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In recent years, the existence of a hadronically stable b̄b̄ud tetraquark with quantum numbers
I(JP ) = 0(1+) was confirmed by first principles lattice QCD computations. In this work we use
lattice QCD to compare two frequently discussed competing structures for this tetraquark by consid-
ering meson-meson as well as diquark-antidiquark creation operators. We use the static-light approx-
imation, where the two b̄ quarks are assumed to be infinitely heavy with frozen positions, while the
light u and d quarks are fully relativistic. By minimizing effective energies and by solving generalized
eigenvalue problems we determine the importance of the meson-meson and the diquark-antidiquark
creation operators with respect to the ground state. It turns out, that the diquark-antidiquark
structure dominates for b̄b̄ separations r <∼ 0.25 fm, whereas it becomes increasingly more irrelevant
for larger separations, where the I(JP ) = 0(1+) tetraquark is mostly a meson-meson state. We also
estimate the meson-meson to diquark-antidiquark ratio of this tetraquark and find around 60%/40%.
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I. INTRODUCTION

A long standing problem in particle physics is to understand exotic hadrons, i.e. hadrons which have a structure
more complicated than a quark-antiquark pair or a triplet of quarks [1]. Such exotic hadrons turned out to be not
only difficult to observe experimentally, but also technical to address in quark models [2]. In the last couple of
years, several exotic hadrons, the majority pertaining to the class of tetraquarks with at least two heavy quarks, were
clearly confirmed by the BELLE, BES-III and LHCb experimental collaborations. The observed exotic hadrons are
resonances high in the spectrum. Studying them theoretically from first principles with lattice QCD requires the
application and development of specific techniques from lattice hadron spectrosopy and scattering theory (see e.g.
Refs. [3, 4]).

There are two classes of doubly-heavy tetraquarks. Tetraquarks with one heavy quark and one heavy antiquark
Q̄Qq̄q including the Zc and Zb states are easier to detect experimentally. Their observation at Belle [5–7], Cleo-C
[8], BESIII [9–13] and LHCb [14] collaborations turned tetraquarks into a main highlight of particle physics in recent
years. But since they are resonances with more than one decay channel, we study in this paper tetraquarks with
two heavy antiquarks Q̄Q̄qq (or equivalently two heavy quarks, i.e. QQq̄q̄), which are theoretically simpler, because
they are either hadronically stable or can only decay into a pair of heavy-light mesons. Moreover, with the recent
observation of hadronic systems with two heavy quarks [15, 16] at LHCb we expect this second class of tetraquarks
to be observed in the near future. Their discovery potential is discussed in Refs. [17, 18].

These Q̄Q̄qq tetraquarks are expected to form bound states, when the antiquarks are sufficiently heavy [19–29].
Recently this was confirmed with lattice QCD computations. One of the approaches uses the Born-Oppenheimer
approximation [30, 31], where the problem is split into two steps. The first step is to compute the potentials of two
static antiquarks in the presence of two light quarks using state-of-the-art lattice QCD techniques (see e.g. Refs. [32–
37]). Then, in the second step, the heavy quark dynamics is studied using a quantum mechanical Hamiltonian with
the previously computed lattice QCD potentials. Using this approach, a b̄b̄ud tetraquark bound state with quantum
numbers I(JP ) = 0(1+) was predicted [36–40]. Shortly afterwards, this was confirmed by several full lattice QCD
computations using four quarks of finite mass [41–45].

Our present goal is to explore the structure of this b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+) using
first principles lattice QCD computations, and to answer a hotly debated theoretical question [46–70]: Is it a diquark-
antidiquark system (denoted in the following as Dd) or rather a meson-meson system (denoted in the following as
BB)?

The lattice QCD result for the static potential relevant for the b̄b̄ud tetraquark with quantum numbers I(JP ) =
0(1+) can be parameterized by a screened Coulomb potential (see left plot of Figure 1 and Refs. [32, 33, 35–37]).
This is consistent with the following. (i) At b̄b̄ separations larger than the typical meson radius each of the two heavy
antiquarks forms a bound state with one of the light quark. Thus we have a system composed of two separated B
mesons with interactions well-known to decay exponentially [71] with Yukawa-like potentials [72]. (ii) At small b̄b̄
separations the heavy antiquarks interact directly via gluon exchange and are immersed in a light quark cloud. Thus
at small distances the potential is a Coulomb potential as expected from the asymptotic freedom of perturbative QCD
(see e.g. Ref. [73] and references therein).

To compare quantitatively the importance of a Dd structure and of a BB structure for given b̄b̄ separation, we utilize
a set of lattice QCD creation operators, both of Dd type and of BB type with static b̄ quarks. A similar approach was
previously used to explore systems of four quarks of finite mass. For example, studies of four-quark systems including a
heavy c̄c pair were to some extent inconclusive. Neither clear evidence for the existence of a tetraquark was found, nor
a signal improvement was observed for diquark-antidiquark operators [53, 74]. Also the tetraquark candidates a0(980)
and the D∗s0(2317) were investigated in that way, employing sets of different creation operators, including quark-
antiquark, meson-meson and/or diquark-antidiquark type [75–79]. The focus of these studies was more to distinguish
between a quark-antiquark and a four-quark structure, and since computations of tetraquark correlation functions,
where all quarks have a finite mass, are extremely challenging [80], no definite conclusion concerning meson-meson or
diquark-antidiquark dominance was reached. On the other hand, studies of potentials and the corresponding gluon
field distributions were performed with four static quarks, which are close to a system of four bottom quarks b̄b̄bb
[81–83]. In this case it was possible to clearly distinguish between a diquark-antidiquark structure and a meson-meson
structure for the ground state depending on the geometric positions of the static sources.

