2,T2)

〉

, . . . ,
〈

W(Rn,Tn)

〉}

. (3.12)

Such a set can be obtained in an efficient way by resorting to Wilson loop grids (c.f. sec-
tion 3.1.1.2).

A generalized Creutz ratio ΓX is defined by

ΓX(Ri1 , Ti1 , . . . , Ri4 , Ti4) =

=
〈

W(Ri1
,Ti1

)

〉c1,X
〈

W(Ri2
,Ti2

)

〉c2,X
〈

W(Ri3
,Ti3

)

〉c3,X
〈

W(Ri4
,Ti4

)

〉c4,X

(3.13)

with X ∈ {V0, α, β, σ} and weights c1,X = c1,X(Ri1 , Ti1 , . . . , Ri4 , Ti4), . . . ,
c4,X = c4,X(Ri1 , Ti1 , . . . , Ri4 , Ti4), which will be specified below. Inserting the Wilson loop ansatz
(3.4) and considering the negative logarithm yields

− ln
(

ΓX(Ri1 , Ti1 , . . . , Ri4 , Ti4)
)

=

= V0

(

c1,X

(

Ri1 + Ti1

)

+ . . . + c4,X

(

Ri4 + Ti4

))

+

α

(

c1,X

(

−Ri1

Ti1

− Ti1

Ri1

)

+ . . . + c4,X

(

−Ri4

Ti4

− Ti4

Ri4

))

+

β

(

c1,X + . . . + c4,X

)

+

σ

(

c1,X

(

Ri1Ti1

)

+ . . . + c4,X

(

Ri4Ti4

))

. (3.14)

The weights c1,X , . . . , c4,X are chosen so that (3.14) reduces to

− ln
(

ΓX(Ri1 , Ti1 , . . . , Ri4 , Ti4)
)

= X. (3.15)

That is c1,X , . . . , c4,X can be obtained by solving the following linear system:







Ri1 + Ti1 . . . Ri4 + Ti4

−Ri1/Ti1 − Ti1/Ri1 . . . −Ri4/Ti4 − Ti4/Ri4

1 . . . 1
Ri1Ti1 . . . Ri4Ti4













c1,V0
c1,α c1,β c1,σ

c2,V0
c2,α c2,β c2,σ

c3,V0
c3,α c3,β c3,σ

c4,V0
c4,α c4,β c4,σ







=

=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







. (3.16)
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To determine V0, α, β and σ, we consider all subsets of (3.12) containing four elements with
exception of those, for which the left matrix in (3.16) is singular. For every subset we calculate
V0, α, β and σ via (3.15). Although there will be fluctuations due to systematical and statistical
errors, most of these estimates should be similar.

There is numerical evidence that estimates for V0, α, β and σ with large c2
1,X + . . .+ c2

4,X exhibit

stronger fluctuations than estimates with small c2
1,X + . . .+ c2

4,X (c.f. e.g. Figure 3.5). Therefore,

we sort the estimates according to c2
1,X +. . .+c2

4,X and keep only the “smaller half”. The average
of these remaining estimates is the final result for V0, α, β or σ.

Results: S12-ensemble, N = 35 × 12, n = 1.0, λ = 0.5

We calculated ensemble averages of rectangular Wilson loops 〈W(R,T )〉 by considering 12 × 12-

Wilson loop grids with rboundary = 2.0. This corresponds to Rmax = Tmax =
√

2rboundary = 2.83
and a = Rmax/12 = Tmax/12 = 0.24 (c.f. Figure 3.3).

We determined all possible generalized Creutz ratios ΓX(R1, . . . , T4) with
R1, . . . , T4 ∈ {7a , 8a , . . . , 12a}. This amounts to a minimum spatial or temporal Wilson loop
extension of 1.65. In total, there are 5877 generalized Creutz ratios for each of the quantities
V0, α, β and σ.

In Figure 3.5 the corresponding estimates for σ and α are plotted for g = 4.0. These estimates
have been sorted according to c2

1,X + . . . + c2
4,X and are shown in increasing order from left to

right (for the sake of clarity only every tenth estimate is shown). In both plots estimates in
the left half clearly exhibit a smaller variance than estimates in the right half. This indicates
that estimates with small c2

1,X + . . . + c2
4,X are more trustworthy than estimates with large

c2
1,X + . . . + c2

4,X . Since for both σ and α all estimates exhibit similar values, we can extract
reliable and consistent values by calculating the average and the standard deviation from the
“smaller half”. The results are σ = 0.268 ± 0.015 and α = 0.151 ± 0.023.

By proceeding in the same way, we obtained numerical results for σ and α for different coupling
constants g ∈ {2.0 , 2.5 , . . . , 5.5}.
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3.1. THE STATIC QUARK ANTIQUARK POTENTIAL

In Figure 3.6a the string tension σ is plotted against the coupling constant g. σ is not only
positive but also an increasing function of g. This is precisely what one would expect to be the
case for the string tension.

Figure 3.6b shows the Coulomb coefficient α as a function of the coupling constant g. For
large g the value of α is of the right order of magnitude when compared to lattice results,
while for small coupling constants its value is too small. Furthermore, α is not a constant with
respect to g as a dimensionless quantity should be. On the other hand, this is hardly surprising.
Lattice calculations indicate that the 1/R-correction to the potential as predicted by the bosonic
string picture sets in for quark antiquark separations around 0.5 fm. But for g = 2.0 we have
considered Wilson loops with temporal and spatial extensions between 0.23 fm and 0.40 fm. From
such Wilson loops it is impossible to determine the correct coefficient of the 1/R-correction of
the potential. Increasing the coupling constant increases the size of the Wilson loops until for
g = 5.5 their extension ranges between 0.55 fm and 0.95 fm. As already mentioned, from these
Wilson loops we obtained results, which are in qualitative agreement with lattice results.
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Figure 3.6: S12-ensemble, N = 35 × 12, n = 1.0, λ = 0.5. a) σ plotted against g. b) α plotted
against g.

3.1.1.4 Method 4: fitting the Wilson loop ansatz to − ln〈W(R,T )〉

Instead of resorting to generalized Creutz ratios to determine the string tension σ and the
Coulomb coefficient α, we can as well perform a least squares fit of the Wilson loop ansatz (3.4)
to Monte-Carlo data for − ln〈W(R,T )〉 (c.f. Appendix B.3). Different ratios R/T are required.

Results: S12-ensemble, N = 35 × 12, n = 1.0, λ = 0.5

We applied the same Monte-Carlo data for the fitting procedure as we considered to produce
the generalized Creutz ratios results of Figure 3.5 and 3.6: − ln〈W(R,T )〉 with
R,T ∈ {7a , 8a , . . . , 12a}, a = 0.24.

In Figure 3.7 the least squares fit of the Wilson loop ansatz (3.4) to Monte-Carlo data for
− ln〈W(R,T )〉 is shown for g = 4.0. The ansatz is consistent with pseudoparticle results.

In Figure 3.8 σ and α obtained by least squares fitting as well as σ and α obtained from
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Figure 3.7: S12-ensemble, N = 35 × 12, n = 1.0, λ = 0.5, g = 4.0. The least squares fit of the
Wilson loop ansatz (3.4) to Monte-Carlo data for − ln〈W(R,T )〉 plotted against R and T .

generalized Creutz ratios are plotted against the coupling constant. The results of both methods
are identical within statistical errors.

3.1.1.5 Comparison of method 1 to 4

We have four methods at our disposal to determine the string tension. Two of them are also
capable of extracting the Coulomb coefficient. All four methods produce similar results. Nev-
ertheless, generalized Creutz ratios have a couple of advantages compared to the other three
methods:

• Generalized Creutz ratios can be used to determine the string tension and the Coulomb
coefficient, whereas area perimeter fits and Creutz ratios only yield the string tension.

• Generalized Creutz ratios are well suited to detect systematic errors, i.e. inconsistencies
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Figure 3.8: S12-ensemble, N = 35 × 12, n = 1.0, λ = 0.5, for different coupling constants
g ∈ {2.0 , 2.5 , . . . , 5.5}. a) σ obtained by least squares fitting and σ obtained from generalized
Creutz ratios plotted against g. b) α obtained by least squares fitting and α obtained from
generalized Creutz ratios plotted against g.
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3.1. THE STATIC QUARK ANTIQUARK POTENTIAL

between the Wilson loop ansatz (3.4) and Monte-Carlo data for 〈W(R,T )〉. One just has
to take a look at plots like Figure 3.5 and check whether all estimates are similar or not.
The other methods yield comparable results but it is not obvious how trustworthy these
results are.

• In contrast to Creutz ratios, the Coulomb term is eliminated when calculating the string
tension via generalized Creutz ratios.

3.1.2 Calculating the static quark antiquark potential

The starting point to calculate the static quark antiquark potential is (3.2), which we write as

Vqq̄(R)T ≈ − ln
〈

W(R,T )

〉

. (3.17)

We calculate ensemble averages of Wilson loops 〈W(R,T )〉 for fixed R but different T to obtain
a curve − ln〈W(R=constant,T )〉. Examples are shown in Figure 3.9a. According to (3.17) such a
curve will exhibit a linear behavior for sufficiently large T . From the slope, which we obtain by
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Figure 3.9: S12-ensemble, N = 35 × 12, n = 1.0, λ = 0.5, g = 4.0. a) − ln〈W(R,T )〉|R=constant

plotted against T for different R ∈ {a , 2a , . . . , 12a}, a = 0.24. b) Vqq̄ plotted against the
separation of the quarks. c) V0 − α/R + σR fitted to the data of b) (only the red data points
have been included in the fitting procedure). The axes have been rescaled to physical units by
identifying σ with 4.2/fm2.
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fitting a straight line (c.f. Appendix B.3), we can read off Vqq̄(R). Iterating this procedure for
a number of different R yields an approximation of the quark antiquark potential.

Results: S12-ensemble, N = 35 × 12, n = 1.0, λ = 0.5, g = 4.0

We calculated ensemble averages of Wilson loops from 12 × 12-Wilson loop grids with
rboundary = 2.0. This corresponds to Rmax = Tmax =

√
2 rboundary = 2.83 and

a = Rmax/12 = Tmax/12 = 0.24 (c.f. Figure 3.3).

Figure 3.9a shows − ln〈W(R=constant,T )〉 as a function of T for different R ∈ {a , 2a , . . . , 12a}.
To determine the slope of these curves for large T we fitted straight lines to the data points at
T ∈ {9a , 10a , 11a , 12a} as indicated by the dashed gray lines.

The corresponding potential as a function of the quark antiquark separation is plotted in Fig-
ure 3.9b. For large separations it clearly exhibits a linear behavior.

To obtain numerical values for the string tension σ and the Coulomb coefficient α, we performed
a least squares fit of the potential parameterization (3.3) to the data points from Figure 3.9b
(c.f. Appendix B.3). Only data points with R ≥ 1.3 have been considered, because cutoff
effects are expected to render the potential unphysical for smaller separations. The results,
σ = 0.281 ± 0.019 and α = 0.198 ± 0.068, are in agreement with the results obtained by
generalized Creutz ratios (c.f. section 3.1.1.3). The fit is shown in Figure 3.9c. The axes have
been rescaled to physical units by identifying σ with 4.2/fm2.

