
ar
X

iv
:1

60
3.

05
63

0v
1 

 [h
ep

-la
t] 

 1
7 

M
ar

 2
01

6

Interpreting Numerical Measurements

in Fixed Topological Sectors

Wolfgang Bietenholza, Christopher Czabanb, Arthur Dromard b,

Urs Gerbera;c, Christoph P. Hofmannd,

H�ector Mej��a-D��az a and Marc Wagnerb

a Instituto de Ciencias Nucleares
Universidad Nacional Aut�onoma de M�exico

A.P. 70-543, C.P. 04510 Ciudad de M�exico, Mexico
b Goethe-Universit•at Frankfurt am Main

Institut f•ur Theoretische Physik
Max-von-Laue-Stra�e 1, D-60438 Frankfurt am Main, Germany

c Instituto de F��sica y Matem�aticas
Universidad Michoacana de San Nicol�as de Hidalgo

Edi�cio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoac�an, Mexico
d Facultad de Ciencias, Universidad de Colima

Bernal D��az del Castillo 340, Colima C.P. 28045, Mexico

For quantum �eld theories with topological sectors, Monte Carlo simulations
on �ne lattices tend to be obstructed by an extremely long auto-correlation
time with respect to the topological charge. Then reliable numericalmea-
surements are feasible only within individual sectors. The challenge isto
assemble such restricted measurements in a way that leads to a substanti-
ated approximation to the fully edged result, which would correspond to the
correct sampling over the entire set of con�gurations. We test anapproach
for such a topological summation, which was suggested by Brower,Chan-
drasekharan, Negele and Wiese. Under suitable conditions, energylevels
and susceptibilities can be obtained to a good accuracy, as we demonstrate
for O(N ) models, SU(2) Yang-Mills theory, and for the Schwinger model.
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1 Motivation

We consider quantum �eld theories with topological sectors, in Euclidean
spacetime. These sectors are characterized by a topological charge Q 2
Z, which is a functional of the �eld con�guration. In in�nite volume, th e
con�gurations with �nite action are divided into these disjoint sectors. The
same property holds in �nite volume with periodic boundary conditions.
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Examples are O(N ) models in d = N � 1 dimensions, all 2d CP(N � 1)
models, 4d SU(N ) Yang-Mills gauge theories (N � 2), as well as QCD, and
2d U(1) gauge theory, as well as the Schwinger model. In all these models,
a continuous deformation of a given con�guration (at �nite action)can only
lead to con�gurations within the same topological sector,i.e. the deformation
cannot alter the topological chargeQ.

In light of this de�nition, lattice regularized models have in general no
topological sectors | strictly speaking. Nevertheless, it is often useful to
divide the set of lattice �eld con�gurations into sectors, which turn into
the topological sectors in the continuum limit. The de�nition of a topo-
logical charge on the lattice is somewhat arbitrary. In presence ofchiral
fermions (where the lattice Dirac operator obeys the Ginsparg-Wilson re-
lation), the fermion index provides a sound formulation [1]. For the O(N )
models the geometric de�nition [2] is optimal, since it guarantees integer
topological charges on periodic lattices (for all con�gurations except for a
subset of measure zero). In gauge theory, �eld theoretic de�nitions are of-
ten applied, usually combined with smearing or cooling techniques, seee.g.
Ref. [3]. These techniques are computationally cheap and provide, on �ne lat-
tices or at �xed topology, results which agree well with the computationally
demanding fermion index [4{6].

As we proceed to �ner and �ner lattices, the formulation becomes more
continuum-like, and changing a (suitably de�ned) topological sector of the
lattice �eld is getting more and more tedious | for this purpose, continuous
deformations have to pass through a statistically suppressed domain of high
Euclidean action. To a large extent, this property persists for �nite but small
deformations, as they are carried out in the Markov chain of a Monte Carlo
simulation which performs small update steps.

In QCD simulations with dynamical quarks, the gauge con�gurations
are usually generated with a Hybrid Monte Carlo (HMC) algorithm, with
small updates, on lattices of a spacinga in the range 0:05 fm<

� a <
� 0:15 fm.

The artifacts due to the �nite lattice spacing tend to be the main source
of systematic errors. Therefore, the lattice community will try tosuppress
them further by proceeding to even �ner lattices,a < 0:05 fm.