This paper is structured as follows. In section II we review important technical steps from our previous work [38]
and discuss in detail the lattice QCD creation operators of Dd type and of BB type. We detail our lattice QCD setup
in section III. In Section IV we present our numerical results concerning the relative importance of a Dd structure
and of a BB structure at given b̄b̄ separation. At the end of this section we use these results to crudely estimate the
percentage of Dd and of BB in the b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+). We conclude in section V.
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II. POTENTIALS OF TWO STATIC ANTIQUARKS IN THE PRESENCE OF TWO LIGHT QUARKS
AND CORRESPONDING CREATION OPERATORS

In preceding papers [33, 35, 37, 39] we have computed potentials Vqq,jz,P,Px
(r) of two static antiquarks Q̄Q̄ at

separation r in the presence of two light quarks qq using lattice QCD. The computations have been carried out for
many different sectors characterized by the following quantum numbers: light flavor qq with q ∈ {u, d, s, c}, total
angular momentum of the light quarks and gluons jz with respect to the Q̄Q̄ separation axis, parity P and reflection
along an axis perpendicular to the Q̄Q̄ separation axis Px. There are both attractive and repulsive sectors. Most
promising with respect to the existence of Q̄Q̄qq tetraquark bound states or resonances are attractive potentials with
light quarks q ∈ {u, d}, since they are rather wide and deep.

Using the Born-Oppenheimer approximation, which amounts to solving the Schrödinger equation for the radial
coordinate of the two heavy quarks Q̄Q̄ = b̄b̄ with the computed potentials Vqq,jz,P,Px

(r),(
1

mb

(
− d2

dr2
+
L(L+ 1)

r2

)
+ Vqq,jz,P,Px

(r)− 2msl

)
R(r) = ER(r), (1)

one can explore the existence of hadronically stable tetraquarks. mb is the b quark mass, L is the relative orbital
angular momentum of b̄b̄ pair and msl is the mass of the lightest static-light meson (computed within the same lattice
QCD setup as Vqq,jz,P,Px

(r); see e.g. Refs. [84, 85]). There is one particular potential V (r) = Vud−du,0,−,+(r) (shown
in the left plot of Figure 1), which has quantum numbers (I, jz,P,Px) = (0, 0,−,+), leading for L = 0 to a stable b̄b̄ud
tetraquark with quantum numbers I(JP ) = 0(1+) and binding energy −E = 38(18)MeV [86]. The probability density
of the b̄b̄ separation 4π|R(r)|2 (shown in the right plot of Figure 1) indicates that one typically finds separations in
the range 0.1 fm<∼ r <∼ 0.6 fm. None of the other potentials is sufficiently wide or deep to host a bound state [39].

Figure 1. (left) Lattice QCD results for the potential V (r) = Vud−du,0,−,+(r) together with the parameterization−(α/r)e−(r/d)p

with α = 0.293, d = 0.356 fm and p = 2.74. (right) Probability density of the b̄b̄ separation 4π|R(r)|2. (The results shown in
the two plots are taken from Ref. [38].)

As discussed in the introduction, the main goal of this work is to investigate the structure of the predicted b̄b̄ud
tetraquark. In particular, we explore, whether the tetraquark is more similar to a meson-meson state BB or to a
diquark-antidiquark state Dd, two scenarios frequently discussed in the literature and at conferences also for other
tetraquark candidates (see the discussion in section I). To this end, we refine the existing lattice QCD computation
of the potential V (r) by using two types of creation operators.

The first type of creation operators, which we used already in our previous computations [33, 35, 37, 39], excites
two B mesons at separation r,

OBB,Γ = 2NBB(CΓ)AB(CΓ̃)CD

(
Q̄aC(r1)ψ

(f)a
A (r1)

)(
Q̄bD(r2)ψ

(f ′)b
B (r2)

)
(2)

with r = |r2−r1|, color indices a, b, spin indices A,B,C,D and ψ(f)ψ(f ′) = ud−du. NBB is a normalization, which will
be discussed later. There are two independent choices for the light spin matrix Γ consistent with (jz,P,Px) = (0,−,+).
Γ = (1 + γ0)γ5 predominantly excites two negative parity ground state mesons B(∗)B(∗), while Γ = (1− γ0)γ5 mostly
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generates two positive parity excited mesons B∗0,1B∗0,1, as one can see e.g. by applying a Fierz transformation to OBB,Γ
(see also Ref. [37]). Since static spins have no effect on energy levels, the heavy spin matrix is irrelevant and can be
chosen arbitrarily, Γ̃ ∈ {(1− γ0)γ5, (1− γ0)γj}.

The second type of creation operators, which we use here for the first time, resembles a diquark-antidiquark pair
with heavy quarks separated by r and connected by a gluonic string,

ODd,Γ = −NDdεabc
(
ψ

(f)b
A (z)(CΓ)ABψ

(f ′)c
B (z)

)
εade

(
Q̄fC(r1)Ufd(r1; z)(CΓ̃)CDQ̄

g
D(r2)Uge(r2; z)

)
. (3)

Again NDd is a normalization and the allowed light and heavy spin matrices are the same as for the operator OBB,Γ,
i.e. Γ ∈ {(1−γ0)γ5, (1+γ0)γ5} and Γ̃ ∈ {(1−γ0)γ5, (1−γ0)γj}. Since the heavy spins are not part of the Hamiltonian,
it is important to use the same Γ̃ for the operators OBB,Γ and ODd,Γ, whenever they are part of the same correlation
matrix. For definiteness, we choose Γ̃ = (1− γ0)γ3. r1 and r2 are always separated along one of the lattice axes and
z = (r1 + r2)/2. For odd r/a (a denotes the lattice spacing), z does not coincide with one of the lattice sites. In these
cases we take the average of the operator (3) with z = (r1 + r2)/2 + ar̂/2 and with z = (r1 + r2)/2 − ar̂/2, where
r̂ = (r2 − r1)/|r2 − r1|.

We use smeared light quark and gluon fields, which implies that the operator ψ(f)a
A (r) does not generate a point-like

excitation at r, but rather a cloud-like excitation of spherical shape with diameter ≈ 0.5 fm. Similarly, the gauge links
connecting the two static antiquarks in the operator ODd,Γ generate a flux tube with a certain thickness. For details
see section III, where our lattice setup is discussed.

Note that the creation operators OBB,Γ and ODd,Γ do not generate orthogonal states, when applied to the vacuum
|Ω〉. For r = 0, the operators are even identical, when properly normalized, i.e. OBB,Γ = ODd,Γ, if NBB = NDd. This
can easily be shown by using the identity εabcεade = δbdδce− δbeδcd. For increasing r, however, they become more and
more different, as we will show numerically in section IVA. One obvious reason for that is that ODd,Γ creates a flux
tube of length r, whereas OBB,Γ does not. In section IVB, section IVC and section IVD we will explore, whether the
ground state of the (I, jz,P,Px) = (0, 0,−,+) sector at a given separation r is more similar to a BB state ODd,Γ|Ω〉
or to a DD state ODd,Γ|Ω〉. Since the energy of this ground state is the potential V (r) used in the Born-Oppenheimer
prediction of the b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+), our investigation will provide information
on the structure of that tetraquark. We will discuss that in section IVE.