Note that we did not make any assumptions about the functional dependence of ensemble
averages of Wilson loops to calculate the quark antiquark potential. Therefore, the agreement
of the results for σ and α with results obtained by generalized Creutz ratios shows again the
consistency of the Wilson loop ansatz (3.4) and Monte-Carlo data for 〈W(R,T )〉.

3.2 The topological susceptibility

In order to produce quantitative results involving the string tension, we need other dimensionful
quantities so that we can consider dimensionless ratios. One such quantity, which has been
studied extensively on the lattice (c.f. e.g. [22, 23, 24, 25]), is the topological susceptibility χ.
The topological susceptibility is closely related to the mass of the η′ meson [26]. It is defined by

χ = lim
V →∞

1

V

〈

Q2
V

〉

, (3.18)

where QV is the topological charge inside the spacetime volume V .

In our numerical calculations we approximate the limit V → ∞ by a large but finite volume.
To be more specific, we consider a hyperspherical spacetime region with radius rboundary, which
is centered inside the spacetime hypersphere (c.f. Figure 2.2). To assure that this volume is
sufficiently large, we evaluate 〈Q2

V 〉/V for several smaller hyperspherical spacetime regions. A
typical example, an AC-ensemble with N = 400, n = 1.0, λ = 0.5 and g = 4.0, is shown in Fig-
ure 3.10. χ1/4 = (〈Q2

V 〉/V )1/4, which we will ultimately consider to calculate the dimensionless
ratio χ1/4/σ1/2, seems to have converged to a stable value for V >

∼ 12.0, which corresponds to
rboundary

>
∼ 1.25.
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Results: AC-ensemble, N = 400, n = 1.0, λ = 0.5, and S12-ensemble, N = 35 × 12,
n = 1.0, λ = 0.5

Figure 3.11 shows the dimensionless ratio χ1/4/σ1/2 as a function of the coupling constant g for
the following two ensembles:

• AC-ensemble, N = 400, n = 1.0, λ = 0.5: rboundary = 2.0, σ has been obtained by area
perimeter fits (c.f. Figure 3.1b).

• S12-ensemble, N = 35 × 12, n = 1.0, λ = 0.5: rboundary = 2.0, σ has been obtained by
generalized Creutz ratios (c.f. Figure 3.6a).

As expected χ1/4/σ1/2 is nearly independent of g, i.e. the string tension and the topologi-
cal susceptibility exhibit consistent scaling behaviors with respect to the coupling constant.
This success strongly indicates that sensible physics can be extracted from the pseudoparti-
cle approach. The values for both ensembles, χ1/4/σ1/2 = 0.29 . . . 0.31 (AC-ensemble) and
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Figure 3.11: AC-ensemble, N = 400, n = 1.0, λ = 0.5, and S12-ensemble, N = 35× 12, n = 1.0,
λ = 0.5. χ1/4/σ1/2 plotted against g.

36



CHAPTER 3. CALCULATING OBSERVABLES

χ1/4/σ1/2 = 0.34 . . . 0.39 (S12-ensemble), are in qualitative agreement with the lattice result

χ
1/4
lattice/σ

1/2
lattice = 0.486 ± 0.010 [27]. The discrepancy between the two pseudoparticle results

is partly due to fact that S12-ensembles exhibit larger values for the topological susceptibility
than AC-ensembles (c.f. section 2.5), and partly because different methods have been applied to
determine the string tension.

3.3 The critical temperature of the confinement deconfinement

phase transition

Whereas at low temperature quarks are bound to each other by the mechanism of confinement,
at high temperature a deconfining phase is expected. In this phase one can observe isolated
quarks. The temperature, at which the corresponding phase transition takes place, is called
critical temperature and denoted by Tcritical. In this section we explain how to calculate this
quantity in the pseudoparticle approach.

3.3.1 The pseudoparticle approach in finite temperature SU(2) Yang-Mills
theory

In finite temperature SU(2) Yang-Mills theory thermodynamic expectation values of quantities
O at temperature T = 1/β are given by

〈

O
〉

β
= Tr

(

e−βHO
)

=
1

Z

∫

DAO[A]e−Sβ [A] , Z =

∫

DAe−Sβ [A], (3.19)

where

Sβ[A] =

∫ β

0
dx0

∫

d3x

(
1

4g2
F a

µνF a
µν

)

. (3.20)

∫
DA is an integration over all gauge fields which are periodic in x0-direction with period β.

3.3.1.1 Periodic pseudoparticles

Since in finite temperature calculations the gauge field is periodic, we need a method to make our
building blocks periodic as well. For singular gauge instantons this has already been done in form
of calorons [28, 29], which are periodic solutions to the classical Yang-Mills equations of motion.
However, there is no straightforward generalization to arbitrary pseudoparticles. Therefore,
we introduce a different method, which resorts to a blending technique from computer aided
geometric design [30]. Note that in general the resulting periodic pseudoparticles are no solutions
to the classical Yang-Mills equations of motion.

To begin with, we define blending functions B and B:

B(λ) = −2λ3 + 3λ2 , B(λ) = 1 − B(λ) (3.21)

(c.f. Figure 3.12b). These blending functions have the following properties:
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• C1-continuity: B and B form smooth, C1-continuous connections between 0 at λ = 0 and
1 at λ = 1 and vice versa.

• Partition of 1: B(λ) + B(λ) = 1, i.e. B and B are suitable weight functions.

• Reflection symmetry: B(λ) = B(1−λ), i.e. reflection at λ = 1/2 transforms B into B and
vice versa.

Of course the blending functions are not uniquely defined by these three requirements. Other
reasonable definitions of blending functions exist, e.g. degree-5-polynomials, which can be chosen
to form C2-continuous connections between 0 and 1. However, numerical experiments have
shown that physical results are fairly independent of the concrete choice of B and B.

To make a non-periodic pseudoparticle aa
µ with its center at the origin periodic in x0-direction,
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we multiply “both ends” with blending functions and add the results (c.f. Figure 3.12a):

aa
µ,periodic(x) =







aa
µ(x0,x) if −β−b

2 ≤ x0 ≤ β−b
2

B(λ)aa
µ(x0 − β,x) + B(λ)aa

µ(x0,x) if β−b
2 ≤ x0 ≤ β+b

2

, (3.22)

where

λ =
x0 − (β − b)/2

b
. (3.23)

To evaluate aa
µ,periodic at (x0,x) with x0 /∈ [−(β − b)/2, (β + b)/2] one just has to combine (3.22)

and

aa
µ,periodic(x0,x) = aa

µ,periodic(x0 + nβ,x) (3.24)

with a suitably chosen integer n. b is the width of the blending region. In our numerical
calculations we chose b = Bβ with a β-independent blending factor B = 0.3.

Two examples of periodic functions, which were generated by our blending technique, are shown
in Figure 3.12c and 3.12d. These periodic functions are typical pseudoparticle profiles in x0-
direction.

3.3.1.2 The spacetime region

In zero temperature calculations spacetime is bounded by a 4-dimensional hypersphere. At finite
temperature that region is replaced by a spacetime with a periodic time direction of extension
β and a spatial part, which is bounded by an ordinary 3-dimensional sphere of radius rspace (c.f.
Figure 3.13). As in the zero temperature case, we have to assure that samples of physically

finite temperature

zero temperature

regions of negligible
boundary effects

regions of strong
boundary effects

boundary of space
(3-dimensional sphere)

boundary of spacetime
(4-dimensional hypersphere)

x

x0 rspace

x0

x

rboundary

Figure 3.13: spacetime at zero temperature and at finite temperature.
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meaningful quantities are always taken inside a spacetime region, where boundary effects are
negligible. The spatial part of such a region is the interior of a sphere of radius rboundary, whereas
the time direction is not restricted (the light gray region in the right part of Figure 3.13).

3.3.1.3 The pseudoparticle density

For finite temperature calculations we use the same pseudoparticle density as for the corre-
sponding zero temperature calculation (we always perform a corresponding zero temperature
calculation with identical parameters to obtain the string tension, which is used to set the
scale). This is a reasonable choice, because in the limit β → ∞, rspace → ∞ and rspacetime → ∞
finite temperature ensembles and zero temperature ensembles become identical.

Furthermore, there is a close analogy to lattice calculations. To set the scale, a zero temperature
calculation with the same number of lattice sites in all four spacetime directions is carried
out. For finite temperature calculations the number of lattice sites in the temporal direction
is significantly reduced. However, since the lattice spacing remains unchanged, the density of
lattice sites is still the same, i.e. a smaller number of link variables in a smaller spacetime volume.

The pseudoparticle approach offers two possibilities to change the temperature:

• Varying β while the coupling constant g is kept constant changes the physical temperature
directly.

• Varying the coupling constant g (while β is kept constant) changes the numerical value
of the string tension σ. This leads to a different physical extension of the periodic time
direction and, therefore, alters the physical temperature.

We applied both methods and obtained results, which are in excellent agreement (c.f. Fig-
ure 3.14c).

3.3.2 The ensemble average of the Polyakov loop as order parameter

A Polyakov loop is a Wilson loop around the periodic x0-direction:

Lz[A] =
1

2
Tr

(

P

{

exp

(

i

∮

dz0 A0(z)

)})

. (3.25)

Due to spatial translational invariance 〈Lz〉β is z-independent. Therefore, from a numerical
point of view it is convenient to consider spatial averages of Polyakov loops. We define

〈

L
〉

β
=

〈
1

V

∫

V
d3z Lz

〉

β

. (3.26)

It can be shown that 〈L〉β is an order parameter, which indicates whether there is confinement
or not [13, 31]:

〈

L
〉

β
= 0 ↔ Confinement (3.27)

〈

L
〉

β
6= 0 ↔ Deconfinement. (3.28)
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This criterion is closely related to center symmetry, which is spontaneously broken in the decon-
finement phase. The temperature, at which the symmetry breaking takes place, is called critical
temperature and denoted by Tcritical.

In the center symmetric phase of SU(2) Yang-Mills theory for every field configuration Aa,+
µ

there is a corresponding field configuration Aa,−
µ with Lz[A

+] = −Lz[A
−], which is physically

equivalent. In particular, both field configurations have the same action: S[A+] = S[A−].
〈L〉β = 0 follows immediately.

The spontaneous breakdown of center symmetry at T = Tcritical comes along with a splitting
of the Hilbert space of states H in two independent spaces H+ and H−: H → H+ ⊕H−. The
same applies for the set of field configurations considered in the path integral. Whereas in the
center symmetric phase the integration extends over the set of all field configurations A, in the
broken phase this set is split in two, A → A+ ⊕A−, and the path integral is restricted to either
A+ or A−. For T > Tcritical the above field configurations Aa,+

µ and Aa,−
µ split up: Aa,+

µ ∈ A+

and Aa,−
µ ∈ A− or vice versa. The ensemble average of the Polyakov loop depends on which

Hilbert space was chosen during the spontaneous breakdown of center symmetry: 〈L〉β,H+ = +l

and 〈L〉β,H− = −l.

