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Figure 1: Repairing the bunny (487 vertices)

ABSTRACT

In the field of reverse engineering one often faces the prob-
lem of repairing triangulations with holes, intersecting tri-
angles, Möbius-band-like structures or other artifacts.In
this paper we present a novel approach for generating man-
ifold triangle meshes from such incomplete or imperfect
triangulations. Even for heavily damaged triangulations,
representing closed surfaces with arbitrary genus, our al-
gorithm results in correct manifold triangle meshes. The
algorithm is based on a randomized optimization technique
from probability calculus called simulated annealing.

CR Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling.

Keywords: Repairing triangulations, simulated anneal-
ing.

1 INTRODUCTION

Triangulating point clouds is an important issue in the field
of reverse engineering. A lot of work dealing with this
topic has been published and many surface reconstruction
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algorithms have been developed. While some of these al-
gorithms guarantee a manifold triangulation of any given
point cloud (e. g. Power Crust by Amenta et al. [1]) others
have big problems with data sets not fulfilling certain sam-
pling criteria (e. g. Cocone by Dey et al. [2], Gopi’s algo-
rithm based on localized Delaunay triangulations [3]). As
algorithms of the latter type tend to be more efficient, it is of
practical interest to know methods which extend incomplete
or repair imperfect triangulations.

Unfortunately only few papers focus on this problem.
To generate topologically correct triangulations Barequet et
al. [4] use a technique for merging two appropriate edges
at a time by moving corresponding vertices. El-Sana et al.
[5] repair cracks by adding extra triangles followed by a
topology simplification step. Adamy et al. [6] propose a
topological clean up and a technique based on linear pro-
gramming in order to establish a topologically correct sur-
face. The approach of Carr et al. [7] is based on radial basis
functions, approximating the surface represented by the un-
derlying point cloud. In this paper we present a new and
completely different algorithm for generating manifold tri-
angle meshes from incomplete or incorrect triangulations.
This algorithm is based on a randomized optimization tech-
nique called simulated annealing.

Our algorithm can be divided into three sequential phases
(preprocessing, simulated annealing, postprocessing) which
are presented in Sections 2 to 4. After the presentation and
discussion of our results in Section 5 we close with a sum-
mary and a conclusion in Section 6.



2 PREPROCESSING

The input of our algorithm can be any non-manifold trian-
gulation, i. e. a triangulation containing holes, topological
errors and intersecting triangles. To generate initial triangu-
lations for the examples shown in this paper we used Gopi’s
algorithm based on lower dimensional localized Delaunay
triangulations.

2.1 Removing bad triangles

A manifold triangle mesh is a closed triangle mesh without
topological errors and intersecting triangles. In order tobe
able to extend our initial triangulation to one or more man-
ifold triangle meshes, we first have to remove all triangles
disturbing the properties of manifold triangle meshes. In the
following we will call these trianglesbad triangles. There
are three classes of bad triangles:� Triangles sharing an edge with at least two other tri-

angles.� Triangles connected with one vertex to the center of a
closed triangle fan.� Intersecting triangles.

Topological errors (the first two items in the list) are easy
to detect. For the intersection tests between two triangles
we use an algorithm presented in [8].

2.2 Closing simple holes

After the removal of bad triangles usually there are several
holes in the triangulation which have to be closed. Some
of these holes can simply be closed by inserting new trian-
gles. The algorithm for suchsimple holes consists of the
following steps:

1 Find all pairs of open edges and put them into a list
E (an open edge is an edge which only belongs to
one triangle; apair of open edges are two open edges
connected by a common vertex).

2 Compute for each pair of open edges the sum of the
two dihedral anglesα andβ as shown in Figure 2.

3 SortE according toα+ β in descending order (tri-
angles can now be inserted in a way that the discrete
curvature of the triangulation stays small; this leads to
much better shapes).

4 Remove the first pair of open edges fromE . If the
triangle defined by this pair of open edges is not a bad
triangle, insert this triangle into the triangulation and
updateE .