III. LATTICE QCD SETUP AND TECHNIQUES

A. Lattice actions

The light quark action used in this work is the Wilson twisted mass action [87, 88],

SF [χ, χ̄, U ] =
∑
x

χ̄(x)
(
DW (m0) + iµγ5τ3

)
χ(x), (4)

where DW is the standard Wilson Dirac operator,

DW (m0) =
1

2

(
γµ(∇µ +∇∗µ)−∇∗µ∇µ

)
+m0, (5)

with the forward and backward covariant derivatives ∇µ and ∇∗µ. χ = (χ(u), χ(d)) is the light quark doublet in the
so-called twisted basis, which is related to quark fields in the usual “physical basis” via the twist rotation

ψ = eiγ5τ3ω/2χ, (6)

where ω is the twist angle.
The gluon action used in this work is the tree-level Symanzik improved action [89],

SG[U ] =
β

3

∑
x

(
b0
∑
µ,ν=1

ReTr
(

1− P 1×1
µν (x)

)
+ b1

∑
µ6=ν

ReTr
(

1− P 1×2
µν (x)

))
, (7)

where b1 = −1/12, b0 = 1− 8b1, β = 6/g2
0 , g0 is the bare coupling and P 1×1

µν and P 1×2
µν are the plaquette and a 1× 2

Wilson loop, respectively.
To achieve automatic O(a) improvement, the hopping parameter κ = (8 + 2am0)−1 is tuned to its critical value, at

which the PCAC quark mass vanishes [87, 90–93]. This corresponds to maximal twist, i.e. to tuning ω in Eq. (6) to
π/2.
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B. Ensembles of gauge link configurations

We have performed computations on two ensembles of gauge link configurations generated by the European Twisted
Mass Collaboration (ETMC) [94–96]. These ensembles have different lattice spacings, a ≈ 0.079 fm and a ≈ 0.063 fm
(set via the pion mass and pion decay constant and chiral perturbation theory [96]), which allows to study a finer
resolution in the static antiquark-antiquark separation r and to check for discretization errors. The pion masses mPS
and spatial and temporal extents L and T are, however, very similar. The parameters and details of the ensembles
are collected in Table I.

ensemble name β a in fm (L/a)3 × T/a κ µ mPS in MeV # configurations

B40.24 3.90 0.079(3) 243 × 48 0.160856 0.004 340(13) 108

C30.32 4.05 0.063(2) 323 × 64 0.157010 0.003 325(10) 98

Table I. Ensembles of gauge link configurations.

C. Smearing techniques

As already mentioned in section II, we have used several smearing techniques.
The spatial gauge links appearing in the Dd creation operator (3) are APE smeared [97] with parameters NAPE = 30

and αAPE = 0.5 (see Ref. [84], Eq. (23)). The quark fields appearing in the BB and Dd creation operators (2) and (3)
are Gaussian smeared [98] with parameters NGauss = 50 and κGauss = 0.5 (see Ref. [84], Eq. (25)) and APE-smeared
spatial gauge links. The intention of both APE and Gaussian smearing is to increase the ground state overlaps
generated by the creation operators.

In addition to that we also use HYP2-smeared gauge links in temporal direction [99–101] with parameters
α1 = α2 = 1.0 and α3 = 0.5. This reduces the self energy of the static quarks and, thus, improves the signal-to-noise
ratio of the computed correlation functions.

IV. NUMERICAL RESULTS

We consider the following four creation operators,

Oj , j ∈
{

[BB, (1 + γ0)γ5] , [BB, γ5] , [Dd, (1 + γ0)γ5] , [Dd, γ5]
}
, (8)

and define the corresponding trial states as

|Φj〉 = Oj |Ω〉. (9)

OBB,(1+γ0)γ5 predominantly excites two negative parity ground state mesons. Thus, |ΦBB,(1+γ0)γ5〉 is expected to
have the largest overlap to the ground state of the (I, jz,P,Px) = (0, 0,−,+) sector at large r. At small r, however,
the diquark-antidiquark operators might be advantageous. We use |ΦDd,γ5〉, i.e. a light diquark with just γ5, as
typically discussed in the literature. Since OBB,Γ ∝ ODd,Γ for r = 0 (see section II), the diquark-antidiquark trial
state |ΦDd,(1+γ0)γ5〉 might even be a better candidate for having a large ground state overlap. For completeness we
also include OBB,γ5 , the mesonic molecule counterpart of ODd,γ5 . OBB,γ5 excites a linear combination of two negative
parity ground state mesons and two significantly heavier positive parity excited mesons [37].

With these operators we computed the 4× 4 correlation matrix,

Cjk(t) =
〈
O†j(t2)Ok(t1)

〉
= 〈Ω|O†j(t2)Ok(t1)|Ω〉 = 〈Φj(t2)|Φk(t1)〉 (10)

with 〈. . .〉 denoting the path integral expectation value and t/a = (t2− t1)/a ≥ 1. For the second equality we assumed
that in the spectral decomposition propagation over temporal separation T − t is suppressed for all states except for
the vacuum. To cross-check our computations, we checked the numerical results with respect to the symmetries γ5

hermiticity, parity, time reversal, charge conjugation and cubic rotations around the axis of separation (for details see
Ref. [37]). In a second step we averaged elements of the correlation matrices related by these symmetries, to reduce
statistical errors.
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A. Squared overlaps of the normalized BB and Dd trial states

In this subsection we study

αjk(t) =
|Cjk(t)|2

Cjj(t)Ckk(t)
. (11)

For t → 0 this quantity is the squared normalized overlap of trial state |Φj〉 = Oj |Ω〉 and trial state |Φk〉 = Ok|Ω〉,
i.e.

α0
jk = lim

t→0
αjk(t) =

|〈Φj |Φk〉|2

〈Φj |Φj〉〈Φk|Φk〉
. (12)

Clearly, 0 ≤ α0
jk ≤ 1. Note that for an arbitrary state |Ψ〉 and an orthonormal basis |k〉, k = 1, 2, 3, . . .

