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1. Introduction

In this work we study 𝐼 = 0 quarkonium resonances using lattice QCD string breaking potentials
computed in Ref. [1]. Our approach is based on the diabatic extension of the Born-Oppenheimer
approximation and the unitary emergent wave method. In the first step of the Born-Oppenheimer
approximation the two heavy quarks are considered as static to compute their potentials, possibly in
the presence of two light quarks. In the second step these potentials are used in a coupled channel
Schrödinger equation describing the dynamics of the heavy quarks [2].

In the past this approach was successfully applied to compute resonances for 𝑏̄𝑏̄𝑞𝑞 systems,
where 𝑞 denotes a light quark of flavor 𝑢 or 𝑑 [3]. In this work we investigate 𝑏̄𝑏 and 𝑏̄𝑏𝑞𝑞 systems,
which are technically more complicated, because there are a confined and two meson-meson decay
channels. Studying this system is of interest also from an experimental point of view, because
corresponding experimental results are available, e.g. for Υ(𝑛𝑆), Υ(10860) and Υ(11020).

We note that there are also ongoing efforts to study the related 𝐼 = 1 system [4, 5].

2. Coupled channel Schrödinger equation

We study 𝑄̄𝑄 and 𝑄̄𝑄𝑞𝑞 quarkonium systems with 𝐼 = 0 and consider the heavy quark spins
as conserved quantities. Thus, resulting masses and decay widths will be independent of the heavy
quark spins. Such systems can be characterized by the following quantum numbers:

• 𝐽𝑃𝐶 : total angular momentum, parity and charge conjugation.

• 𝐽𝑃𝐶 : total angular momentum excluding the heavy 𝑄̄𝑄 spins and corresponding parity and
charge conjugation.

• 𝐿𝑃𝐶 : orbital angular momentum and corresponding parity and charge conjugation. (For 𝑄̄𝑄

systems 𝐽𝑃𝐶 coincides with 𝐿𝑃𝐶 .)

In Ref. [6] we derived in detail the Schrödinger equation describing these quarkonium systems.
In a simplified version, where 𝑠 quarks are ignored, it is composed of a quarkonium channel 𝑄̄𝑄 and
of heavy-light meson-meson channels 𝑀̄𝑀 with 𝑀 = 𝑄̄𝑞 and 𝑞 ∈ {𝑢, 𝑑}. The wave function has 4
components, 𝜓(r) = (𝜓𝑄̄𝑄 (r), ®𝜓𝑀̄𝑀 (r)). The first component 𝜓𝑄̄𝑄 (r) represents the 𝑄̄𝑄-channel,
while the three lower components ®𝜓𝑀̄𝑀 (r) represent the spin-1 triplet of the 𝑀̄𝑀-channel. In detail
the Schrödinger equation is given by(

−1
2
𝜇−1

(
𝜕2
𝑟 + 2

𝑟
𝜕𝑟 −

L2

𝑟2

)
+𝑉 (r) +

(
𝐸threshold 0

0 2𝑚𝑀

)
− 𝐸

)
𝜓(r) = 0, (1)

where 𝐸threshold is a constant shift of the confining potential discussed below, 𝑚𝑀 denotes the mass
of a heavy-light meson, 𝜇−1 = diag(1/𝜇𝑄, 1/𝜇𝑀 , 1/𝜇𝑀 , 1/𝜇𝑀 ) contains the reduced masses of a
heavy quark pair and a heavy-light meson pair and

𝑉 (r) =
(

𝑉𝑄̄𝑄 (𝑟) 𝑉mix(𝑟) (1 ⊗ e𝑟 )
𝑉mix(𝑟) (e𝑟 ⊗ 1) 𝑉𝑀̄𝑀, ‖ (𝑟) (e𝑟 ⊗ e𝑟 ) +𝑉𝑀̄𝑀,⊥(𝑟) (1 − e𝑟 ⊗ e𝑟 )

)
. (2)
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The entries of this potential matrix, 𝑉𝑄̄𝑄, 𝑉mix, 𝑉𝑀̄𝑀, ‖ and 𝑉𝑀̄𝑀,⊥, are related to static potentials
from QCD, which can be computed with lattice QCD, as e.g. done in Ref. [1], where string breaking
is studied. Suitable parameterizations are