In the broken phase two field configurations, which are related by center symmetry, cannot be
connected continuously by a set of field configurations of finite action. This implies that during
a Monte-Carlo simulation only field configurations either from A+ or from A− are generated,
assuming an infinite system and a local and continuous update mechanism. In numerical calcu-
lations these assumptions are only approximately fulfilled. Nevertheless, one can at least expect
that there are long sequences of steps, where only field configurations corresponding to one of
the two Hilbert spaces are generated. This has been observed in lattice Monte-Carlo simulations
(c.f. e.g. [31, 32]). Therefore, it is possible to measure the ensemble average of the Polyakov loop
numerically.

Since our pseudoparticle ensembles are finite systems, which are only approximately center
symmetric, and due to a certain bias discussed in the following paragraphs, one cannot expect
an exact phase transition. Instead 〈L〉β ≈ 0 can be observed well below the critical temperature.
For β ≈ βcritical the ensemble average of the Polyakov loop quickly rises to a non-zero value. For
high temperatures 〈L〉β ≈ 1 (c.f. Figure 3.14a). Therefore, we define the critical temperature
Tcritical (or equivalently its inverse βcritical) to be that temperature, where the ensemble average
of the Polyakov loop crosses a certain value ξ, e.g. ξ = 0.5:

〈

L
〉

βcritical

= ξ. (3.29)

〈L〉β in the pseudoparticle approach versus 〈L〉β in lattice calculations

The main difference between our results and lattice results is that even in the deconfinement
phase we have never observed 〈L〉β < 0. We conclude that in the pseudoparticle approach the
low action field configurations corresponding to H− are underrepresented, i.e. there are more
low action field configurations corresponding to H+ than to H−. This bias always forces the
system to chose the Hilbert space H+ when undergoing a spontaneous symmetry breakdown.

The bias can be explained by the following qualitative argument: for field configurations close
to zero Lz ≈ 1 (c.f. (3.25)). Therefore, we expect these field configurations to be elements of
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A+. Furthermore, all of these field configurations are low action field configurations, which
contribute significantly to the path integral, since their exponential damping factors e−S are
close to 1. The set of these field configurations is denoted by AA≈0. Loosely speaking, all
other low action field configurations are large enough so that Lz can pick up exponents, which
are significantly different from zero. They are either elements of A+ or of A−. The set of
these field configurations is denoted by AA≫0. However, there is numerical evidence that in the
pseudoparticle approach with around 400 pseudoparticles most low action field configurations
have small gauge fields, i.e. are elements of AA≈0. This is closely related to the fact that our
ensembles are only approximately gauge invariant: a gauge transformed field configuration from
AA≈0, which is a field configuration in AA≫0, can only be approximated when using around
400 pseudoparticles; such an approximation usually has a higher action. Therefore, there are
proportionally more field configurations in AA≈0 than in AA≫0. This is manifested in form of a
bias.

Results: AC-ensemble, n = 1.0, λ = 0.5

In Figure 3.14a the ensemble average of the Polyakov loop 〈L〉β is plotted against the temperature
T for different coupling constants g ∈ {4.0 , 5.0 , . . . , 8.0} (rspace = 3.0, rboundary = 1.0). The
dashed gray lines correspond to a determination of the critical temperature Tcritical with ξ = 0.5.
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Figure 3.14: AC-ensemble, N ∈ {113, . . . , 1130}, n = 1.0, λ = 0.5, for different
g ∈ {4.0 , 5.0 , . . . , 8.0}. a) 〈L〉β plotted against T . b) Tcritical/σ

1/2 plotted against g. c) 〈L〉β
plotted against T/σ1/2.

42



CHAPTER 3. CALCULATING OBSERVABLES

-1

-0.5

 0

 0.5

 1

 0  200  400  600  800  1000

L 0

number of the Monte-Carlo step

-1

-0.5

 0

 0.5

 1

 0  200  400  600  800  1000

L 0

number of the Monte-Carlo step

-1

-0.5

 0

 0.5

 1

 0  200  400  600  800  1000

L 0

number of the Monte-Carlo step

-1

-0.5

 0

 0.5

 1

 0  200  400  600  800  1000

L 0

number of the Monte-Carlo step

-1

-0.5

 0

 0.5

 1

 0  200  400  600  800  1000

L 0

number of the Monte-Carlo step

T/Tcritical = 0.50 T/Tcritical = 1.50

T/Tcritical = 0.75 T/Tcritical = 1.00 T/Tcritical = 1.25

Figure 3.15: AC-ensemble, N ∈ {516 , . . . , 172}, n = 1.0, λ = 0.5, g = 6.0. L(~0) plotted against
the number of the Monte-Carlo step for different ratios T/Tcritical ∈ {0.50 , 0.75 , . . . , 1.50}.

Figure 3.14b shows that the dimensionless ratio Tcritical/σ
1/2 is nearly independent of the cou-

pling constant g (σ has been obtained by area perimeter fits; c.f. Figure 3.1b). The implication
is that the string tension and the critical temperature scale consistently with respect to g. We
would like to stress again that such a scaling behavior, although mandatory for any sensible
numerical method, is far from obvious. The value of Tcritical/σ

1/2, 0.49 . . . 0.65, is in qualitative
agreement with the lattice result Tcritical/σ

1/2 = 0.694 ± 0.018 [27].

As we have explained in section 3.3.1.3, there are two methods to adjust the physical value of the
temperature: varying β or varying g. Figure 3.14c shows 〈L〉β as a function of T/σ1/2 for different
coupling constants g. The fact that all sample points scale to a single curve demonstrates that
both methods yield consistent results.
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plotted against g.
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Figure 3.15 shows the evolution of L~0 during a single Monte-Carlo simulation (1, 000 Monte-
Carlo steps) for g = 6.0 and different T/Tcritical = {0.50 , 0.75 , . . . , 1.50} (Tcritical = 0.43; c.f.
Figure 3.14a). These plots demonstrate that in the confinement phase (T < Tcritical) Lz assumes
approximately an equal number of positive and negative values, whereas in the deconfinement
phase (T > Tcritical) the values of Lz are mainly positive.

Results: S12-ensemble, n = 1.0, λ = 0.5

Figure 3.16 shows the dimensionless ratio Tcritical/σ
1/2 as a function of the coupling constant

g (σ has been obtained by generalized Creutz ratios; c.f. Figure 3.6a). As before, it is nearly
independent of g. Its value, Tcritical/σ

1/2 = 0.57 . . . 0.66, is in qualitative agreement with the
lattice result Tcritical/σ

1/2 = 0.694 ± 0.018 [27].
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Chapter 4

Applications

4.1 Pseudoparticle excitations and gauge field distributions

In this section we study instanton, antiinstanton and akyron excitations as well as the distribu-
tion of the transverse part and the longitudinal part of the gauge field. The intention is to get
a better idea of how typical gauge field configurations look like in the pseudoparticle approach.

4.1.1 The distribution of instanton, antiinstanton and akyron amplitudes

We consider histograms of instanton, antiinstanton and akyron amplitudes. Histograms obtained
from sufficiently many gauge field configurations approximate after a proper normalization the
probability density of the pseudoparticle amplitudes.

Figure 4.1 shows the probability density of instanton amplitudes and of akyron amplitudes
A(i) in an AC-ensemble with N = 400, n = 1.0, λ = 0.5 and g = 4.0 (c.f. (2.6)). We read
off from the figure that the Monte-Carlo algorithm allows for significantly larger akyron than
instanton amplitudes. Note that the distribution of antiinstanton amplitudes is identical to that
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Figure 4.1: AC-ensemble, N = 400, n = 1.0, λ = 0.5, g = 4.0. Probability density of A(i) for
instantons/antiinstantons and for akyrons.
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of instantons.

In Figure 4.2a the same has been done for an S12-ensemble with N = 30 × 12, n = 1.0, λ = 0.5
and g = 4.0. Note that Sab(i) corresponds to instanton/antiinstanton excitations, whereas
Sa0(i) corresponds to akyron excitations (c.f. (2.9)). As in the AC-ensemble, akyron excitations
are stronger on the average than instanton/antiinstanton excitations.

In Figure 4.2b we turned off instantons/antiinstantons (“akyron ensemble”) and in Figure 4.2c
we turned off akyrons (“instanton ensemble”). This amounts to setting Sab(i) = 0 and
Sa0(i) = 0. Akyron excitations in the akyron ensemble are significantly stronger than in the
“standard S12-ensemble”. The implication is that instantons and antiinstantons suppress akyron
excitations. On the other hand, instanton/antiinstanton excitations in the instanton ensemble
and instanton/antiinstanton excitations in the “standard S12-ensemble” are nearly identical, i.e.
instantons and antiinstantons are essentially unaffected by akyrons.
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Figure 4.2: λ = 0.5, g = 4.0. a) S12-ensemble, N = 30 × 12, n = 1.0. Probability density of
Sab(i) and Sa0(i). b) Akyron ensemble, N = 30× 3, n = 1.0/4.0. Probability density of Sa0(i).
c) Instanton ensemble, N = 30 × 9, n = 3.0/4.0. Probability density of Sab(i).

4.1.2 The distribution of the transverse part and the longitudinal part of the
gauge field

A gauge field configuration can be decomposed in a transverse and a longitudinal part. Super-
positions of instantons and antiinstantons form transverse gauge fields, whereas akyrons form
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longitudinal gauge fields (c.f. Appendix E.1). In an AC-ensemble these parts are given by

Aa
µ,transverse(x) =

=
∑

i

A(i)Cab(i)ab
µ,instanton(x − z(i)) +

∑

j

A(j)Cab(j)ab
µ,antiinstanton(x − z(j)) (4.1)

Aa
µ,longitudinal(x) =

∑

k

A(k)Cab(k)ab
µ,akyron(x − z(k)), (4.2)

whereas in an S12-ensemble they are of the form

Aa
µ,transverse(x) =

∑

i

Sab(i)ab
µ,instanton(x − z(i)) (4.3)

Aa
µ,longitudinal(x) =

∑

i

Sa0(i)a1
µ,akyron(x − z(i)). (4.4)

Figure 4.3a shows the probability density of a single component of Aa
µ,transverse and Aa

µ,longitudinal

in an AC-ensemble with N = 400, n = 1.0, λ = 0.5 and g = 4.0. The same has been done for
an S12-ensemble with N = 30 × 12, n = 1.0, λ = 0.5 and g = 4.0 in Figure 4.3b. In both cases
the probability density of the transverse part is nearly identical to the probability density of the
longitudinal part. However, there are three times as many transverse gauge field components
than there are longitudinal gauge field components. Therefore, the longitudinal part of the gauge
field exhibits proportionally stronger excitations than the transverse part. This is in accordance
with our results from section 4.1.1, where we found that akyron amplitudes are larger on the
average than instanton and antiinstanton amplitudes.
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µ,longitudinal. b) S12-ensemble, N = 30×12. Probability density of
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4.2 Pseudoparticles of different size