∞∑
k=1

|〈Ψ|k〉|2

〈Ψ|Ψ〉〈k|k〉
= 1. (13)

Thus for two trial states |Φj〉 and |Φk〉, α0
jk can be interpreted as a measure of their orthogonality, where α0

jk ≈ 0

indicates almost orthogonal and α0
jk ≈ 1 almost parallel states. For large t all αjk approach 1, because the ground

state dominates in that limit.
In the left plot of Figure 2 we show αjk for j = BB, (1 + γ0)γ5 and k = Dd, (1 + γ0)γ5 as function of t for several

fixed r [102] for ensemble B40.24. The corresponding trial states become more similar for smaller r, as indicated
by larger values of αjk close to 1. This is not surprising, because for r = 0 the two operators OBB,Γ and ODd,Γ
are identical, if normalized according to NBB = NDd, as discussed in section II. For larger heavy quark separations
r, the two trial states clearly differ. OBB,(1+γ0)γ5 generates a pair of spatially separated B mesons, which interact
only by weak residual hadronic forces. In contrast to that, the antiquarks Q̄Q̄ forming the heavy diquark in the
operator ODd,(1+γ0)γ5 are connected by a gluonic flux tube of length r. The data points for 1 ≤ t/a ≤ 5 can be fitted
consistently with degree-2 polynomials, which are also shown in Figure 2. These fits represent crude extrapolations
of αjk to t = 0, which are the squared overlaps of the corresponding normalized BB and Dd trial states.

Figure 2. αjk as a function of t for several fixed r for ensemble B40.24. (left) j = BB, (1 + γ0)γ5, k = Dd, (1 + γ0)γ5.
(right) j = BB, γ5, k = Dd, γ5. For t→ 0, αjk is the squared overlap of the corresponding normalized trial states. The curves,
which are fits with degree-2 polynomials, represent crude extrapolations to t = 0.

In the right plot of Figure 2 we show the corresponding results for j = BB, γ5 and k = Dd, γ5. They are quite
similar to those for j = BB, (1 + γ0)γ5 and k = Dd, (1 + γ0)γ5 and can be interpreted in the same way. The main
point of these two plots is to demonstrate that BB and Dd trial states, even though not orthogonal, are not linearly
dependent either. In the following subsections we explore, whether the ground state of the (I, jz,P,Px) = (0, 0,−,+)
sector for given r is more similar to a BB trial state or to a Dd trial state.

Analog plots of αjk for ensemble C30.32 are very similar to those of Figure 2 and, thus, not shown.
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B. Effective energies corresponding to diagonal elements of the correlation matrix at small and large
temporal separations

Now we consider effective energies corresponding to diagonal elements of the correlation matrix, i.e.

V eff
j (r, t) = −1

a
log

(
Cjj(t)

Cjj(t− a)

)
(no sum over j). (14)

As discussed in section II, all four operators probe the (I, jz,P,Px) = (0, 0,−,+) sector. Thus, for fixed r and at
sufficiently large t, all four V eff

j (r, t) should approach the same constant, which is the ground state energy V (r). For
separations r <∼ 0.3 fm, our numerical results confirm that expectation (see e.g. the left plot of Figure 3, where V eff

j (r, t)
is shown for r ≈ 0.16 fm as a function of t). For larger r, however, the two Dd operators seem to generate only little
overlap to the ground state. The consequence is that the corresponding effective energies V eff

Dd,(1+γ0)γ5
and V eff

Dd,γ5

do not convincingly converge to the plateau at V (r) in the t region, where we carried out computations, and have
rather large statistical errors for larger t separations (see e.g. the right plot of Figure 3, where V eff

j (r, t) is shown for
r ≈ 0.79 fm as a function of t). In contrast to that, the two BB operators still lead to clear effective energy plateaus.
Thus, if one is just interested to determine V (r), it is sufficient to implement BB operators. This is, what we did in
previous work, e.g. in Ref. [38] (see also the left plot of Figure 1).

Figure 3. Effective energies V eff
j corresponding to diagonal elements of the correlation matrix for fixed r as functions of t for

ensemble B40.24. (left) r = 2a ≈ 0.16 fm. (right) r = 10a ≈ 0.79 fm. The dotted gray line in both plots represents the BB
threshold at 2mB , where mB is the mass of the lightest static light meson taken from our previous work [85].

A first indicator concerning the structure of the ground state are effective energies at small temporal separations,
i.e. V eff

j (r, t = 2a). Since there is little suppression of excited states by the Euclidean time evolution, a small value
of V eff

j (r, t = 2a) close to the ground state energy V (r) implies an operator, which predominantly excites the ground
state. A larger value of V eff

j (r, t = 2a), on the other hand, is a sign that the corresponding operator creates a trial
state less similar to the ground state.

We start with a comparison of the two operators OBB,(1+γ0)γ5 and OBB,γ5 for ensemble B40.24 by showing the
difference of their effective energies, V eff

BB,(1+γ0)γ5
(r, t = 2a) − V eff

BB,γ5
(r, t = 2a), in the upper left plot of Figure 4.

This difference is clearly negative for all separations r, which is not surprising. OBB,(1+γ0)γ5 creates predominantly a
pair of ground state static-light mesons, while OBB,γ5 creates roughly a 50%/50% superposition of a pair of negative
parity ground state mesons and a pair of significantly heavier positive parity static-light mesons, as discussed above
and as can be shown e.g. by a Fierz transformation (for details see Ref. [37]). Results from an analog comparison of
the two diquark-antidiquark operators are very similar (see upper right plot of Figure 4). This is interesting, because
it indicates that a light diquark with spin structure given by (1 + γ0)γ5 is energetically preferred over a light diquark
with spin structure given just by γ5.