This will provide continuum-like features, which are highly welcome in
general, but as a draw-back it will become harder to change the topological
sector. A HMC simulation may well be trapped in a single sector over a
tremendously long trajectory; in particular, this is the experiencein QCD
simulations with dynamical overlap quarks [7].
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In some circumstances it is even motivated to suppress topologicaltransi-
tions on purpose, in particular when dealing with dynamical chiral fermions.
In that context, con�gurations in a transition region cause technical prob-
lems, like a bad condition number of an overlap or domain wall Dirac opera-
tor. This can be avoided by the use of unconventional lattice gaugeactions,
known as \topology conserving gauge actions" [4, 8] (see also Ref.[9] for a
very similar formulation).

A further option is the use of a \mixed action", where one implements
chiral symmetry only for the valence quarks, which requires just amoderate
computational e�ort. In particular, overlap valence quarks havebeen com-
bined with Wilson sea quarks. However, in this set-up the continuum limit
is not on safe ground, because (approximate) valence quark zeromodes are
not compensated by the sea quark spectrum [10]. This problem mightbe
avoided by �xing the topological sector particularly to Q = 0.

In such settings, there are obvious questions about the (e�ective) ergodic-
ity of the algorithm, since the simulation does not sample properly theentire
space of all con�gurations. Even if we ignore this conceptual question, in
practice the measurement of an observable may well be distorted.This is
the issue to be addressed in this work.

Section 2 describes the Brower-Chandrasekharan-Negele-Wiese(BCNW)
approach, and Sections 3 and 4 probe it in the 1d O(2) and the 2d O(3)
non-linear � -model. It is explored further in 4d SU(2) Yang-Mills theory
in Section 5, and in the Schwinger model in Section 6. The �eld theoretic
models discussed in Sections 4 to 6 share fundamental features with QCD.
Section 7 is devoted to our conclusions.

2 The BCNW method

As a remedy against the topological freezing of Monte Carlo histories, L•uscher
suggested the use of open boundary conditions, such that the topological
charge can change continuously [11]. This overcomes the problem, but it
breaks translational invariance and one gives up integer topological charges
Q. However,Q 2 Z provides a valuable link to aspects, which are analytically
known or conjectured in the continuum, for instance regarding the � -regime
of QCD, or properties based on an instanton picture.

In this work we maintain periodic boundary conditions (in some volume
V) for the bosonic �elds involved, so the topological chargesQ are integers.
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Moreover we consider models with parity invariance. This implieshQi = 0,
and the topological susceptibility is given by

� t =
1
V

hQ2i : (2.1)

In this framework, we are going to test the BCNW approximation [12].It
can be written in the form of an expansion in inverse powers ofV � t ,

hOiQ ' hOi +
1

V � t
c +

1
(V � t )2

(�c � c Q2) �
2

(V � t )3
�c Q2 : (2.2)

The left-hand-side refers to the expectation value of some observableO (Refs.
[12] inserted speci�cally the pion mass) within the sectors of topological
charges� Q. It is accessible even in simulations which are con�ned to one |
or a few | topological sectors.

All the unknown terms on the right-hand-side,i.e. the expectation value
hOi, � t and the coe�cients c and �c, are quantities that asymptotically sta-
bilize in large volume. Hence this form enables the use of results forhOiQ ,
measured in several volumes and for distinctjQj, to determine these un-
known terms. In particular we are interested inhOi and � t ; the coe�cients
are determined as well, but their values are hardly of physical interest (for
instancec = 1

2hOi00(� )j � =0 ).
Actually the third order in approximation (2.2) is incomplete, but the ad-

ditional term in this order would bring along another free parameter. These
terms are identi�ed and discussed in detail in Refs. [13{15]. Here we mostly
focus on the simplest form which captures theQ-dependence ofhOiQ , and
which involves only three parameters (though an incomplete secondorder),

hOiQ � hOi +
c

V � t

�
1 �

Q2

V � t

�
: (2.3)

In the following, we will refer to this approximation as theBCNW formula.
Obviously we cannot determine the quantitieshOi, � t and c within a single
volume; for instance

hOiQ1 � hOi Q2 �
c

(V � t )2
(Q2

2 � Q2
1) (2.4)

only determines the ratioc=� 2
t . If we include di�erent volumes V1 and V2,

however, we could usee.g.hOi0(V1) �hOi 0(V2) � c
� t

(1=V1 � 1=V2) to �x c=� t ,
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and we obtain | along with relation (2.4) | all three quantities, hOi, � t

and c (we repeat that only the former two are of interest). In practiceone
would rather involve several volumes and topological sectors, andperform a
3-parameter �t to the (over-determined) system.