𝑉𝑄̄𝑄 (𝑟) = 𝐸0 −
𝛼

𝑟
+ 𝜎𝑟 +

2∑︁
𝑗=1

𝑐𝑄̄𝑄, 𝑗 𝑟 exp ©­«− 𝑟2

2𝜆2
𝑄̄𝑄, 𝑗

ª®¬ (3)

𝑉mix(𝑟) =
2∑︁
𝑗=1

𝑐mix, 𝑗 𝑟 exp

(
− 𝑟2

2𝜆2
mix, 𝑗

)
(4)

𝑉𝑀̄𝑀, ‖ (𝑟) = 𝑉𝑀̄𝑀,⊥(𝑟) = 0 (5)

with parameters listed in Table 1. These parameterizations are shown in Figure 1 together with data
points, which are based on the lattice QCD results from Ref. [1]. The lattice QCD setup also fixes
𝐸threshold, which is identical to two times the heavy-light meson mass in that setup.

potential parameter value
𝑉𝑄̄𝑄 (𝑟) 𝐸0 −1.599(269) GeV

𝛼 +0.320(94)
𝜎 +0.253(035) GeV2

𝑐𝑄̄𝑄,1 +0.826(882) GeV2

𝜆𝑄̄𝑄,1 +0.964(47) GeV−1

𝑐𝑄̄𝑄,2 +0.174(1.004) GeV2

𝜆𝑄̄𝑄,2 +2.663(425) GeV−1

𝑉mix(𝑟) 𝑐mix,1 −0.988(32) GeV2

𝜆mix,1 +0.982(18) GeV−1

𝑐mix,2 −0.142(7) GeV2

𝜆mix,2 +2.666(46) GeV−1

Table 1: Parameters of the potential parametrizations (3) to (5).

3. Scattering matrix for definite 𝐽

One can expand the wave function 𝜓(r) in terms of eigenfunctions of 𝐽 and project the
Schrödinger equation to definite 𝐽. For 𝐽 > 0 this leads to three coupled ordinary differential
equations,

©­­«−
1
2
𝜇−1

(
𝜕2
𝑟 − 1

𝑟2 𝐿
2
𝐽

)
+𝑉𝐽 (𝑟) +

©­­«
𝐸threshold 0 0

0 2𝑚𝑀 0
0 0 2𝑚𝑀

ª®®¬ − 𝐸
ª®®¬
©­­«

𝑢𝐽 (𝑟)
𝜒𝐽−1→𝐽 (𝑟)
𝜒𝐽+1→𝐽 (𝑟)

ª®®¬ =

=
©­­«
𝑉mix(𝑟)

0
0

ª®®¬
(
𝛼1

𝐽

2𝐽 + 1
𝑘𝑟 𝑗𝐽−1(𝑘𝑟) + 𝛼2

𝐽 + 1
2𝐽 + 1

𝑘𝑟 𝑗𝐽+1(𝑘𝑟)
)

(6)
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Figure 1: Potentials 𝑉𝑄̄𝑄, 𝑉𝑀̄𝑀, ‖ (𝑟) and 𝑉mix (𝑟) as functions of 𝑄̄𝑄 separation 𝑟 . The curves correspond
to the parameterizations (3) to (5) with parameters listed in Table 1.

with 𝜇−1 = diag(1/𝜇𝑄, 1/𝜇𝑀 , 1/𝜇𝑀 ), 𝐿2
𝐽
= diag(𝐽 (𝐽 + 1), (𝐽 − 1)𝐽, (𝐽 + 1) (𝐽 + 2)) and

𝑉𝐽 (𝑟) =

©­­­­«
𝑉𝑄̄𝑄 (𝑟)

√︃
𝐽

2𝐽+1𝑉mix(𝑟)
√︃

𝐽+1
2𝐽+1𝑉mix(𝑟)√︃

𝐽

2𝐽+1𝑉mix(𝑟) 0 0√︃
𝐽+1

2𝐽+1𝑉mix(𝑟) 0 0

ª®®®®¬
. (7)