Most interesting, of course, is the comparison of a meson-meson and a diquark-antidiquark operator, specifically of
OBB,(1+γ0)γ5 and ODd,(1+γ0)γ5 , which we have just identified as being superior to OBB,γ5 and ODd,γ5 , respectively.
We show the difference of their effective masses, V eff

BB,(1+γ0)γ5
(r, t = 2a) − V eff

Dd,(1+γ0)γ5
(r, t = 2a), in the lower plot
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Figure 4. V eff
j (r, t = 2a) − V eff

k (r, t = 2a), i.e. differences of effective energies corresponding to diagonal elements of the
correlation matrix for t/a = 2, as functions of r for ensemble B40.24. (top left) j = BB, (1 + γ0)γ5, k = BB, γ5. (top
right) j = Dd, (1 + γ0)γ5, k = Dd, γ5. (bottom) j = BB, (1 + γ0)γ5, k = Dd, (1 + γ0)γ5.

of Figure 4. For r <∼ 3.15 a ≈ 0.25 fm the difference is positive, indicating that for small separations the diquark-
antidiquark operator generates a trial state more similar to the ground state. For larger separations, r >∼ 0.25 fm the
difference becomes negative and strongly points towards a meson-meson structure. While the latter is expected (at
large r the flux tube present in a heavy diquark-antidiquark is energetically disfavored), the former is a first hint
towards a diquark-antidiquark dominance at smaller r. We continue to investigate this in more detail in the following
subsections.

Analog plots of differences of effective energies for ensemble C30.32 are very similar to those of Figure 4 and, thus,
not shown.

C. Optimizing trial states by minimizing effective energies

Now we consider the 2-dimensional space spanned by the states |ΦBB,(1+γ0)γ5〉 and |ΦDd,(1+γ0)γ5〉. Any trial state
from that space can be written as

|Φb,d〉 = b|ΦBB,(1+γ0)γ5〉+ d|ΦDd,(1+γ0)γ5〉 (15)
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with coefficients b, d ∈ C. To identify a trial state as similar to the ground state as possible, i.e. with large overlap to
the ground state and little overlap to excitations, we minimize the corresponding effective energy

V eff
b,d(r, t) = −1

a
log

(
C[b,d][b,d](t)

C[b,d][b,d](t− a)

)
(16)

with respect to b and d. Since, V eff
b,d is independent of the norm and the phase of |Φb,d〉, we can fix b = 1 and minimize

V eff
b,d for given r and t with respect to the real and the imaginary part of d. Such a 2-dimensional minimization is

numerically straightforward. In particular, no further lattice QCD computations are needed, because C[b,d][b,d] can be
expressed in terms of the correlation matrix introduced in Eq. (10),

C[b,d][b,d](t) =

(
b

d

)†
j

Cjk(t)

(
b

d

)
k

. (17)

In the following we consider

wBB =
|b|2

|b|2 + |d|2
, wDd =

|d|2

|b|2 + |d|2
= 1− wBB (18)

with b = 1 and d minimizing V eff
b,d . wBB and wDd are the normalized absolute squares of the coefficients of the

optimized trial states appearing in Eq. (15). These quantities exhibit only a weak dependence on t. For 3 ≤ t/a ≤ 5
and ensemble B40.24 (4 ≤ t/a ≤ 6 and ensemble C30.32) they are consistent with a constant. For t/a ≥ 6 (t/a ≥ 7),
statistical fluctuations and errors become large and the signal is quickly lost in noise. The latter is not surprising,
because wBB and wDd are subtle quantities depending on the amount of excited states in BB and Dd correlation
functions, which are exponentially suppressed in t. In Figure 5 we show example plots of wBB and wDd as functions
of t for selected separations r/a = 2, r/a = 5 and r/a = 8 for ensemble B.

Figure 5. wBB and wDd = 1 − wBB , the normalized absolute squares of the coefficients of the optimized trial states for
several fixed r as functions of t for ensemble B40.24. The horizontal red lines indicate the fit results w̄BB and w̄Dd and the
corresponding statistical errors.

We determine each plateau value by a χ2 minimizing fit of a constant in the range 3 ≤ t/a ≤ 5 (4 ≤ t/a ≤ 6). The
resulting numbers, w̄BB(r) and w̄Dd(r) = 1 − w̄BB(r), can be interpreted as the relative weight of a meson-meson
and a diquark-antidiquark structure at b̄b̄ separation r in the ground state, which corresponds to the potential V (r)
of two static antiquarks and is, thus, closely related to the b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+). In
Figure 6 we plot w̄BB and w̄Dd as functions of r. One can clearly see that there is a diquark-antidiquark dominance
for b̄b̄ separations r <∼ 0.20 fm. For r >∼ 0.30 fm, the meson-meson structure is more prominent and for r >∼ 0.50 fm, the
diquark-antidiquark contribution is negligible, i.e. the system is exclusively composed of two B mesons. It is interesting
to note that the separation r ≈ 0.3 fm, where the meson-meson structure starts to dominate, is of the same order as
the size of a B meson. A precise comparison, however, seems to be difficult, because the size of a B meson is model
dependent and not precisely known (see e.g. Refs. [103, 104]).

We note that the quantities wBB and wDd as well as the fitted w̄BB and w̄Dd depend on the normalization of
the operators OBB,(1+γ0)γ5 and ODd,(1+γ0)γ5 or, equivalently, on the normalization and the corresponding states
|ΦBB,(1+γ0)γ5〉 and |ΦDd,(1+γ0)γ5〉. To allow a meaningful interpretation in terms of the relative weight of a BB and
a Dd structure, the norms of these two states has to be similar. In this work we use NBB = NDd, which implies
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Figure 6. w̄BB and w̄Dd = 1 − w̄BB , the fitted normalized absolute squares of the coefficients of the optimized trial state, as
functions of r for both ensembles.

OBB,Γ = ODd,Γ for r = 0 and, thus, |ΦBB,Γ〉 = |ΦDd,Γ〉 for r = 0 (see section II). We expect that NBB = NDd also
results in similar norms for r > 0. A common alternative, which we have used in previous lattice QCD projects, is to
normalize the operators Oj such that Cjj(t = a) = 1 (no sum over j; see e.g. Refs. [78, 79, 105]). As a cross-check
we also explored this normalization in our current work and found almost identical results to those obtained with
NBB = NDd.