In this section we explore how pseudoparticle results are affected by a variation of the pseudopar-
ticle size λ, while the pseudoparticle density n or equivalently the average pseudoparticle distance
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Figure 4.4: typical pseudoparticle profiles for λ ∈ {0.20 , 0.35 , . . . , 1.10}. a) x0/(x
2
0 + λ2)

plotted against x0. b) x1/(x
2
0 + x2

1 + λ2)|x1=1.0 plotted against x0.

d̄ = 1/n1/4 is kept constant. In other words, we consider different ratios of the two ultraviolet
regulators λ and d̄ (c.f. section 2.3). In detail, we consider S12-ensembles with N = 35 × 12,
n = 1.0, g = 4.0 and λ ∈ {0.20 , 0.35 , . . . , 1.10}.
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To get a better idea of the λ-dependent shape of a pseudoparticle, we plotted typical pseudopar-
ticle profiles in Figure 4.4. Figure 4.4a shows x0/(x

2
0+λ2) as a function of x0 for different λ. The

same has been done for x1/(x
2
0 + x2

1 + λ2)|x1=1.0 in Figure 4.4b. The boundary of the spacetime
hypersphere is indicated by the dotted gray lines, assuming profiles right through the center
(N = 35 × 12 and n = 1.0 amounts to Vspacetime = 420.0 and this in turn to rspacetime = 3.04).
λ strongly affects the shape of a pseudoparticle near its center. In contrast to that, the pseu-
doparticle size has essentially no effect on the long range behavior of a pseudoparticle, which is
proportional to 1/x0 and 1/x2

0 in Figure 4.4a and 4.4b.

We obtained the string tension σ and the Coulomb coefficient α from generalized Creutz ratios
(12 × 12-Wilson loop grids, rboundary = 2.0, R1, . . . , T4 ∈ {7a , 8a , . . . , 12a}, a = 0.24; c.f.
section 3.1.1.3). They are shown as functions of the pseudoparticle size λ in Figure 4.5a and 4.5b.
The Coulomb coefficient is λ-dependent but the range of values, α = 0.09 . . . 0.25, is of the right
order of magnitude when compared to lattice results, αlattice = 0.22 . . . 0.32 [16, 17]. The string
tension σ, however, shows no λ-dependence at all. The implication is the following: confinement
is connected to the 1/|x| long range behavior of the pseudoparticles, which is the same for all
values of λ. The shape of the pseudoparticles near their center, which is λ-dependent, has no
effect on the string tension and, therefore, is of no relevance to confinement.

The topological susceptibility is roughly three times larger for small pseudoparticle sizes than
for large pseudoparticle sizes: χ = 0.0022 . . . 0.0008 between λ = 0.20 . . . 1.10. However, χ1/4 is
pretty stable with respect to λ, as is the dimensionless ratio χ1/4/σ1/2 (c.f. Figure 4.5c). The
range of values of the latter, χ1/4/σ1/2 = 0.41 . . . 0.33 between λ = 0.20 . . . 1.10, is in qualitative

agreement with the lattice result χ
1/4
lattice/σ

1/2
lattice = 0.486 ± 0.010 [27].

4.3 Gaussian localized pseudoparticles of different size

To learn more about the interrelation between the long range behavior of the pseudoparticles and
confinement, we study Gaussian localized pseudoparticles of different size. The corresponding
ensembles are S12-ensembles, where 1/(x2 + λ2) appearing in the definitions of instantons, anti-
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instantons and akyrons ((2.1) to (2.3)) is replaced by e−x2/(2λ2). We refer to them as S12,Gauss-
ensembles. The main difference between S12-ensembles and S12,Gauss-ensembles is the long range
behavior of their building blocks: in contrast to our standard choice of pseudoparticles, (2.1) to
(2.3), Gaussian localized pseudoparticles have a strictly limited range of interaction, which is
proportional to their size λ.

We consider S12,Gauss-ensembles with N = 30 × 12, n = 1.0, g = 4.0 and
λ ∈ {0.25 , 0.50 , . . . , 1.50}. Typical profiles of Gaussian localized pseudoparticles,
(x0/λ) exp(−x2

0/(2λ
2)) and (x1/λ) exp(−(x2

0+x2
1)/(2λ

2))|x1=λ, are shown in Figure 4.6 for differ-
ent λ. The boundary of the spacetime hypersphere is indicated by the dotted gray lines, assuming
profiles right through the center (N = 30 × 12 and n = 1.0 amounts to Vspacetime = 360.0 and
this in turn to rspacetime = 2.92).

Figure 4.7a shows − ln〈W(R,T )〉|R/T=1/2 for different λ (for the sake of clarity the curves have
been shifted by suitably chosen constants). Ensembles with λ >

∼ 1.0 clearly exhibit an area law,
whereas for λ <

∼ 0.5 they do not indicate confinement.

We obtained numerical values for the string tension σ from area perimeter fits to the data of
Figure 4.7a (dcutoff = λ, rboundary = 2.0; c.f. section 3.1.1.1) and from generalized Creutz ra-
tios (12 × 12-Wilson loop grids, rboundary = 2.0, R1, . . . , T4 ∈ {7a , 8a , . . . , 12a}, a = 0.24;

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6  7

-ln
〈W

(R
,T

)〉|
R

/T
=1

/2
 +

 c
on

st
an

t

area of W(R,T)

a)   -ln〈W(R,T)〉 |R/T=1/2(area)+constant   −   S12,Gauss-ensemble: ...

λ = 0.25
λ = 0.50
λ = 0.75
λ = 1.00
λ = 1.25

cutoff effects

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

st
rin

g 
te

ns
io

n 
σ

pseudoparticle size λ

b)   σ(λ)   −   S12,Gauss-ensemble: N = 30 × 12, n = 1.0, g = 4.0

area perimeter fits
generalized Creutz ratios

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

to
po

lo
gi

ca
l s

us
ce

pt
ib

ili
ty

 χ

pseudoparticle size λ

c)   χ(λ)   −   S12,Gauss-ensemble: N = 30 × 12, n = 1.0, g = 4.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

di
m

en
si

on
le

ss
 r

at
io

 χ
1/

4 /σ
1/

2

pseudoparticle size λ

d)   χ1/4/σ1/2(λ)   −   S12,Gauss-ensemble: N = 30 × 12, n = 1.0, ...

area perimeter fits
generalized Creutz ratios

lattice result: χ1/4/σ1/2 = 0.486 ± 0.010

Figure 4.7: S12,Gauss-ensemble, N = 30 × 12, n = 1.0, g = 4.0, for different pseudoparticle sizes
λ ∈ {0.25 , 0.50 , . . . , 1.50}. a) − ln〈W(R,T )〉|R/T=1/2+constant plotted against the area. b) σ,
obtained by area perimeter fits, and σ, obtained by generalized Creutz ratios, plotted against
λ. c) χ plotted against λ. d) χ1/4/σ1/2 plotted against λ.

50



CHAPTER 4. APPLICATIONS

c.f. section 3.1.1.3). The results are plotted in Figure 4.7b against the pseudoparticle size λ.
Both methods agree that there is no confinement for λ <

∼ 0.5 and confinement for λ >
∼ 1.0. The

onset of confinement takes place somewhere around λ ≈ 0.75. This is precisely the width at
which neighboring pseudoparticles start to overlap significantly (this can be seen by assign-
ing each pseudoparticle an appropriate volume, e.g. the volume of a hypersphere of radius λ,
(π2/2)λ4 ≈ 4.93 × λ4, and comparing that volume with the maximum volume non-overlapping
pseudoparticles can cover, i.e. 1/n = 1.0). The implication is the following: pseudoparticle
ensembles only exhibit confinement if their building blocks cover sufficiently large spacetime
regions. For a positive value of the string tension significant overlaps between neighboring pseu-
doparticles are required. This is reminiscent of “percolation” of pseudoparticles. Note that
percolation phenomena have been related to confinement in a variety of ways, e.g. percolation
of center vortices [33] or percolation of monopole loops [34] in lattice gauge theory or random
percolation of bonds or sites on a three dimensional lattice [35].

Figure 4.7c shows the λ-dependence of the topological susceptibility χ, which is weaker as the
λ-dependence of the string tension σ. Therefore, the dimensionless ratio χ1/4/σ1/2 (Figure 4.7d)
is dominated by σ. The range of values for λ ≥ 1.0, χ1/4/σ1/2 = 0.27 . . . 0.64, is of the right

order of magnitude when compared to the lattice result χ
1/4
lattice/σ

1/2
lattice = 0.486 ± 0.010 [27].

We also calculated the quark antiquark potential for different λ (Vqq̄(R) via fitting straight lines
to data points − ln〈W(R,T )〉|R=constant at R ∈ {9a , 10a , 11a , 12a}, a = 0.24; c.f. section 3.1.2).
The results are shown as functions of the quark antiquark separation in Figure 4.8. For λ ≥ 1.25
the potential is clearly confining, whereas for λ ≤ 0.50 it is unambiguously not confining. These
results are in agreement with previous results from this section.
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4.4 The effect of instantons, antiinstantons and akyrons

In this section we study the effect of instantons, antiinstantons and akyrons. We demonstrate
that confinement arises due to instantons and antiinstantons, whereas akyrons do not produce
confinement. We consider AC-ensembles with the same number of pseudoparticles but with
different ratios Ninstanton : Nantiinstanton : Nakyron. In detail, we compare the following ensembles
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with N = 400, n = 1.0, λ = 0.5 and g = 4.0:

• “Akyron ensemble”: AC-ensemble without instantons and antiinstantons, i.e. a pure aky-
ron ensemble containing 400 akyrons.

• “Standard ensemble”: AC-ensemble containing 150 instantons, 150 antiinstantons and 100
akyrons (Ninstanton : Nantiinstanton : Nakyron = 3 : 3 : 2).

• “Instanton ensemble”: AC-ensemble without akyrons, i.e. a pure instanton-like ensemble
containing 200 instantons and 200 antiinstantons (Ninstanton : Nantiinstanton = 1 : 1).

Figure 4.9a shows − ln〈W(R,T )〉|R/T=1/2 as a function of the area for all three ensembles. The
standard ensemble and the instanton ensemble exhibit an area law, which is a clear sign of con-
finement. The akyron curve on the other hand has a significantly smaller slope and additionally
exhibits a negative curvature, which might indicate a perimeter law.

We applied generalized Creutz ratios to determine the string tension for all three ensembles
(12 × 12-Wilson loop grids, rboundary = 1.8, R1, . . . , T4 ∈ {7a , 8a , . . . , 12a}, a = 0.21; c.f.
section 3.1.1.3). The results are σakyron = 0.019 ± 0.08, σstandard = 0.236 ± 0.013 and
σinstanton = 0.512 ± 0.023. The ratio of these values is given by
σakyron : σstandard : σinstanton ≈ 1 : 12 : 27.