The incident wave can be any superposition of 𝑀̄𝑀 with orbital angular momentum 𝐿 = 𝐽 − 1 and
𝐿 = 𝐽 +1. For example, an incident pure 𝑀̄𝑀 wave with 𝐿 = 𝐽−1 corresponds to (𝛼1, 𝛼2) = (1, 0).
The boundary conditions are as follows:

𝑢𝐽 (𝑟) ∝ 𝑟 𝐽+1, 𝜒𝐿→𝐽 (𝑟) ∝ 𝑟𝐿+1 for 𝑟 → 0 (8)
𝑢𝐽 (𝑟) = 0 for 𝑟 → ∞, (9)

for (𝛼1, 𝛼2) = (1, 0)

𝜒𝐽−1→𝐽 (𝑟) = 𝑖𝑡𝐽−1,𝐽−1𝑘𝑟ℎ
(1)
𝐽−1

(𝑘𝑟), 𝜒𝐽+1→𝐽 (𝑟) = 𝑖𝑡𝐽−1,𝐽+1𝑘𝑟ℎ
(1)
𝐽+1

(𝑘𝑟) for 𝑟 → ∞ (10)

and for (𝛼1, 𝛼2) = (0, 1)

𝜒𝐽−1→𝐽 (𝑟) = 𝑖𝑡𝐽+1,𝐽−1 𝑘𝑟 ℎ
(1)
𝐽−1

(𝑘𝑟), 𝜒𝐽+1→𝐽 (𝑟) = 𝑖𝑡𝐽+1,𝐽+1 𝑘𝑟 ℎ
(1)
𝐽+1

(𝑘𝑟) for 𝑟 → ∞. (11)

Eqs. (10) and (11) define S and T matrices,

T𝐽 =

(
𝑡𝐽−1,𝐽−1 𝑡𝐽+1,𝐽−1
𝑡𝐽−1,𝐽+1 𝑡𝐽+1,𝐽+1

)
, S𝐽 = 1 + 2𝑖T𝐽 . (12)

The corresponding equations for 𝐽 = 0 can easily be obtained by discarding the incident and the
emergent wave with 𝐿 = 𝐽 − 1. The Schrödinger equation (6) is then reduced to two channels and
T0 = 𝑡1,1.

4
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4. Including 𝑀̄𝑠𝑀𝑠 channels

Since heavy-light and heavy-strange mesons have similar masses, it is essential to also include
heavy-strange meson-meson channels 𝑀̄𝑠𝑀𝑠 in the Schrödinger equation (1) or equivalently (6).
For example, bottomonium resonances can then be studied for energies as large as 11.025 GeV, the
threshold for a negative parity 𝐵 or 𝐵∗ and a positive parity 𝐵∗

0 or 𝐵∗
1 meson. Without a 𝑀̄𝑠𝑀𝑠

channel our results would only be valid below the 𝐵
(∗)
𝑠 𝐵

(∗)
𝑠 threshold at 10.807 GeV, which is rather

close to the 𝐵 (∗)𝐵 (∗) threshold at 10.627 GeV.
We use the same 2-flavor lattice QCD static potentials from Ref. [1] to generate the entries of

the potential matrix relevant for the 𝑀̄𝑠𝑀𝑠 channels. We expect this to be reasonable, since static
potentials are known to have a rather mild dependence on light quark masses. This expectation was
confirmed by a consistency check with results from a more recent 2 + 1-flavor lattice QCD study of
string breaking [7]. For details we refer to our recent work [8].