D. Eigenvector components obtained by solving a generalized eigenvalue problem

To further explore the structure of the ground state in the (I, jz,P,Px) = (0, 0,−,+) sector, we now use N × N
correlation matrices Cjk as defined in Eq. (10) and solve the generalized eigenvalue problem (GEVP)

Cjk(t)v
(n)
k (t) = λ(n)(t)Cjk(t0)v

(n)
k (t) , n = 0, . . . , N − 1 (19)

for t0/a ≥ 1 and t/a > t0/a (for detailed discussions of the GEVP in lattice field theory see e.g. Refs. [106–113]).
Effective energies for the lowest N energy eigenstates are then given by

V eff,(n)(r, t) = −1

a
log

(
λ(n)(t)

λ(n)(t− a)

)
. (20)

These are generalizations of the effective energy defined in Eq. (14), since V eff,(0)(r, t) = V eff
j (r, t) for N = 1. For

N > 1, V eff,(0)(r, t) approaches the same constant V (r) for large t, but plateaus can typically be identified at
somewhat smaller t, because of an elimination of excitations (see also the second next paragraph and appendix A,
where a minimization of effective energies is related to the GEVP).

The eigenvector components v(n)
j (t), which we always normalize according to

∑
j |v

(n)
j (t)|2 = 1, contain information

about the relative importance of the creation operators included in the correlation matrix and, thus, hints about the
structure of the corresponding energy eigenstates. For large t and t0,

|n〉 ≈
∑
j

v
(n)
j (t)|Φj〉, (21)

where the ≈ sign denotes an approximate expansion of the energy eigenstate |n〉 in terms of the trial states |Φj〉. For
such values of t and t0, the squared eigenvector components as functions of t form plateaus and we determine the
corresponding asymptotic values of |v(0)

j (t)|2 by χ2 minimizing fits of constants. The results of these fits are denoted
by |v̄(0)

j |2. The squared eigenvector components |v(n)
j (t)|2 as well as the fitted |v̄(0)

j |2 depend on the normalization of
the creation operators, as it is the case for wBB , wDd, w̄BB and w̄Dd (see the discussion at the end of section IVC).
As before, we use NBB = NDd, which amounts to having trial states |Φj〉 with similar norm.
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It is interesting to note that for a 2× 2 correlation matrix with trial states |Φ1〉 = |ΦBB,(1+γ0)γ5〉 and
|Φ2〉 = |ΦDd,(1+γ0)γ5〉 and t0/a = t/a − 1, the eigenvector components v(0)

j are proportional to the coefficients b and
d minimizing V eff

b,d(r, t) defined in Eq. (16). Moreover, (|v(0)
BB,(1+γ0)γ5

|2, |v(0)
Dd,(1+γ0)γ5

|2) = (wBB , wDd) and, thus,

(|v̄(0)
BB,(1+γ0)γ5

|2, |v̄(0)
Dd,(1+γ0)γ5

|2) = (w̄BB , w̄Dd), as we show in appendix A. In other words, the results on the structure
of the b̄b̄ud ground state obtained in section IVC by determining a trial state, which minimizes an effective energy,
are identical to results from a specific corresponding GEVP. This allows to understand and interpret the GEVP
eigenvector components from another perspective. Compared to the trial state optimization from section IVC, the
GEVP, however, offers further possibilities, for example to choose t0 independent of t (i.e. not as t0/a = t/a − 1) or
to study the full correlation matrix with N = 4.

As discussed in the previous paragraph, solving the GEVP with a 2× 2 correlation matrix including the operators
OBB,(1+γ0)γ5 and ODd,(1+γ0)γ5 and using t0/a = t/a−1 yields exactly the same results as shown in Figure 6 (one just
has to replace labels according to w̄BB → |v̄(0)

BB,(1+γ0)γ5
|2 and w̄Dd → |v̄(0)

Dd,(1+γ0)γ5
|2). However, many lattice QCD

papers using the GEVP fix t0 to a rather small value independent of t. For small values of t0, statistical errors are
somewhat reduced, which in turn allows to consider larger values of t. Thus we also computed |v̄(0)

BB,(1+γ0)γ5
|2 and

|v̄(0)
Dd,(1+γ0)γ5

|2 for t0/a = 1. As already observed in the previous subsection for the related quantities wBB and wDd,

the resulting squared eigenvector components |v(0)
BB,(1+γ0)γ5

|2 and |v(0)
Dd,(1+γ0)γ5

|2 exhibit only a mild t dependence and
the majority is consistent with a constant for large t. Results for selected b̄b̄ separations r are shown in Figure 7.
For ensemble C30.32 we use the fit range 6 ≤ t/a ≤ 8 to determine |v̄(0)

BB,(1+γ0)γ5
|2 and |v̄(0)

Dd,(1+γ0)γ5
|2. For ensemble

B40.24 the analysis and interpretation of the data is less obvious. While for t/a ≤ 5 plateaus are indicated, for t/a ≥ 6
there is a weak, almost linearly increasing deviation from these plateaus for some separations r (see e.g. the plot in the
center of the upper line of Figure 7). Note, however, that errors are also increasing at larger t. For example, the data
points at 8 ≤ t/a ≤ 9 are just around 2σ away from those at 4 ≤ t/a ≤ 5. Also the monotonic almost linear behavior
is not necessarily an indication of a systematic deviation from a constant, because all data points were computed on
the same gauge link configurations and neighboring points in t are, thus, correlated. Consequently, we interpret the
observed deviations as statistical fluctuations and use the fit range 4 ≤ t/a ≤ 5.

In the left plot of Figure 8 we show |v̄(0)
BB,(1+γ0)γ5

|2 and |v̄(0)
Dd,(1+γ0)γ5

|2 for both ensembles. These curves for t0/a = 1

are quite similar to those corresponding to t0/a = t/a−1 (and shown in Figure 6). Again, one can see a clear dominance
of the diquark-antidiquark operator for separations r <∼ 0.20 fm. In the range 0.20 fm ≤ r ≤ 0.30 fm there is a rapid
change towards a meson-meson structure. For r >∼ 0.50 fm there is almost no diquark-antidiquark contribution anymore
and the b̄b̄ud four-quark system seems to be composed exclusively of two B mesons. This plot confirms our results
from section IVB obtained by minimizing effective energies.

It should be noted that the quantities w̄BB and w̄Dd as well as the fitted squared eigenvector components
|v̄(0)
BB,(1+γ0)γ5

|2 and |v̄(0)
Dd,(1+γ0)γ5

|2 depend on the creation operators used, e.g. the details of the quark and gauge
field smearing or their normalization. Besides discretization errors, this might be part of the reason for the slight
differences between the results obtained for ensemble B40.24 and ensemble C30.32 shown in Figure 6 and the left
plot of Figure 8. Since these differences are quite small and since we found almost identical results for different
normalization prescriptions, we consider w̄BB and w̄Dd as well as |v̄(0)

j |2 as reliable indicators characterizing the quark
and gluon structure of the ground state of the (I, jz,P,Px) = (0, 0,−,+) sector.