We distinguish three regimes for the volumeV

� Small volume: there are signi�cant �nite size e�ects of the ordinary
type, not related to topology �xing, in particular in hOi and � t .

� Moderate volume:ordinary �nite size e�ects are negligible (they tend
to be exponentially suppressed), buthOiQ still depends signi�cantly
on jQj and V.

� Large volume: there are hardly any �nite size e�ects left, even the
correction terms in approximations (2.2), (2.3) are negligible.

In small volumes, the formulae (2.3) and (2.2) cannot be applied, because
results from various volumes cannot be used for the same �t.1 In large vol-
umes, we obtain the correct value forhOi anyhow, without worrying about
frozen topology, as we see from the expansions (2.2) and (2.3). However,
such large volumes may be inaccessible in realistic simulations, due to limi-
tations of the computational resources. Hence we are interested in moderate
volumes,where the determination ofhOi is di�cult, but possibly feasible by
means of the BCNW approximation. Moreover, that regime also provides an
estimate for � t , which is particularly hard to measure directly.

The derivation of formula (2.2) involves approximations, which assume:2

� hQ2i = V � t is large. As we mentioned before, eq. (2.2) takes the form
of an expansion in 1=hQ2i . Once � t is stable, this can also be viewed
as a large volume expansion.

� j Qj=hQ2i is small, so we should work in the sectors with a small abso-
lute value jQj. This is less obvious from the formulae (2.2) and (2.3)

1An extension of the BCNW approximation (2.3) including ordinary �nite size e�ects
has been derived in Refs. [16]. This extension can be used for �ts to data obtained from
small volumes. It involves, however, additional �tting parameters.

2For convenience, this formula has been re-derived in Subsection 5.2of Ref. [17] in a
way, which highlights the rôle of these two assumptions.
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(although the terms / Q2 are related to this condition), but it is re-
quired for a step in its derivation, which relies on a stationary phase
approximation.

Here we employ numerical data to explore how largehQ2i has to be for
this approximation to be sensible, and up to which absolute valuejQj the
data are useful in this context. In practice it is rather easy to work at small
jQj, but the former condition could be a serious obstacle.

So far there have been only few attempts to apply this approximation
to simulation data. This was done for the 2-avor Schwinger model with
dynamical overlap fermions [17, 18] with respect to the pseudo-scalar mass
M � and the chiral condensate �. Tests for a quantum rotor | more pr ecisely
a scalar particle on a circle with a potential | are reported in Refs. [13,14].

Another approach was derived | similarly to the BCNW approximation
| in Ref. [19]. It refers to the long-distance correlation of the topological
charge densityq(x), Q =

R
ddx q(x). The applicability of that method has

been tested in a set of models [20], and variants had been studied previously
[21]. Further approaches to extract physics from topologically frozen Markov
chains include Refs. [22{24]. Preliminary results of this work have been
anticipated in some proceeding contributions [13,15,16,25].

3 Tests for the quantum rotor

As a simple but precise test, we �rst consider a toy model from quantum
mechanics (i.e. 1d quantum �eld theory), namely the quantum rotor, or
1d XY model, or 1d O(2) model. It describes a free quantum mechanical
particle moving on a circle, with a periodicity condition in Euclidean time.
A theoretical discussion of this system, in the continuum and for di�erent
lattice actions, is given in Ref. [26].3 Below we write down the continuum
action, and on the lattice the standard action and the Manton action [28] (in

3For the analytic treatment, Ref. [26] uses the Hamiltonian formalism. A discussion in
terms of path integrals is given in Ref. [27].
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lattice units),

Scont [' ] =
� cont

2

Z L cont

0
dt _' (t)2 ;

Sstandard [' ] = �
LX

t=1

�
1 � cos(� ' t )

�
;

SManton [' ] =
�
2

LX

t=1

(� ' t )2 : (3.1)

L cont and L are the extent of the periodic Euclidean time interval in the
continuum and on the lattice, respectively,' (t) and ' t are time dependent
angles, with ' (L cont + t) = ' (t), ' L + t = ' t . � cont and � can be interpreted
as an inverse temperature, or in this case also as the moment of inertia. In
the terms for the lattice actions we de�ne

� ' t = ( ' t+1 � ' t ) mod 2� 2 (� �; � ] ; (3.2)

i.e. the modulo function is implemented such that it minimizesj� ' t j. Thus
� ' t also de�nes the lattice topological charge densityqt (geometric de�ni-
tion) and the chargeQ,

qt =
1

2�
� ' t ; Q[' ] =

LX

t=1

qt 2 Z : (3.3)

In the continuum and in�nite size L cont , the correlation length and its
product with the topological susceptibility amount to

� cont = 2� cont ; � t � cont =
1

2� 2
: (3.4)

Analytic expressions for the corresponding quantities on the lattice, with the
standard action and the Manton action, are given in Ref. [26].