5 Go back to 4 untilE is empty.

The pair of open
edges is drawn in

bold lines.

βα

Figure 2: Computing the two dihedral angles

3 SIMULATED ANNEALING

Although all simple holes have been closed now, many tri-
angulations still have open edges. The corresponding holes
are holes which can only be closed (without violating the
properties of manifold triangle meshes) if other triangles
from the existing triangulation are removed. In the follow-
ing these holes are denoted ascomplex holes (Figure 3).
A good example for complex holes are small Möbius-band-
like structures which occur quite frequently near sharp edges
or corners (a Möbius band has a single boundary curve, and
only one side; it is non-orientable, which means that it con-
tains a path for which it is impossible to define a left- and
right-hand side in a consistent global way). We deal with
the problem of closing complex holes by applying a well
known method from probability calculus called simulated
annealing.

Figure 3: Complex holes in the foot (79 vertices) after the
preprocessing stage (open edges are colored red)

3.1 Simulated annealing in general

Simulated annealing is a stochastic computational technique,
derived from the physical process of heating and cooling



a substance to obtain a strong crystalline structure. With
the aid of Simulated Annealing it is possible to find the
global minimum (or at least a very good local minimum)
of a given functionf : Z ! R, mapping a finite set of states
Z = fz1; : : : ;zng to the set of real numbers, in a short time.

Before the Simulated Annealing can be started, it is nec-
essary to define for every statez j 2 Z a small set of neigh-
boring statesZ j = fz j1; : : : ;z jn j

g with certain properties (for
details see [9, 10]).

The process of Simulated Annealing starts in an arbi-
trary statez j 2 Z. Randomly one of the neighboring states
zk 2 Z j of the current statez j is chosen. Iff (zk) < f (z j) a
better statezk has been found and the current state is re-
placed by thatzk. However if the new state is worse, a
stochastic experiment against the probability

p(z j;zk) = e� f (zk )� f (z j )
T

has to be performed. Only if the stochastic experiment is
successful, the worse statezk replaces the current statez j,
otherwise the current statez j is kept. The parameterT (T
has to be greater than 0) is called the temperature.T con-
trols the probability to accept worse states. While the tem-
peratureT is lowered slowly, the last step is iterated again
and again. When finally after many iterations a low temper-
ature has been reached, there is a very good chance that the
current state is the global minimum of the functionf .

3.2 Closing complex holes using simulated an-
nealing

The idea of using simulated annealing to solve optimiza-
tion problems on triangulations was first proposed by Schu-
maker [11]. With the help of simulated annealing a given
planar triangulation is modified in a way that it optimizes a
certain optimization criterion.

In contrast to this algorithm where the input is already
a complete and valid triangulation, we use the technique of
simulated annealing to create one or more manifold triangle
meshes from a correct but incomplete triangulation.

As described in Section 3.1 our first task is to define a
finite set of statesZ, small setsZ j of neighboring states for
all z j 2 Z and a cost functionf : Z ! R assigning a value to
every state inZ.

3.2.1 The set of states

We define the set of statesZ as the set of all valid triangula-
tionsT j of the underlying point cloudP . A valid triangula-
tion T j is characterized by the following properties:� The vertices of all triangles ofT j are elements ofP .� The triangulationT j has no topological errors and no

intersecting triangles (but may contain holes).

3.2.2 The sets of neighboring states

The set of neighboring statesZ j of a valid triangulationT j 2
Z are all triangulations which can be derived fromT j by:

A Inserting a new triangle at a pair of open edges and
deleting all disturbing triangles (triangles of the exist-
ing triangulation which violate the properties of man-
ifold triangle meshes after the new triangle has been
inserted).

B Deleting a triangle with three open edges (these trian-
gles have to be deleted, because they cannot be recon-
nected to the main part of the triangulation with the
transitions defined inA).