Finally we performed the same GEVP analysis using the full 4×4 correlation matrix including all operators defined
in Eq. (8). We determined |v̄(0)

j |2 using the same fit ranges as for the previous 2 × 2 analyses (results for ensemble
C30.32 are shown in the right plot of Figure 8). Again, there is a diquark-antidiquark dominance for r <∼ 0.20 fm, this
time represented by the eigenvector components corresponding to two operators ODd,(1+γ0)γ5 and ODd,γ5 , while there
is meson-meson dominance for r >∼ 0.30 fm, reflected by the eigenvector components corresponding to two operators
OBB,(1+γ0)γ5 and OBB,γ5 . When adding the two diquark eigenvector components as well as the two meson-meson
eigenvector components, i.e. when considering |v̄(0)

Dd,(1+γ0)γ5
|2 + |v̄(0)

Dd,γ5
|2 and |v̄(0)

BB,(1+γ0)γ5
|2 + |v̄(0)

BB,γ5
|2, we find within

errors the same curves as obtained above by the 2 × 2 analysis. This is reassuring, because the results concerning
the meson-meson percentage and the diquark-antidiquark percentage do not change, even though we increased the
dimension of the basis of trial states used to approximate the ground state from 2 to 4.

We note that the GEVP can also be used to study excited states. In our case, i.e. for quantum numbers
(I, jz,P,Px) = (0, 0,−,+), the first and second excitation correspond to the repulsive potential of a negative and a
positive parity B meson and to the attractive potential of two positive parity B mesons. We computed these potentials
in a pevious work [37] (see in particular Figure 4 in Ref. [37], “singlet A”), where operators OBB,Γ with a larger set
of matrices Γ were used. To study the structure of these excitations would require also a comparable set of operators
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Figure 7. The squared eigenvector components |v(0)BB,(1+γ0)γ5 |
2 and |v(0)Dd,(1+γ0)γ5 |

2 = 1 − |v(0)BB,(1+γ0)γ5 |
2 for several fixed r as

functions of t. (upper line) Ensemble B40.24. (lower line) Ensemble C30.32. The horizontal red lines indicate the fit results
|v̄(0)BB,(1+γ0)γ5 |

2 and |v̄(0)Dd,(1+γ0)γ5 |
2 and the corresponding statistical errors.

ODd,Γ and goes beyond the scope of this work.

E. Meson-meson and diquark-antidiquark percentages of the b̄b̄ud tetraquark with I(JP ) = 0(1+)

During the lattice QCD computation of the potential V (r) the heavy antiquarks b̄b̄ are considered as static, i.e.
their positions are fixed and only the light quarks ud and the gluons are dynamical degrees of freedom. The dynamics
of the heavy quarks can, however, be studied in a second step, by inserting the potential V (r) into the Schrödinger
equation (1). This two step approach is widely known as the Born-Oppenheimer approximation (see e.g. Ref. [31]
for a detailed discussion in the context of exotic mesons). In Ref. [38] we solved the Schrödinger equation (1) using
mb = mB = 5279MeV [114] and found a single bound state with binding energy −E = 38(18)MeV indicating
the existence of a hadronically stable b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+). Moreover, the wave
function R(r)/r gives the probability density of the b̄b̄ separation, pr(r) = 4π|R(r)|2, which is shown in the right plot
of Figure 1.

The quantities w̄BB and w̄Dd (see Figure 6) as well as |v̄(0)
BB,(1+γ0)γ5

|2 and |v̄(0)
Dd,(1+γ0)γ5

|2 (see left plot of Figure 8)
can be interpreted as meson-meson and diquark-antidiquark percentages for fixed r. We define

pBB,w(r) = w̄BB , pDd,w(r) = w̄Dd (22)

and

pBB,v(r) = |v̄(0)
BB,(1+γ0)γ5

|2 , pDd,v(r) = |v̄(0)
Dd,(1+γ0)γ5

|2, (23)

where pBB,w(r) ≈ pBB,v(r) and pDd,w(r) ≈ pDd,v(r). These percentages together with the probabilty density pr(r)
can be used to crudely estimate the total meson-meson and diquark-antidiquark percentages of the b̄b̄ud tetraquark,
which we denote by %BBj and %Ddj . To this end, we use a parameterization, which is a simple mathematical
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Figure 8. Fitted squared eigenvector components |v̄(0)j |
2 as functions of r. (left) 2×2 correlation matrix including the operators

OBB,(1+γ0)γ5 and ODd,(1+γ0)γ5 for both ensembles. (right) 4 × 4 correlation matrix including all operators (see Eq. (8)) for
ensemble C30.32.

function able to consistently describe our lattice QCD results,

pBB,j(r) =
1

2

(
tanh(αj(r − r0,j) + 1

)
, pDd,j(r) = 1− pBB,j(r), (24)

where the parameters r0,j and αj are determined by χ2 minimizing fits to the results of both ensembles as shown in
Figure 6 and Figure 8. Then we compute %BB and %Dd via

%BBj =

∫
dr pr(r)pBB,j(r) , %Ddj =

∫
dr pr(r)pDd,j(r) = 1−%BBj . (25)

We find %BBw = 0.58, %Ddw = 0.42 and %BBv = 0.60, %Ddv = 0.40, i.e. almost the same result, when using w̄BB
and w̄Dd and when using |v̄(0)

BB,(1+γ0)γ5
|2 and |v̄(0)

Dd,(1+γ0)γ5
|2. Note that we have lattice QCD results for pBB,j(r) and

pDd,j(r) only for separations r >∼ 0.1 fm. Thus, it is unclear, whether the parameterization (24) is a valid description
also for r <∼ 0.1 fm. The coresponding systematic error is, however, quite small, because the probability to find the b̄b̄
pair at separation r <∼ 0.1 fm is also rather small (see the plot of pr(r) = 4π|R(r)|2 in Figure 1). To quote a crude
and very conservative upper bound for this systematic error, we solved again the integral in Eq. (25) replacing in the
interval 0 ≤ r ≤ 0.1 fm the almost vanishing pBB,j(r) = (tanh(αj(r − r0,j) + 1)/2 ≈ 0 by pBB,j(r) = 1. The results
are quite similar, %BBw = 0.63, %Ddw = 0.37 and %BBv = 0.65, %Ddv = 0.35, indicating that the corresponding
systematic error is well below 0.05. Moreover, the eigenvector components are slightly operator dependent, as discussed
in section IVD. Thus, the percentages %BBj and %Ddj should only be considered as crude estimates. As total
systematic error, reflecting both the parameterization and the operator dependence, we estimate ≈ 0.10. Still it
seems to be clear that the b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+) is neither strongly meson-meson
dominated nor strongly diquark-antidiquark dominated, but rather an approximately equal linear combination of both
structures. Finally we note that these results for %BBj and for %Ddj are fully consistent with squared eigenvector
components obtained during a recent lattice QCD study [44] of the same tetraquark using four quarks of finite mass.
There, a meson-meson component of 0.65(4) and a diquark-antidiquark component of 0.35(4) was found [115].