The coupled channel Schrödinger equation projected to definite 𝐽 with both 𝑀̄𝑀 and 𝑀̄𝑠𝑀𝑠

scattering channels is given by(
1
2
𝜇−1

(
𝜕2
𝑟 − 1

𝑟2 𝐿
2
𝐽

)
+𝑉𝐽 (𝑟)

+

©­­­­­­«

𝐸threshold 0 0 0 0
0 2𝑚𝑀 0 0 0
0 0 2𝑚𝑀 0 0
0 0 0 2𝑚𝑀𝑠

0
0 0 0 0 2𝑚𝑀𝑠

ª®®®®®®¬
− 𝐸

ª®®®®®®¬
©­­­­­­«

𝑢𝐽 (𝑟)
𝜒𝑀̄𝑀,𝐽−1→𝐽 (𝑟)
𝜒𝑀̄𝑀,𝐽+1→𝐽 (𝑟)
𝜒𝑀̄𝑠𝑀𝑠 ,𝐽−1→𝐽 (𝑟)
𝜒𝑀̄𝑠𝑀𝑠 ,𝐽+1→𝐽 (𝑟)

ª®®®®®®¬
=

=

©­­­­­­«

𝑉mix(𝑟)
0
0
0
0

ª®®®®®®¬
(
𝛼𝑀̄𝑀,1

𝐽

2𝐽 + 1
𝑘𝑟 𝑗𝐽−1(𝑘𝑟) + 𝛼𝑀̄𝑀,2

𝐽 + 1
2𝐽 + 1

𝑘𝑟 𝑗𝐽+1(𝑘𝑟)

+ 𝛼𝑀̄𝑠𝑀𝑠 ,1
1
√

2
𝐽

2𝐽 + 1
𝑘𝑠𝑟 𝑗𝐽−1(𝑘𝑠𝑟) + 𝛼𝑀̄𝑠𝑀𝑠 ,2

1
√

2
𝐽 + 1
2𝐽 + 1

𝑘𝑠𝑟 𝑗𝐽+1(𝑘𝑠𝑟)
)
, (13)

with 𝜇−1 = diag(1/𝜇𝑄, 1/𝜇𝑀 , 1/𝜇𝑀 , 1/𝜇𝑀𝑠
, 1/𝜇𝑀𝑠

), 𝐿2
𝐽
= diag(𝐽 (𝐽 + 1), (𝐽 − 1)𝐽, (𝐽 + 1) (𝐽 +

2), (𝐽 − 1)𝐽, (𝐽 + 1) (𝐽 + 2)) and

𝑉𝐽 (𝑟) =

©­­­­­­­­­­­«

𝑉𝑄̄𝑄

√︃
𝐽

2𝐽+1𝑉mix

√︃
𝐽+1

2𝐽+1𝑉mix
1√
2

√︃
𝐽

2𝐽+1𝑉mix
1√
2

√︃
𝐽+1

2𝐽+1𝑉mix√︃
𝐽

2𝐽+1𝑉mix 0 0 0 0√︃
𝐽+1

2𝐽+1𝑉mix 0 0 0 0
1√
2

√︃
𝐽

2𝐽+1𝑉mix 0 0 0 0
1√
2

√︃
𝐽+1

2𝐽+1𝑉mix 0 0 0 0

ª®®®®®®®®®®®¬
. (14)

After defining boundary conditions analogously to Eqs. (8) to (11), we obtain a 4x4-scattering

5
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matrix

T𝐽 =

©­­­­«
𝑡𝑀̄𝑀,𝐽−1;𝑀̄𝑀,𝐽−1 𝑡𝑀̄𝑀,𝐽+1;𝑀̄𝑀,𝐽−1 𝑡𝑀̄𝑠𝑀𝑠 ,𝐽−1;𝑀̄𝑀,𝐽−1 𝑡𝑀̄𝑠𝑀𝑠 ,𝐽+1;𝑀̄𝑀,𝐽−1
𝑡𝑀̄𝑀,𝐽−1;𝑀̄𝑀,𝐽+1 𝑡𝑀̄𝑀,𝐽+1;𝑀̄𝑀,𝐽+1 𝑡𝑀̄𝑠𝑀𝑠 ,𝐽−1;𝑀̄𝑀,𝐽+1 𝑡𝑀̄𝑠𝑀𝑠 ,𝐽+1;𝑀̄𝑀,𝐽+1
𝑡𝑀̄𝑀,𝐽−1;𝑀̄𝑠𝑀𝑠 ,𝐽−1 𝑡𝑀̄𝑀,𝐽+1;𝑀̄𝑠𝑀𝑠 ,𝐽−1 𝑡𝑀̄𝑠𝑀𝑠 ,𝐽−1;𝑀̄𝑠𝑀𝑠 ,𝐽−1 𝑡𝑀̄𝑠𝑀𝑠 ,𝐽+1;𝑀̄𝑠𝑀𝑠 ,𝐽−1
𝑡𝑀̄𝑀,𝐽−1;𝑀̄𝑠𝑀𝑠 ,𝐽+1 𝑡𝑀̄𝑀,𝐽+1;𝑀̄𝑠𝑀𝑠 ,𝐽+1 𝑡𝑀̄𝑠𝑀𝑠 ,𝐽−1;𝑀̄𝑠𝑀𝑠 ,𝐽+1 𝑡𝑀̄𝑠𝑀𝑠 ,𝐽+1;𝑀̄𝑠𝑀𝑠 ,𝐽+1