3.2.3 The cost functions

Our primary objective is to generate closed manifold trian-
gle meshes. Hence the first cost function is defined by

f1(T j) = number of open edges inT j :
In general in simulated annealing one does not know if the
current state is a global minimum of the cost function or
not. This uncertainty is a big flaw of this technique. It
is important to note that we know exactly when we have
reached a global minimum off1 as the function value at
this minimum is 0. Therefore we will continue with the
simulated annealing until we have reached a triangulation
T j with f1(T j) = 0. This is the case, if our current trian-
gulation consists of one or more closed manifold triangle
meshes.

In order to have some influence on the shape of the re-
sulting triangulation, we have defined a second cost func-
tion f2, which is the discrete mean curvature of the whole
triangulation (for details see [12]) divided by the sum of all
edge lengths.f2 is given by

f2(T j) = ∑e2E αe � kek
∑e2E kek ;

whereE is the set of all edges inT j which have two trian-
gles,kek is the length of the edgee andαe is the dihedral
angle of the two adjacent triangles of the edgee. Putting
more weight on this cost function allows the user to produce
meshes of higher quality and to prevent that the triangula-
tion is torn into several parts.

3.2.4 A single simulated annealing step

A single simulated annealing step is performed as follows.
Let T j be the current triangulation. First a neighboring tri-
angulationTk 2 Z j is chosen randomly. Then two stochastic
experiments are performed against the probabilities

p1(T j;Tk) = e� c1�( f1(Tk )� f1(T j ))
T



and

p2(T j ;Tk) = e� c2�( f2(Tk)� f2(T j ))
T

determined by the two cost functionsf1 and f2. If both ex-
periments are successful, the transition fromT j to Tk is ac-
cepted andTk replaces the current triangulation, otherwise
the current triangulationT j remains unchanged.

The two constantsc1 andc2 are parameters, which have
to be specified by the user. A big value for the ratioc1

c2
places more weight on a fast reconstruction, while a small
value leads to better results (smoother meshes, lower prob-
ability of tearing the triangulation into two or more parts).
Experiments have shown, that the valuesc1 = 1:0 andc2 =
3:0 produce good results for most point clouds.

3.2.5 The complete simulated annealing pro-
cess

The complete simulated annealing process is made up of
s phases. In each phase a number oft simulated anneal-
ing steps are performed (s andt are user-defined parame-
ters). The phases differ from each other only by the slowly
descending temperatureT , which controls the probability
to choose worse states. Let phases� 1 be the first phase
and phase 0 be the last phase. Then the temperatureTk of
phasek is given by

Tk = (T1)k ;
whereT1 > 1 is the temperature of phase 1. With the pa-
rameterT1 the user can control how fast the temperature
will change (T1 � 1 stands for a very slow change while
T1� 1 results in a fast descent).T1 = 1:25 has proven to be
appropriate for most point clouds.

If the number of open edges in the triangulation reaches
0 the algorithm terminates. If there are still open edges af-
ter phase 0, the simulated annealing has to be started again
(maybe another combination of parameters(c1;c2;T1;s; t)
should be considered).

Finding appropriate values fors andt requires a bit of
experience. A strategy for automatic reconstruction which
has proven to be successful is the following.c1 = 1:0, c2 =
3:0 andT1 = 1:25 are always kept constant. At the be-
ginning there is only one phase (s = 1) consisting oft =(10� number of open edges) steps. If there are still open
edges left after phase 0, the number of phases is each time
increased by 1 until the simulated annealing finally provides
a closed triangulation.

3.2.6 Enlarging holes

In rare cases it is possible that the current triangulationT j

is not connected to one or more closed triangle meshes (a
global minimum of f1) by the transitions defined in Sec-
tion 3.2.2. In such cases the triangulation cannot be closed

by the simulated annealing process described in the previ-
ous sections. To make sure that the simulated annealing
will always converge, we use a simple trick calledenlarg-
ing holes.

If the simulated annealing does not converge for a long
time (after starting the whole process five times if the strat-
egy for automatic reconstruction described in Section 3.2.5
is used), all triangles with at least one open edge are deleted.
By doing this the existing holes are enlarged and new transi-
tions become possible. In most cases the simulated anneal-
ing will now find a global minimum off1. If this is not the
case the existing holes are enlarged twice, then thrice and
so on, until the simulated annealing finally reaches a trian-
gulation consisting of one or more closed manifold triangle
meshes.