V. CONCLUSIONS AND OUTLOOK

In this work we used lattice QCD to study a recurrent question on the nature of tetraquarks in the context of a
b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+): Are they more similar to meson-meson systems or rather
to diquark-antidiquark pairs? Moreover we addressed the Dirac structure of the light quarks, comparing γ5 with
(1 + γ0)γ5, which are both consistent with I(JP ) = 0(1+).

We implemented four different lattice QCD creation operators, two of meson-meson type and two of diquark-
antidiquark type. We solved the GEVP both for 2 × 2 and 4 × 4 correlation matrices, to determine quantitatively,
which of the implemented structures is preponderant in the ground state at b̄b̄ separation r. Moreover, we optimized
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trial states by minimizing effective energies and proved that this is equivalent to solving a specific corresponding
GEVP.

Notice that the question we are addressing is quite subtle. We first showed that the BB and Dd trial states are not
orthogonal. Nevertheless, since they are not linearly dependent either, we were able to determine, which one is more
similar to the ground state. In what concerns light spin we found the (1+γ0)γ5 is the dominant Dirac structure at all
separations r, both for BB and for Dd. This is what we expected, since the less favorable γ5 structure generates not
only negative parity mesons, but also excited positive parity mesons. As for color we showed that at small separations
r <∼ 0.25 fm the diquark-antidiquark structure dominates, whereas at larger separations the meson-meson trial state is
clearly more similar to the ground state of the b̄b̄ud system. For r >∼ 0.5 fm, the percentage of BB is already larger
than 95% and approaches 100% for even larger r.

Using these results as well as the wave function of the b̄b̄ separation already obtained in Ref. [38], we estimated the
meson-meson to diquark-antidiquark ratio of the b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+) and found
around 60%/40%. Thus BB and Dd components seem to be present in comparable parts.

Appendix A: Equivalence of optimizing a trial state by minimizing an effective energy and of solving a GEVP

We start with the N ×N GEVP defined in Eq. (19), choose t0 = t− a and use the simplified notation
v(n) ≡ (v

(n)
1 (t), v

(n)
2 (t), . . . , v

(n)
N (t)) and λ(n) ≡ λ(n)(t),

C(t)v(n) = λ(n)C(t− a)v(n) , n = 0, . . . , N − 1. (A1)

The correlation matrix C defined in Eq. (10) is hermitean, i.e. C† = C, the eigenvalues λ(n) are real and we assume
them to be positive and non-degenerate, i.e. λ(0) > λ(1) > . . . > λ(N−1) > 0.

We can rewrite v(m)†C(t)v(n) in two ways by using Eq. (A1) and its hermitean conjugate,

v(m)†C(t)v(n) = v(m)†C(t− a)v(n)λ(n) (A2)

v(m)†C(t)v(n) = v(m)†C(t− a)v(n)λ(m). (A3)

Since λ(m) 6= λ(n) for m 6= n, we conclude v(m)†C(t − a)v(n) = 0 for m 6= n. In the same way one can show
v(m)†C(t)v(n) = 0 for m 6= n. Moreover, it is convenient to normalize the eigenvectors according to
v(n)†C(t− a)v(n) = 1.

Now we consider an arbitrary trial state |Ψ〉 from the N -dimensional space spanned by the states |Φj〉 included in
the correlation matrix C,

|Ψ〉 =
∑
j

aj |Φj〉. (A4)

The corresponding correlation function is

CΨ(t) = a†C(t)a. (A5)

Since a (as well as any other complex N -component vector) can be expanded in terms of the eigenvectors according
to

a =
∑
n

µ(n)v(n) (A6)

with µ(n) ∈ C, we can write for temporal separation t

CΨ(t) =
∑
m,n

µ(m)∗v(m)†C(t)v(n)µ(n) =
∑
n

|µ(n)|2v(n)†C(t)v(n) =
∑
n

|µ(n)|2λ(n)v(n)†C(t− a)v(n) =

=
∑
n

|µ(n)|2λ(n) (A7)

and analogously for temporal separation t− a

CΨ(t− a) =
∑
n

|µ(n)|2v(n)†C(t− a)v(n) =
∑
n

|µ(n)|2. (A8)

Now we consider the effective energy corresponding to the correlation function CΨ,

Eeff
~µ (t) = −1

a
log

(
CΨ(t)

CΨ(t− a)

)
= −1

a
log

(∑
m

|µ(m)|2∑
n |µ(n)|2

λ(n)

)
. (A9)
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Since 0 ≤ |µ(m)|2/
∑
n |µ(n)|2 ≤ 1 and

∑
m(|µ(m)|2/

∑
n |µ(n)|2) = 1, the argument of the logarithm in Eq. (A9)

is a weighted sum of the eigenvalues, i.e. can assume values between the maximal eigenvalue λ(0) and the minimal
eigenvalue λ(N−1). Minimizing Eeff

~µ (t) with respect to ~µ is equivalent to maximizing the argument of the logarithm,
which corresponds to arbitrary µ(0) and µ(1) = µ(2) = . . . = µ(N−1) = 0. Thus, Eeff

~µ (t) is minimized for a ∝ v(0),

which implies |Ψ〉 ∝
∑
j v

(0)
j |Φj〉.

This is, what we wanted to show: The coefficients of the trial state (A4) with minimal effective energy at temporal
separation t are identical to the components of the eigenvector v(0) from the GEVP with t0 = t− a.
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