ª®®®®¬
.

(15)

5. Results

Now we focus on heavy 𝑏 quarks, take the 𝑏 quark mass from quark models (𝑚𝑄 = 4.977 GeV
[9]) and use the spin averaged mass of the 𝐵 and the 𝐵∗ meson (𝑚𝑀 = (𝑚𝐵+3𝑚𝐵∗)/4 = 5.313 GeV)
and of the 𝐵𝑠 and the 𝐵∗

𝑠 meson (𝑚𝑀𝑠
= (𝑚𝐵𝑠

+ 3𝑚𝐵∗
𝑠
)/4 = 5.403 GeV). The lattice QCD data we

are using [1] corresponds to 𝐸threshold = 10.790 GeV.
We consider the analytic continuation of the coupled channel Schrödinger equation (13) to

the complex energy plane, where we search for poles of the T matrices (15). In Figure 2 we
show all poles with real part below 11.2 GeV. To propagate the statistical errors of the lattice
QCD data, we generated 1000 statistically independent samples and repeated our computations on
each of these samples. For each bound state and resonance there is a differently colored point
cloud representing the 1000 samples. Bound states are located on the real axis below the 𝐵̄ (∗)𝐵 (∗)

threshold at 10.627 GeV, while resonances are above this threshold and have a non-vanishing
negative imaginary part. As usual, the pole energies 𝐸 are related to masses and decay widths of
bottomonium states via 𝑚 = Re(𝐸) and Γ = −2 Im(𝐸).

In Table 2 we compare our results with experimentally observed bound states and resonances.
The low-lying states we found have masses similar to those measured in experiments and it

seems straightforward to identify their counterparts:

• 𝐽 = 0, 𝑛 = 1, 2, 3, 4 correspond to 𝜂𝑏 (1𝑆) ≡ Υ(1𝑆), Υ(2𝑆), Υ(3𝑆) and Υ(4𝑆).

• 𝐽 = 1, 𝑛 = 1, 2, 3 correspond to ℎ𝑏 (1𝑃) ≡ 𝜒𝑏0(1𝑃) ≡ 𝜒𝑏1(1𝑃) ≡ 𝜒𝑏2(1𝑃), ℎ𝑏 (2𝑃) ≡
𝜒𝑏0(2𝑃) ≡ 𝜒𝑏1(2𝑃) ≡ 𝜒𝑏2(2𝑃) and 𝜒𝑏1(3𝑃).

• 𝐽 = 2, 𝑛 = 1 corresponds to Υ(1𝐷).

Our resonance mass for 𝐽 = 0, 𝑛 = 5 is quite similar to the experimental result for Υ(10753),
which was recently reported by Belle [10]. In a recent publication [8] we investigated the structure
of this state within the same setup and found that it is meson-meson dominated. Thus, since it is
not an ordinary quarkonium state and the heavy quark spin can be 1−−, it can be classified as a 𝑌
type crypto-exotic state.