The quark antiquark potential as a function of the separation is shown in Figure 4.9b (Vqq̄(R)
via fitting straight lines to data points − ln〈W(R,T )〉|R=constant at R ∈ {9a , 10a , 11a , 12a},
a = 0.21; c.f. section 3.1.2). The qualitative picture is the same.

To compare dimensionless ratios, we calculated the topological susceptibility χ and the critical
temperature Tcritical in the standard ensemble and in the instanton ensemble:

• (χ1/4/σ1/2)standard = 0.35.
(χ1/4/σ1/2)instanton = 0.26.

→ (χ1/4/σ1/2)standard : (χ1/4/σ1/2)instanton = 1.33.
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• (Tcritical/σ
1/2)standard = 0.61.

(Tcritical/σ
1/2)instanton = 0.59.

→ (Tcritical/σ
1/2)standard : (Tcritical/σ

1/2)instanton = 1.02.

When the scale is set by the string tension, akyrons have the effect of increasing the topological
susceptibility, i.e. the value of χ1/4/σ1/2 in the standard ensemble is larger by a factor of 1.33
than the value in the instanton ensemble. The critical temperature is essentially unaffected by
akyrons. Since (χ1/4/σ1/2)standard = 0.35 is closer to the lattice result

χ
1/4
lattice/σ

1/2
lattice = 0.486 ± 0.010 [27] than (χ1/4/σ1/2)instanton = 0.26, it is beneficial with respect

to quantitative results to consider ensembles containing instantons and antiinstantons as well as
akyrons instead of pure instanton/antiinstanton ensembles.

For the akyron ensemble the dimensionless ratios χ1/4/σ1/2 and Tcritical/σ
1/2 are not meaningful:

the topological susceptibility χ vanishes identically (c.f. Appendix D) and the critical tempera-
ture Tcritical is extremely small, somewhere within a range, which is barely accessible with the
numerical techniques presented throughout this work. The latter might be an indication that in
the akyron ensemble there is no confinement deconfinement phase transition at all. From that
and the above results for the string tension, i.e. the fact that σ is more than ten times smaller
in the akyron ensemble than in the other two ensembles, we conclude that gauge field configu-
rations made up solely of akyrons are not suited to produce confinement. On the other hand,
gauge field configurations, which are responsible for confinement, necessarily contain instantons
and antiinstantons.

It is interesting to note that any linear superposition of akyrons and, therefore, any field config-
uration in a pure akyron ensemble has zero topological charge density (c.f. Appendix D). This
supports the common expectation that confinement and topological charge are closely related.

We performed similar calculations in S12-ensembles with 30 pseudoparticle clusters. The akyron
ensemble has been realized by turning off instantons, i.e. by setting Sab = 0, and likewise the
instanton ensemble has been realized by turning off akyrons, i.e. by setting Sa0 = 0. We obtained
qualitatively the same results as in the AC-ensembles.

4.5 Very large pseudoparticle ensembles

In section 2.4 we have shown that pseudoparticle results are pretty stable for pseudoparticle
numbers N in the range 100 . . . 800. In the following we demonstrate that the pseudoparticle
approach is not anymore a successful effective model when N >

∼ 5, 000.

We applied generalized Creutz ratios to determine the string tension in an S12-ensemble with
N = 35 × 12 and in another identical S12-ensemble with N = 400 × 12 (n = 1.0, λ = 0.5,
g = 2.0). The results are σN=35×12 = 0.084 ± 0.004 (12 × 12-Wilson loop grids, rboundary = 2.0,
R1, . . . , T4 ∈ {7a , 8a , . . . , 12a}, a = 0.24; c.f. section 3.1.1.3) and σN=400×12 = 0.010± 0.009
(12 × 12-Wilson loop grids, rboundary = 3.24, R1, . . . , T4 ∈ {7a , 8a , . . . , 12a}, a = 0.38;
c.f. section 3.1.1.3). Figure 4.10a shows that the ensemble with N = 35 × 12 clearly exhibits
confinement, while Figure 4.10b indicates that there is no confinement when using N = 400×12
pseudoparticles.

We performed similar calculations for a wide range of coupling constants g ∈ {1.0 , 1.5 , . . . 4.0}
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and for different pseudoparticle sizes λ ∈ {0.5 , 1.5}. For all these calculations the qualitative
picture is the same. It seems that the loss of confinement is solely a consequence of the large
pseudoparticle number.

On the other hand, this result is hardly surprising. One can show that in the continuum limit,
i.e. in the limit of infinitely many pseudoparticles, the gauge field and the integration measure in
an A-ensemble as well as in an S12-ensemble are almost identical to those in continuum SU(2)
Yang-Mills theory (c.f. Appendix F). In other words, A-ensembles and S12-ensembles have the
correct naive continuum limit with respect to SU(2) Yang-Mills theory. Therefore, we expect
the pseudoparticle approach to behave similar to non-compact lattice gauge theory when the
number of pseudoparticles is sufficiently large, i.e. the number of degrees of freedom is of the
same order of magnitude as on small lattices. Since non-compact lattice gauge theory has shown
no sign of quark confinement (c.f. e.g. [36]), we do not expect it for the pseudoparticle approach
either when a large number of pseudoparticles is used.

According to the common expectation the reason why non-compact lattice gauge theory fails
to produce confinement is the lack of exact gauge invariance, which we do not have in the
pseudoparticle approach either. It has been shown that establishing a certain kind of exact gauge
invariance in non-compact lattice calculations restores confinement [37]. Whether something
similar can be done in the pseudoparticle approach, is an interesting but presently open question.
An obvious step in this direction would be to impose a gauge fixing, e.g. Lorentz gauge ∂µAµ = 0,
which can be realized by simply turning off akyrons. However, such a gauge fixing comes
along with the difficult and time consuming task of computing Faddeev Popov determinants.
Furthermore, it is not clear whether such a procedure is sufficient to restore confinement and
to turn the pseudoparticle approach into a general numerical technique. There might still be
other problems, e.g. arising from improper handling of Gribov copies. We have not pursued this
matter further yet.

To summarize, the pseudoparticle approach is a successful effective model for SU(2) Yang-Mills
theory when around 400 pseudoparticles are employed. However, at this stage the pseudoparticle
approach is not a general numerical technique, which can be applied with an arbitrary large
number of pseudoparticles.
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4.6 The pseudoparticle approach in quantum mechanics

The pseudoparticle approach is in no way restricted to SU(2) Yang-Mills theory. With minor
modifications it can be applied to “any other quantum field theory”. In this section we give
an example. We apply the pseudoparticle approach to a well known and analytically solvable
problem from quantum mechanics, the 1-dimensional harmonic oscillator.

4.6.1 Calculating energy levels in the path integral formalism

The Euclidean action of the 1-dimensional harmonic oscillator is given by

S[X] =

∫

dt

(
m

2
Ẋ2 +

mω2

2
X2

)

. (4.5)

Our goal in this section is to calculate the energy levels of the first excitation with negative
parity and the first excitation with positive parity with respect to the ground state via the
pseudoparticle approach. The results, E− − E0 = ω and E+ − E0 = 2ω, are well known and
can be obtained analytically in a couple of different ways. Here we have to resort to the path
integral formalism so that the pseudoparticle approach can be applied.

To this end, we consider time ordered correlation functions:

C−(t) =
〈

X(t)X(0)
〉

=
1

Z

∫

DX X(t)X(0)e−S[X] (4.6)

C+(t) =
〈(

X(t)2 − 〈X2〉
)(

X(0)2 − 〈X2〉
)〉

=

=
1

Z

∫

DX
(

X(t)2 − 〈X2〉
)(

X(0)2 − 〈X2〉
)

e−S[X] (4.7)

with

Z =

∫

DX e−S[X] (4.8)

(〈O〉 denotes the ensemble average of O which is equivalent to the ground state expectation value
of the time ordered product of O). Inserting complete sets of energy eigenstates and considering
parity yields

lim
t→∞

− ln(C−(t)) =
(

E− − E0

)

t + C−,0 (4.9)

lim
t→∞

− ln(C+(t)) =
(

E+ − E0

)

t + C+,0 (4.10)

(C−,0 and C+,0 are irrelevant constants). We can read off the energy differences E− − E0 and
E+ − E0 from the slopes of − ln(C−(t)) and − ln(C+(t)) for large t.

For later comparison we state the analytical results for C− and C+:

C−(t) =
1

2mω
e−ω|t| (4.11)

C+(t) =
1

2m2ω2
e−2ω|t|. (4.12)
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4.6.2 Application of the pseudoparticle approach

In analogy to (2.1) to (2.3) we consider pseudoparticles

x(t) =
t

t2 + λ2
(4.13)

(c.f. Figure 4.11a). Paths X are represented by a superposition of N pseudoparticles and a
constant C:

X(t) =

N∑

i=1

A(i)x(t − z(i)) + C (4.14)

(the i-th pseudoparticle has amplitude A(i) and position z(i)). The integration over all paths
is approximated by

∫

DX . . . ≈
∫
(

N∏

i=1

dA(i)

)

dC . . . (4.15)
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This time there is no need for Monte-Carlo simulations, since the action is a quadratic expression
in A(i) and C. We can compute “path integrals” by inverting the “action matrix” numerically.

Note that there is a strong analogy to A-ensembles (c.f. section 2.2.1).

Results: N = 50, n = 5.0, λ = 0.3, m = 1.0, ω = 1.0

We employed N = 50 pseudoparticles with positions z(i) chosen uniformly inside a “time vol-
ume” [−5.0, 5.0], i.e. z(i) = (N − 25.5)/5.0, i = 1, . . . , 50.

Figure 4.11b shows 〈X2〉 as a function of t. For −3.5 ≤ t ≤ 3.5 the pseudoparticle result is very
close to the analytical result 〈X2〉analytical = 1/2mω = 0.5. We expect boundary effects to be
negligible in this region.

In Figure 4.11c and 4.11d the pseudoparticle results for the correlation functions (4.6) and (4.7)
and their negative logarithms are plotted against t. They are nearly identical to the analytical
results (4.11) and (4.12). Therefore, we are able to extract very accurate numerical values for
the energy differences E− − E0 and E+ − E0.

Considering the quality of these results, we conclude that the pseudoparticle approach in quan-
tum mechanics with N = 50 is rather a trustworthy numerical technique than an effective model,
as it is the case for SU(2) Yang-Mills theory.
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Chapter 5

Summary and outlook

In this work we have presented the pseudoparticle approach, a numerical method to approx-
imate path integrals in SU(2) Yang-Mills theory. We calculated the static quark antiquark
potential, the topological susceptibility and the critical temperature of the confinement decon-
finement phase transition in different pseudoparticle ensembles. When applied with around 400
instantons, antiinstantons and akyrons, the pseudoparticle approach reproduces many essential
features of SU(2) Yang-Mills theory. The number of degrees of freedom is significantly smaller
than it is in typical lattice calculations.