4 POSTPROCESSING

4.1 Inserting isolated points

In some cases there is a small number ofisolated points
(points of the underlying point cloud which are not anymore
connected to the resulting triangulation) after the simulated
annealing which have to be reinserted into the triangulation
(Table 1 lists the number of isolated points after the simu-
lated annealing stage for the examples in Figures 1 and 5).

Let p j be an isolated point. In order to insert this point
into the current triangulation we first delete a triangle near
the pointp j. The isolated pointp j is then inserted into this
newly generated hole as shown in the top line of Figure 4.
The triangle is chosen in a way that it minimizes the mean
curvature of the resulting triangulation under the condition
that this triangulation still has the properties of manifold
triangle meshes. Ifp j is close to one of the edges of the
triangulation deleting two triangles usually leads to better
shapes (bottom line Figure 4).

Figure 4: Inserting an isolated point over one and two trian-
gles respectively

Note that there are triangulations where isolated points
cannot be inserted with the method presented in this sec-
tion. However none of these rather theoretical constructs
(triangulations where no triangle is completely visible from
the point to be inserted) has ever been observed in our tests.



4.2 Smoothing the mesh

The quality of the resulting triangle meshes can further be
improved by using a smoothing algorithm proposed in [12].
The basic idea of this algorithm is to apply a series of edge
flipping operations to minimize the discrete mean curvature
of the triangulation.

5 RESULTS

We applied our algorithm to many different, incomplete or
imperfect triangulations. These triangulations were gener-
ated by using Gopi’s algorithm [3] on point clouds not ful-
filling the corresponding sampling criterion. The sizes of
those point clouds were ranging from less than 100 points
to more than 50,000 points. All our tests resulted in correct
manifold triangle meshes.

Even heavily damaged triangulations could be repaired
and extended to manifold triangle meshes without loosing
their shape (Figures 1 and 5; from left to right: the initial tri-
angulation with Gopi’s algorithm (bad triangles are colored
red), the triangulation after the removal of bad triangles,the
input mesh for the simulated annealing (open edges are col-
ored red), the output of our algorithm).

Our algorithm proved to be quite efficient as well. For
most densely sampled point clouds (� 50;000 points) the
simulated annealing takes significantly less time than the
algorithm providing the initial triangulation (only smallre-
gions in the point clouds are not fulfilling the sampling cri-
terion and have to be repaired). For small triangle meshes
(� 1;000 vertices) the simulated annealing takes propor-
tionally much more time but the whole process of triangu-
lating and repairing is only a matter of seconds (Table 1; the
times were measured on an AMD Athlon 1200 MHz with 1
GB RAM).

model #v #ip tpre tsim tpost

foot 79 1 0 0 0
bunny 487 3 0 2 0
tetrahedron 1000 6 0 10 1
beethoven 2515 15 2 15 3
horse 9264 7 14 25 6

#v = number of vertices
#ip = number of isolated points after the simulated

annealing stage
tpre = time in seconds needed for preprocessing
tsim = time in seconds needed for simulated

annealing
tpost = time in seconds needed for postprocessing

Table 1: Number of isolated points after the simulated an-
nealing stage and performance of our algorithm for the ex-
amples in Figures 1 and 5

6 CONCLUSION

By using the technique of simulated annealing we are able
to generate manifold triangle meshes even from heavily dam-
aged triangulations. By randomly changing the triangula-
tion and allowing temporarily even worse states, the algo-
rithm will finally generate one or more manifold triangle
meshes. In contrast to other deterministic mesh repairing
algorithms, our approach may lead to different results when
applying it several times to the same point cloud.

Combining our method with existing algorithms for point
cloud triangulation leads to efficient triangulation algorithms,
which are able to generate manifold triangle meshes even
from sparsely sampled point clouds not fulfilling any sam-
pling criteria.
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