The resonances Υ(10860) and Υ(11020) are typically interpreted as Υ(5𝑆) and Υ(6𝑆). How-
ever, from the experimental perspective they could as well correspond to 𝐷 wave states. Since our
𝐽 = 0, 𝑛 = 6 state is rather close to Υ(10860), while there is no matching candidate for 𝐽 = 2,
our results clearly support the interpretation of Υ(10860) as Υ(5𝑆). Concerning Υ(11020) the
situation is less clear. First, the mass of Υ(11020) is already close to the threshold for a negative
parity 𝐵 or 𝐵∗ and a positive parity 𝐵∗

0 or 𝐵∗
1 meson, a channel we have not yet included in our
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Figure 2: Poles of T𝐽 in the complex plane representing bound states and resonances below 11.2 GeV.
Colored point clouds and the corresponding black error bars reflect statistical errors of the lattice QCD data
from Ref. [1]. The vertical dashed lines indicate the 𝐵̄ (∗)𝐵 (∗) and 𝐵̄

(∗)
𝑠 𝐵

(∗)
𝑠 thresholds. The light blue shaded

regions above 11.025 GeV mark the opening of the threshold of one heavy-light meson with negative parity
and another one with positive parity. Results in these regions should not be trusted anymore.

approach. Second, the 𝐽 = 0, 𝑛 = 7 and 𝐽 = 2, 𝑛 = 3 states have almost the same mass and are both
close to Υ(11020). Thus, we are not in a position to decide, whether the Υ(11020) is an 𝑆 wave or
rather a 𝐷 wave state.

Since we neglected effects due to the heavy quark spins, we expect that our results on have
systematic errors of order 50 MeV. Including heavy quark spins in our approach is a major step
[11], which we plan to take in the near future.
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from poles of TJ̃ from experiment
J̃PC n Re(E)[GeV] Γ[MeV] name m[GeV] Γ[MeV] IG(JPC)

0++ 1 9.618+10
−15 - ηb(1S) 9.399(2) 10(5) 0+(0+−)

Υb(1S) 9.460(0) ≈ 0 0−(1−−)

2 10.114+7
−11 - ηb(2S)BELLE 9.999(6) - 0+(0+−)

Υ(2S) 10.023(0) ≈ 0 0−(1−−)

3 10.442+7
−9 - Υ(3S) 10.355(1) ≈ 0 0−(1−−)

4 10.629+1
−1 49.3+5.4

−3.9 Υ(4S) 10.579(1) 21(3) 0−(1−−)

5 10.773+1
−2 15.9+2.9

−4.4 Υ(10750)BELLE II 10.753(7) 36(22) 0−(1−−)

6 10.938+2
−2 61.8+7.6

−8.0 Υ(10860) 10.890(3) 51(7) 0−(1−−)

7 11.041+5
−7 45.5+13.5

− 8.2 Υ(11020) 10.993(1) 49(15) 0−(1−−)

1−− 1 9.930+43
−52 - χb0(1P ) 9.859(1) - 0+(0++)

hb(1P ) 9.890(1) - ??(1+−)

χb1(1P ) 9.893(1) - 0+(1++)

χb2(1P ) 9.912(1) - 0+(2++)

2 10.315+29
−40 - χb0(2P ) 10.233(1) - 0+(0++)

χb1(2P ) 10.255(1) - 0+(1++)

hb(2P )BELLE 10.260(2) - ??(1+−)

χb2(2P ) 10.267(1) - 0+(2++)

3 10.594+32
−28 - χb1(3P ) 10.512(2) - 0+(0++)

4 10.865+37
−21 67.5+5.1

−4.9

5 10.932+33
−54 101.8+7.3

−5.1

6 11.144+52
−75 25.0+1.1

−1.3

2++ 1 10.181+35
−46 - Υ(1D) 10.164(2) - 0−(2−−)

2 10.486+32
−36 -

3 11.038+30
−44 40.8+2.0

−2.8

3−− 1 10.390+28
−39 -

2 10.639+31
−25 2.4+1.5

−0.9

3 10.944+20
−29 46.8−4.6

+6.2

4 11.174+51
−69 1.9+2.1

−1.4

Table 2: Masses and decay widths for 𝐼 = 0 bottomonium from the coupled channel Schrödinger equation
(13). For comparison we also list available experimental results. The 𝐵̄ (∗)𝐵 (∗) - and 𝐵̄

(∗)
𝑠 𝐵

(∗)
𝑠 -threshold are

marked by dashed lines. Errors on our results are purely statistical.
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