5.1 The pseudoparticle approach as a successful effective model

for SU(2) Yang-Mills theory

Within error tolerance the quark antiquark potential in the pseudoparticle approach can by
parameterized by Vqq̄(R) = V0−α/R+σR, i.e. it is linear for large separations with an attractive
1/R-correction as predicted by the bosonic string picture [18, 19]. Additionally we have applied
four different methods to determine numerical values for the string tension σ and the Coulomb
coefficient α, which are all based on “guessing” the functional dependence of ensemble averages
of rectangular Wilson loops 〈W(R,T )〉. We obtained consistent results. The method of generalized
Creutz ratios, which has been developed in the context of this work, is particularly well suited
to check the consistency of the Wilson loop ansatz (3.4) and Monte Carlo data for 〈W(R,T )〉, and
therefore the quality of the resulting string tension and the resulting Coulomb coefficient.

The string tension is unambiguously positive, which is a clear indication of confinement. Fur-
thermore, it is an increasing function of the coupling constant g. When the scale is set by the
string tension, i.e. by identifying σ with the physical value 4.2/fm2, one can adjust the physical
size of the spacetime hypersphere by choosing appropriate values for g.

The value of the Coulomb coefficient for large coupling constants, i.e. for quark antiquark sepa-
rations >

∼ 0.5 fm, is of the right order of magnitude, i.e. α ≈ 0.2, when compared to the prediction
from the bosonic string picture, αstring = π/12 ≈ 0.26 [18, 19], and to lattice results,
αlattice = 0.22 . . . 0.32 [16, 17].

We also calculated the the topological susceptibility χ and the critical temperature of the
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confinement deconfinement phase transition Tcritical. The dimensionless ratios χ1/4/σ1/2 and
Tcritical/σ

1/2 are constant for a wide range of coupling constants, i.e. σ, χ and Tcritical exhibit
consistent scaling behaviors with respect to g. This success strongly indicates that one can
extract sensible physics from the pseudoparticle approach. The values of these dimensionless
ratios, χ1/4/σ1/2 = 0.29 . . . 0.39 and Tcritical/σ

1/2 = 0.49 . . . 0.66, are in qualitative agreement

with the lattice results, χ
1/4
lattice/σ

1/2
lattice = 0.486 ± 0.010 and Tcritical/σ

1/2 = 0.694 ± 0.018 [27].

For the near future we plan to calculate other temperature dependent quantities, e.g. the energy
density and the pressure, as well as glueball masses. Furthermore, we intend to include fermions
in the pseudoparticle approach.

5.2 Applications of the pseudoparticle approach

We explored the effect of the pseudoparticle size λ on the string tension and on confinement.
For ensembles of instantons, antiinstantons and akyrons the string tension shows no sign of a
λ-dependence at all. The conclusion is that confinement is solely a consequence of the long range
behavior of the building blocks, which is in this case unaffected by the pseudoparticle size. This
has been confirmed by considering ensembles of Gaussian localized pseudoparticles, for which
the size parameter strongly affects the long range behavior. For small λ there is only little
overlap between neighboring pseudoparticles. Confinement is completely lost. Increasing λ to a
value, where pseudoparticles overlap and interact significantly, restores quark confinement. We
deduce that in order to exhibit confinement, pseudoparticle ensembles require building blocks,
which are able to interact over sufficiently large distances. On the other hand, gauge field
configurations with only localized excitations do not produce confinement. It seems that gauge
field configurations, which are responsible for confinement, contain extended structures and large
area excitations.

Comparing our “standard ensembles” with pure instanton/antiinstanton ensembles and pure
akyron ensembles led to the conclusion that confinement arises due to instantons and antiin-
stantons and not because of akyrons. Keeping in mind that gauge field configurations made
up solely of akyrons have vanishing topological charge density, our findings support the com-
mon expectation that topological charge and confinement are closely related. For the quality of
quantitative results akyrons seem to play an important role. The dimensionless ratio χ1/4/σ1/2

is significantly closer to the lattice result when there are not only instantons and antiinstantons
but also akyrons. Tcritical/σ

1/2 on the other hand is unaffected by akyrons.

We have also shown that the pseudoparticle approach is limited to a small number of pseudopar-
ticles. While numerical results are stable and in agreement with lattice results for ensembles
containing between 100 and 800 pseudoparticles, the qualitative picture changes significantly
when applying around 5, 000 pseudoparticles. Especially confinement seems to get lost. This
indicates a connection to non-compact lattice gauge theory, where a similar behavior has been
observed [36]. Whether the pseudoparticle approach can be improved so that it is a general
numerical technique, which can be applied with an arbitrary large number of pseudoparticles,
e.g. by imposing a gauge fixing, is an interesting but open question.

Finally we modified the pseudoparticle approach for quantum mechanics and applied it to the
1-dimensional harmonic oscillator. The resulting energy levels are in excellent agreement with
analytical results.
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5.3 Concluding remarks

The results presented throughout this work have shown that the pseudoparticle approach is
a technique with many interesting aspects, which are worth further investigations. There are
two essentially different starting points for future research. The first is to keep working with
around 400 pseudoparticles and to extend the effective model for SU(2) Yang-Mills theory, as
it has been considered for the major part of this work, e.g. by calculating other observables or
by including fermions. This might lead to further insights into the mechanisms of the Yang-
Mills path integral and the relevance of its field configurations with respect to confinement. The
other starting point is to improve the pseudoparticle approach so that it can cope with very large
pseudoparticle numbers, e.g. by imposing a gauge fixing. The intention would be to develop a
general numerical method to compute path integrals in Yang-Mills theory without discretizing
spacetime.
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Appendix A

Euclidean SU(2) Yang-Mills theory

In this appendix we review some essential elements of SU(2) Yang-Mills theory.

Throughout the whole work, spacetime is considered to be Euclidean with metric
ηµν = diag(1, 1, 1, 1).

The SU(2) Yang-Mills action is given by

S =

∫

d4x s (A.1)

with action density

s =
1

4g2
F a

µνF a
µν (A.2)

(g is the dimensionless coupling constant) and field strength

F a
µν = ∂µAa

ν − ∂νA
a
µ + ǫabcAb

µAc
ν (A.3)

(ǫ123 = 1).

The gauge field Aa
µ can also be written in matrix form:

Aµ = Aa
µ

σa

2
(A.4)

(σa are the Pauli matrices).

The action (A.1) and the action density (A.2) are invariant under gauge transformations

Aµ(x) → A′
µ(x) = U(x)Aµ(x)U−1(x) − i

(

∂µU(x)
)

U−1(x) , U(x) ∈ SU(2). (A.5)

The topological charge is defined by

Q =

∫

d4x q (A.6)
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with topological charge density

q =
1

32π2
F a

µν F̃ a
µν (A.7)

and dual field strength

F̃ a
µν =

1

2
ǫµναβF a

αβ (A.8)

(ǫ0123 = −1).

The classical equations of motion can be obtained from (A.1) via the principle of least action.
They are given by

∂µF a
µν + ǫabcAb

µF c
µν = 0. (A.9)

Regular gauge instantons,

Aa
µ = Cab

2ηb
µν(xν − zν)

(x − z)2 + λ2
, ηb

µν = ǫbµν + δbµδ0ν − δbνδ0µ, (A.10)

(Cab: color orientation matrix, c.f. Appendix C, zµ: position, λ: size) are solutions to the classical
equations of motion (A.9) with action S = 8π2/g2 and topological charge Q = +1 [38]. The
same is true for antiinstantons,

Aa
µ = Cab

2η̄b
µν(xν − zν)

(x − z)2 + λ2
, η̄b

µν = ǫbµν − δbµδ0ν + δbνδ0µ, (A.11)

which have topological charge Q = −1.
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Appendix B

Data analysis and error bars

In this appendix we outline how error bars for various quantities have been calculated throughout
this work.

B.1 Error bars for ensemble averages (〈s〉, 〈|Aa
‖|〉, 〈|Aa

⊥|〉, 〈W(R,T )〉,
〈Q2

V 〉 and 〈L〉β)

In order to calculate the ensemble average 〈O〉, where O is either s, |Aa
‖|, |Aa

⊥|, W(R,T ), Q2
V

or Lβ,we generate field configurations by performing N independent Monte-Carlo simulations.
From each of these Monte-Carlo simulations we take M field configurations, for which we evaluate
O (c.f. section 2.3.1). Taking the average of the resulting M values provides N independent
estimates Oi. Assuming a normal distribution for these estimates, the maximum likelihood
estimators of the ensemble average 〈O〉 and its standard deviation σ(O) are given by

〈

O
〉

=
1

N

N∑

i=1

Oi (B.1)

σ(O) =

(

1

N(N − 1)

N∑

i=1

(

Oi −
〈

O
〉)2

)1/2

(B.2)

[40]. Error bars cover the interval [〈O〉 − σ(O), 〈O〉 + σ(O)].

Most of the results presented throughout this work have been obtained with N = 6, 000 and
M = 20.

B.2 Error bars for − ln〈W(R,T )〉

Error bars for − ln〈W(R,T )〉 cover the interval
[− ln(〈W(R,T )〉 + σ(W(R,T ))),− ln(〈W(R,T )〉 − σ(W(R,T )))].

65
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B.3 Error bars for σ and α (fitting methods) and Vqq̄(R)

In order to fit the Wilson loop ansatz (3.4) to Monte-Carlo data for − ln〈W(R,T )〉 to determine
σ and/or α (c.f. section 3.1.1.1 and 3.1.1.4), we apply the method of least squares, which is a
standard technique from statistics (c.f. e.g. [40]). To check the quality of the resulting fit, we
perform a χ2-Test with a significance value of 5%. If the χ2-Test fails, we adjust the standard
deviations of the fit parameters σ and α by a heuristic method presented in [41]. Error bars
cover one standard deviation in both directions.

When determining the quark antiquark potential Vqq̄(R) (c.f. section 3.1.2), fitting is carried
out in the same way.

B.4 Error bars for − ln(ΓX(R1, . . . , T4)), σ and α (generalized
Creutz ratios)

At first we calculate ten independent estimates for each ensemble average 〈W(R,T )〉 by considering
ten times N/10 independent Monte-Carlo simulations. From these results we determine ten
independent values for − ln(ΓX(R1, . . . , T4)). Then we apply (B.1) and (B.2) with N = 10.
Errororbars cover the interval [〈O〉 − σ(O), 〈O〉 + σ(O)].

To extract a single value for the string tension σ or the Coulomb coefficient α, we sort the
corresponding estmates according to c2

1,X + . . .+c2
4,X and calculate the average and the standard

deviation of the “smaller half”. Error bars cover one standard deviation in both directions.

B.5 Error bars for Tcritical

At first we calculate 〈L〉βi
and σ(Lβi

) for a couple of different temperatures Ti = 1/βi.

Let T− be the largest temperature Ti with 〈L〉βi
< ξ and T+ be the next largest temperature

Tj , i.e. the smallest temperature Tj with 〈L〉βj
> ξ. The error bar for Tcritical covers the interval

[Tcritical,min, Tcritical,max], where Tcritical,min is that temperature, where a straight line through
(T−, 〈L〉β−

+ σ(Lβ−
)) and (T+, 〈L〉β+

+ σ(Lβ+
)) crosses ξ, and Tcritical,max is that temperature,

where a straight line through (T−, 〈L〉β−
− σ(Lβ−

)) and (T+, 〈L〉β+
− σ(Lβ+

)) crosses ξ.

B.6 Error bars for χ1/4/σ1/2 and Tcritical/σ
1/2

Error bars for χ1/4/σ1/2 cover the interval [(χ−∆χ)1/4/(σ + ∆σ)1/2, (χ + ∆χ)1/4/(σ −∆σ)1/2],
where χ = 〈Q2

V 〉/V , ∆χ = σ(Q2
V )/V and errororbars for σ cover the interval [σ − ∆σ, σ + ∆σ].

Error bars for Tcritical/σ
1/2 cover the interval [Tcritical,min/(σ + ∆σ)1/2, Tcritical,max/(σ −∆σ)1/2].
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Appendix C

Color orientation matrices

A color orientation is equivalent to a spacetime independent gauge transformation. Such a
gauge transformation can be specified by an element of SU(2): U = c0 + icaσ

a with c2
0 + c2 = 1.

Applying this gauge transformation to a gauge field Aµ yields

A′
µ = UAµU−1 (C.1)

(c.f. (A.5)) or expressed in components

Aa
µ
′ = Tr(σaA′

µ) = Tr

(

σa
(

c0 + iccσ
c
)

Ab
µ

σb

2

(

c0 − icdσ
d
))

=

=
(

δab
(

c2
0 − c2

)

+ 2cacb + ǫabc2c0cc

)

︸ ︷︷ ︸

=Cab

Ab
µ = CabAb

µ. (C.2)

We refer to Cab as color orientation matrix.

Color orientation matrices fulfill

CCT = CT C = 1 (C.3)

det(C) = 1. (C.4)

Therefore, they are elements of SO(3).

In the following we prove that there are color orientation matrices Cab(i), i = 1, . . . , 9, so that
any matrix Sab can be represented according to

Sab =
9∑

i=1

A(i)Cab(i), (C.5)

where A(i) are suitably chosen amplitudes. We do that by showing that color orientation
matrices form a basis of all 3 × 3-matrices:

1

2
Cab(c0 = 1) +

1

2
Cab(c1 = 1) =





1 0 0
0 0 0
0 0 0



 (C.6)
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1

2
Cab(c0 = 1) +

1

2
Cab(c2 = 1) =





0 0 0
0 1 0
0 0 0



 (C.7)

1

2
Cab(c0 = 1) +

1

2
Cab(c3 = 1) =





0 0 0
0 0 0
0 0 1



 (C.8)

1

2
Cab
(

c1 = 1/
√

2, c2 = 1/
√

2
)

+
1

2
Cab
(

c0 = 1/
√

2, c3 = 1/
√

2
)

=





0 1 0
0 0 0
0 0 0



 (C.9)

1

2
Cab
(

c1 = 1/
√

2, c2 = 1/
√

2
)

+
1

2
Cab
(

c0 = 1/
√

2, c3 = −1/
√

2
)

=





0 0 0
1 0 0
0 0 0



 (C.10)

1

2
Cab
(

c2 = 1/
√

2, c3 = 1/
√

2
)

+
1

2
Cab
(

c0 = 1/
√

2, c1 = 1/
√

2
)

=





0 0 0
0 0 1
0 0 0



 (C.11)

1

2
Cab
(

c2 = 1/
√

2, c3 = 1/
√

2
)

+
1

2
Cab
(

c0 = 1/
√

2, c1 = −1/
√

2
)

=





0 0 0
0 0 0
0 1 0



 (C.12)

1

2
Cab
(

c1 = 1/
√

2, c3 = 1/
√

2
)

+
1

2
Cab
(

c0 = 1/
√

2, c2 = 1/
√

2
)

=





0 0 0
0 0 0
1 0 0



 (C.13)

1

2
Cab
(

c1 = 1/
√

2, c3 = 1/
√

2
)

+
1

2
Cab
(

c0 = 1/
√

2, c2 = −1/
√

2
)

=





0 0 1
0 0 0
0 0 0



 . (C.14)

Of course, there are also color orientation matrices Cab(i), i = 10, . . . , 12, so that any vector Sa0

can be represented according to

Sa0 =
12∑

i=10

A(i)Ca1(i). (C.15)
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Appendix D

Any linear superposition of akyrons
has vanishing topological charge
density

In this appendix we prove that any linear superposition of akyrons has vanishing topological
charge density.

The gauge field of a single akyron with index i, amplitude A(i), color orientation matrix Cab(i)
and position z(i) is given by

Aa
µ(i) = A(i)Cab(i)ab

akyron,µ(x − z(i)) = A(i)Ca1(i)
xµ − zµ(i)

(x − z(i))2 + λ2
(D.1)

(c.f. (2.3)). In the corresponding field strength the derivative terms cancel each other:

F a
µν(i) = ∂µAa

ν(i) − ∂νA
a
µ(i)

︸ ︷︷ ︸

=0

+ǫabcAb
µ(i)Ac

ν(i) = ǫabcAb
µ(i)Ac

ν(i). (D.2)

For any linear superposition of akyrons

Aa
µ =

∑

i

Aa
µ(i) (D.3)

the same is true:

F a
µν = ∂µAa

ν − ∂νA
a
µ

︸ ︷︷ ︸

=0

+ǫabcAb
µAc

ν = ǫabcAb
µAc

ν . (D.4)

For the topological charge density follows

q =
1

32π2
F a

µν F̃ a
µν =

1

64π2
ǫµναβF a

µνF a
αβ =

1

64π2
ǫµναβǫabcǫadeAb

µAc
νAd

αAe
β =

=
1

64π2
ǫµναβ

(

δbdδce − δbeδcd
)

Ab
µAc

νA
d
αAe

β =
1

32π2
ǫµναβ(Ab

µAb
α)

︸ ︷︷ ︸

=0

(Ac
νAc

β) = 0. (D.5)
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Appendix E

The Fourier transform of a
pseudoparticle

In this appendix we calculate the Fourier transform of xν/(x
2 + λ2).

At first we replace xν in the numerator by a derivative:

∫

d4x eikx xν

x2 + λ2
= −i

∂

∂kν

∫

d4x eikx 1

x2 + λ2
. (E.1)

In order to calculate the integral, it is convenient to introduce spherical coordinates:

∫

d4x eikx 1

x2 + λ2
= 4π

∫ ∞

0
dr r3

∫ π

0
dα sin(α)2eikr cos(α) 1

r2 + λ2
=

= 4π

∫ ∞

0
dr

r3

r2 + λ2

∫ π

0
dα sin(α)2eikr cos(α) = . . . (E.2)

[39], page 486, 3.915(5.):

. . . = 4π

∫ ∞

0
dr

r3

r2 + λ2

( π

kr
J1(kr)

)

=
4π2

k

∫ ∞

0
dr

r2J1(kr)

r2 + λ2
= . . . (E.3)

(J1 is a Bessel function of the first kind). [39], page 671, 6.566(2.):

. . . =
4π2λK1(kλ)

k
(E.4)

(K1 is a modified Bessel function of imaginary argument). Inserting (E.4) in (E.1) yields

∫

d4x eikx xν

x2 + λ2
= −i

∂

∂kν

4π2λK1(kλ)

k
=

8π2ikν

k4

(
kλK1(kλ)

2
− k2λ2K ′

1(kλ)

2

)

. (E.5)
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E.1 Instantons and antiinstantons form transverse gauge fields,
akyrons form longitudinal gauge fields

Any gauge field Aa
µ can be written as a sum of plane waves:

Aa
µ(x) =

1

(2π)4

∫

d4k e−ikxÃa
µ(k), (E.6)

where Ãa
µ, the Fourier transform of Aa

µ, is given by

Ãa
µ(k) =

∫

d4k eikxAa
µ(x). (E.7)

The Fourier transformed gauge field Ãa
µ can be decomposed in a transverse and a longitudinal

part:

Ãa
µ(k) = Ãa

µ,transverse(k) + Ãa
µ,longitudinal(k) (E.8)

with

kµÃa
µ,transverse(k) = 0 (E.9)

Ãa
µ,longitudinal(k) ∝ kµ. (E.10)

Superpositions of instantons (2.1) and antiinstantons (2.2) form transverse gauge fields, whereas
superpositions of akyrons (2.3) form longitudinal gauge fields. This can be seen by considering
the Fourier transforms of these pseudoparticles:

ãa
µ,instanton(k) = ηa

µνkνf(k) (E.11)

ãa
µ,antiinstanton(k) = η̄a

µνkνf(k) (E.12)

ãa
µ,akyron(k) = δa1kµf(k), (E.13)

where

f(k) =
8π2i

k4

(
kλK1(kλ)

2
− k2λ2K ′

1(kλ)

2

)

(E.14)

(c.f. (E.5)). (E.11) and (E.12) satisfy (E.9) due to the antisymmetry of ηa
µν and η̄a

µν , while (E.13)
obviously fulfills (E.10).
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Appendix F

The continuum limit in the
pseudoparticle approach

In this section we discuss the continuum limit in the pseudoparticle approach, i.e. the limit of
infinitely many pseudoparticles.

F.1 The gauge field

To begin with, we restrict the gauge field of an A-ensemble (2.6) to instantons and akyrons and
consider its continuum version:

Aa
µ(x) =

∫

d4z

(
9∑

i=1

A(i, z)Cab(i, z)ab
µ,instanton(x − z) +

12∑

j=10

A(j, z)Cab(j, z)ab
µ,akyron(x − z)

)

. (F.1)

It is sufficient to consider nine instantons and three akyrons at the same spacetime point.
Increasing the number of pseudoparticles further will not allow us to represent any other gauge
field configurations.

In the following we demonstrate that “almost every gauge field configuration” Aa
µ can be rep-

resented according to (F.1), that is there exist amplitudes A(i) and A(j) and color orientation
matrices Cab(i) and Cab(j) satisfying this equation. The first step is to insert (2.1) and (2.3) in
(F.1) and to define functions SaB = (Sa0,Sab) via

Aa
µ(x) =

∫

d4z

(
9∑

i=1

A(i, z)Cab(i, z)

︸ ︷︷ ︸

=Sab(z)

ηb
µν +

12∑

j=10

A(j, z)Cab(j, z)δb1

︸ ︷︷ ︸

=Sa0(z)

δµν

)

xν − zν

(x − z)2 + λ2
. (F.2)

It can be shown that any SaB can be realized by suitably chosen amplitudes A(i) and A(j) and
color orientation matrices Cab(i) and Cab(j) (c.f. Appendix C). Therefore, the problem has been
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reduced to the question whether any gauge field configuration can be represented by suitably
chosen SaB .

Fourier transforming (F.2) turns the convolution into an ordinary multiplication:

Ãa
µ(k) =

(

S̃ab(k)ηb
µν + S̃a0(k)δµν

) ∫

d4x eikx xν

x2 + λ2
=

=
(

S̃ab(k)ηb
µν + S̃a0(k)δµν

)8π2ikν

|k|4
( |k|λK1(|k|λ)

2
− k2λ2K ′

1(|k|λ)

2

)

(F.3)

(the Fourier transform of xν/(x
2 + λ2) is carried out in Appendix E; K1 is a modified Bessel

function of imaginary argument). Without loss of generality we consider a = 1:







Ã1
0(k)

Ã1
1(k)

Ã1
2(k)

Ã1
3(k)







=

=
8π2i

|k|4
( |k|λK1(|k|λ)

2
− k2λ2K ′

1(|k|λ)

2

)

︸ ︷︷ ︸

F(k)







k0 −k1 −k2 −k3

k1 k0 −k3 k2

k2 k3 k0 −k1

k3 −k2 k1 k0







︸ ︷︷ ︸

=K(k)







S̃10(k)

S̃11(k)

S̃12(k)

S̃13(k)







. (F.4)

For k 6= 0 this equation can be solved for (S̃10, S̃11, S̃12, S̃13), because F 6= 0 and
det(K) = |k|4 6= 0. For k = 0 both F and K are singular. To study this case, we first deduce

∫

d4xAa
µ(x) = 0 (F.5)

from (F.2) by applying a proper regularization scheme. (F.5) implies Ãa
µ(k = 0) = 0. Inserting

this in (F.4) shows that the value of S̃aB(k = 0) has no effect on the gauge field Aa
µ. On the

other hand, changing S̃aB(k = 0) amounts to a constant shift of SaB : SaB → SaB + SaB
0 . That

is adding SaB
0 changes SaB , whereas the gauge field Aa

µ remains unaltered. To get rid of this
redundancy, we require

G[SaB ] =

∫

d4xSaB(x) = 0. (F.6)

Of course, there are many other sensible conditions, which could have been chosen.

To be able to represent any gauge field configuration, we have to find a way around (F.5). This
can easily be achieved by adding constants Ba

µ to (F.1).

The final result is the following: any gauge field configuration Aa
µ has a unique expansion

Aa
µ(x) =

∫

d4z
(

Sab(z)ab
µ,instanton(x − z) + Sa0(z)a1

µ,akyron(x − z)
)

+ Ba
µ (F.7)

74



APPENDIX F. THE CONTINUUM LIMIT IN THE PSEUDOPARTICLE ...

in terms of SaB(z) and Ba
µ with SaB(z) constrained by (F.6). Instead of SaB(z) one can also use

amplitudes A(i, z), i = 1, . . . , 12, with fixed and linearly independent color orientation matrices
Cab(i, z), i = 1, . . . , 9, and Ca1(j, z), j = 10, . . . , 12:

Aa
µ(x) =

∫

d4z

(
9∑

i=1

A(i, z)Cab(i, z)ab
µ,instanton(x − z) +

12∑

j=10

A(j, z)Cab(j, z)ab
µ,akyron(x − z)

)

+ Ba
µ. (F.8)

Note that instead of instantons one can also use antiinstantons.

F.2 The integration measure

Now that we have convinced ourselves that any gauge field configuration has a unique expansion
in terms of (SaB(z), Ba

µ) or (A(i, z), Ba
µ), we turn our attention to the integration measure of the

path integral. Since the relation between Aa
µ and (SaB(z), Ba

µ) as well as (A(i, z), Ba
µ) is linear

and invertible (c.f. (F.6) to (F.8)), the Jacobian appearing after a change of coordinates is merely
an irrelevant constant. The integration measure corresponding to coordinates (SaB(z), Ba

µ) is
given by

∫

DA . . . =

∫
(
∏

a,B

DSaB δ(G[SaB ])

)(
∏

µ,a

dBa
µ

)∣
∣
∣
∣

δAa
µ

δ(SaB , Ba
µ)

∣
∣
∣
∣

︸ ︷︷ ︸

=constant

. . . ∝

∝
∫
(
∏

a,B

DSaB δ(G[SaB ])

)(
∏

µ,a

dBa
µ

)

. . . , (F.9)

whereas the integration measure corresponding to coordinates (A(i, z), Ba
µ) is given by

∫

DA . . . =

∫
(
∏

i

DA(i)

)(
∏

a,B

δ(G[SaB(A(i))])

)(
∏

µ,a

dBa
µ

)∣
∣
∣
∣

δAa
µ

δ(A(i), Ba
µ)

∣
∣
∣
∣

︸ ︷︷ ︸

=constant

. . . ∝

∝
∫
(
∏

i

DA(i)

)(
∏

a,B

δ(G[SaB(A(i))])

)(
∏

µ,a

dBa
µ

)

. . . (F.10)

F.3 Approximations with the correct naive continuum limit

In this section we show that A-ensembles and S12-ensembles are approximations of SU(2) Yang-
Mills theory, which possess the correct naive continuum limit (with exception of the constants
Ba

µ).
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F.3.1 “A-ensembles”

A straightforward approximation of (F.8) with a finite number of pseudoparticles is

Aa
µ(x) =

∑

i

A(i)Cab(i)ab
µ,instanton(x − z(i)) +

∑

j

A(j)Cab(j)ab
µ,antiinstanton(x − z(j)) +

∑

k

A(k)Cab(k)ab
µ,akyron(x − z(k)) + Ba

µ (F.11)

with randomly chosen positions z(i) inside a spacetime hypersphere. Although it is of no rele-
vance in the continuum limit, we consider an equal number of instantons and antiinstantons. The
approximation is then symmetric with respect to the topological charge (c.f. (2.5)). According
to section F.1, where we have seen that there are three times as many instanton/antiinstanton
degrees of freedom as there are akyron degrees of freedom, we choose
Ninstanton : Nantiinstanton : Nakyron = 3 : 3 : 2.

The integration over all field configurations (F.10) is approximated by

∫

DA . . . ∝
∫
(
∏

i

dA(i)

)(
∏

µ,a

dBa
µ

)

. . . (F.12)

Because we are considering a finite spacetime region, we were allowed to drop the δ-functions.
They have no effect on any finite spacetime region.

With exception of the constants Ba
µ this is an A-ensemble (c.f. section 2.2.1).

F.3.2 “S12-ensembles”

This time the starting point is (F.7). Replacing the integral by a sum yields

Aa
µ(x) =

∑

i

(

Sab(i)ab
µ,instanton(x − z(i)) + Sa0(i)a1

µ,akyron(x − z(i))
)

+ Ba
µ =

=
∑

i

SaB(i)aB
µ,S12(x − z(i)) + Ba

µ, (F.13)

with aB
µ,S12 defined by (2.10).

The integration over all field configurations (F.9) is approximated by

∫

DA . . . ∝
∫



∏

i,a,B

dSaB(i)





(
∏

µ,a

dBa
µ

)

. . . (F.14)

Again we have dropped the δ-functions.

With exception of the constants Ba
µ this is an S12-ensemble (c.f. section 2.2.3).

76



Appendix G

Calculating Wilson loops numerically

In this appendix we explain how to compute Wilson loops numerically.

The starting point is (3.1). We parameterize the closed spacetime curve z defining the Wilson
loop Wz by λ ∈ [λmin, λmax]:

Wz[A] =
1

2
Tr

(

P

{

exp

(

i

∮

dzµ Aµ(z)

)})

=

=
1

2
Tr

(

P

{

exp

(

i

∫ λmax

λmin

dλ
dzµ(λ)

dλ
Aµ(z(λ))

)})

. (G.1)

To approximate this expression numerically, we replace the integral in the exponent by a sum.
The exponential function can be written as a path ordered product:

Wz[A] ≈ 1

2
Tr

(

P

{

exp

(

i
N∑

i=1

∆zµ(i)Aµ(i)

)})

=

=
1

2
Tr

(

P

{
N∏

i=1

exp
(

i∆zµ(i)Aµ(i)
)
})

, (G.2)

where

∆zµ(i) = ∆λ
dzµ(λ)

dλ

∣
∣
∣
∣
λ=λ(i)

, ∆λ =
λmax − λmin

N
,

λ(i) = λmin +

(

i − 1

2

)

∆λ , Aµ(i) = Aµ(z(i)) , z(i) = z(λ(i)). (G.3)

The coefficients of the path ordered product in (G.2) can be calculated:

exp
(

i∆zµ(i)Aµ(i)
)

= cos(|~α(i)|) + i sin(|~α(i)|) ~α(i)

|~α(i)|~σ , αa(i) =
∆zµ(i)Aa

µ(i)

2
. (G.4)
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G.1. CHOOSING AN APPROPRIATE NUMBER OF SAMPLE POINTS

G.1 Choosing an appropriate number of sample points

When calculating Wilson loops numerically via (G.2), it is important to choose an appropriate
number of sample points. In order to save computation time, we would like to choose N as small
as possible. On the other hand, the numerical error involved should be negligible.

To get a better understanding of the magnitude of the numerical error, associated with different
sample point densities, we studied two cases, where Wilson loops can be calculated analytically:

a) Circular Wilson loops in the 1-2-plane, radius r, A1
1 = A2

2 = β [42]:

Wz[A] = − cos
(

π
(
1 + r2β2

)1/2
)

. (G.5)

b) Circular Wilson loops, “perpendicular to a single instanton” (c.f. [43], section 4.2.1).

Using different sample point densities, we computed the analytical and the numerical values of
10, 000 Wilson loops with randomly chosen parameters in both cases:

• Case a): r ∈ [0.2, 1.0], β ∈ [−1.0, 1.0].

• Case b): r ∈ [0.2, 1.0], ξ ∈ [0.0, 2.0], the instanton has size λ = 1.0 and a randomly chosen
color orientation.

From the results we calculated the maximum absolute error and the mean error (Table G.1).
There is strong empirical evidence that both errors are of order 1/(sample point density)2.

maximum mean error
absolute error

Case a), sample point density = 10.0 8.75600e−04 1.20751e−04 ± 1.81233e−06

Case a), sample point density = 100.0 8.83737e−06 1.23419e−06 ± 1.84447e−08

Case a), sample point density = 1000.0 8.85994e−08 1.23695e−08 ± 1.84781e−10

Case b), sample point density = 10.0 7.55270e−04 −2.81595e−04 ± 2.16789e−06

Case b), sample point density = 100.0 7.57427e−06 −2.87862e−06 ± 2.20653e−08

Case b), sample point density = 1000.0 7.58124e−08 −2.88564e−08 ± 2.21073e−10

Table G.1: average errors in the numerical calculation of Wilson loops due to insufficient sam-
pling.

All results presented in this work have been calculated with a sample point density of at least 5.0.
Figure G.1 shows a typical example, for which a sample point density of 5.0 is more than sufficient
(for sample point densities >

∼ 1.0 ensemble averages of Wilson loops are indistinguishable within
statistical errors).
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Figure G.1: AC-ensemble, N = 400, n = 1.0, λ = 0.5, g = 4.0. − ln〈W(R,T )〉|R/T=1/2 calculated
with different sample point densities plotted against the area.
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