Our simulations were carried out with the Wol� cluster algorithm [29],
which performs non-local update steps. This algorithm is highly e�cient
and provided a statistics of 5� 109 measurements for each setting. Since it
changes the topological sector frequently, in this case the observables could
also be measured directly to high precision, which allows for a detailed test
of the BCNW method. In most quantum �eld theoretic models no e�cient
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cluster algorithm is known, in particular in the presence of gauge �elds. Then
one has to resort to local update algorithms, which motivates this project,
as we pointed out in Section 1.

For our tests we set� = 4 and consider six lattice sizes in the range
L = 150 : : :400. This is large compared to the correlation length, which was
measured atL = 400 as

� standard = 6:81495(4); � Manton = 7:9989(1); (3.5)

very close to the analytic values atL = 1 . This demonstrates that ordinary
�nite size e�ects are very small, but | as we are going to see | there a re
signi�cant �xed topology �nite size e�ects. Hence we are in the regime of
moderate volumes, as desired. Moreover, this regime is sensible alsobecause
lattice artifacts are quite well suppressed.

The BCNW formula consists of leading terms in an expansion in 1=hQ2i ,
cf. Section 1. In the rangeL = 150 : : :400 we obtain

hQ2i standard = 1:13: : : 3:02 ; hQ2i Manton = 0:95: : : 2:53 : (3.6)

This suggests that we are in the transition regime to the validity of this
method, which is interesting to explore.

3.1 Action density

We �rst consider the action density

s = hSi =V : (3.7)

This quantity is not directly physical, but it is suitable for testing the BCNW
method, based on topologically restricted expectation valuessjQj = hSi jQj=V.
Moreover, the corresponding �ts provide a value for� t , which is physical.

Figure 1 shows the action density for both lattice actions under consid-
eration, measured at �xed jQj = 0 : : : 4, and by including all sectors (the
way the simulation samples them). The latter is constant to high accuracy
for L = 150 : : :400, which con�rms that ordinary �nite size e�ects are neg-
ligible. On the other hand, at �xed jQj we see deviations far beyond the
statistical errors, depending onL and jQj, so this setting is appropriate for
the application of the BCNW method.

Table 1 presents our results obtained by least-square �ts to the BCNW
approximation (2.3): we use data forsjQj in all six volumes, and in the
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Figure 1: The action density in the 1d O(2) model at� = 4 on lattices of
sizeL = 150 : : : 400, with the standard action (left) and the Manton action
(right). We show s measured in all sectors (which is practically constant in
this range ofL), as well as the values ofsjQj in the sectorsjQj = 0 : : : 4, which
strongly depend onjQj and V.

topological sectorsjQj = 0 : : : jQjmax , wherejQjmax varies from 1 to 4. Similar
results are obtained when we only involve the larger volumes, such asL =
250: : :400 or 300: : :400.

standard action Manton action
jQjmax s � t s � t

1 0.545910(1) 0.007552(4) 0.500073(3) 0.006135(9)
2 0.545910(1) 0.007555(3) 0.500072(2) 0.006132(8)
3 0.545912(2) 0.007559(5) 0.500072(2) 0.006132(8)
4 0.545912(2) 0.007559(5) 0.500072(2) 0.006131(7)
all 0.545910(1) 0.007554 0.500041(1) 0.006333

Table 1: Results based on �ts to the formula (2.3), with input data for the
action density in the rangeL = 150 : : :400 andjQj � j Qjmax . The last line
displayss measured in all sectors atL = 400, and the analytic value of� t at
L = 1 .

Regarding the value ofs, the method works perfectly (to the given preci-
sion) for the standard action, and up to a deviation of about 0:006 % for the
Manton action. For the standard action the �ts yield values for� t , which are
again compatible with the correct value, with uncertainties around 0:05 %.
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In case of the Manton action a systematic discrepancy of 3 % is observed, as
a consequence of the approximations in formula (2.3).

In summary, this �rst numerical experiment can be considered a success
of the BCNW method. The good results fors are highly non-trivial in view
of the sizable di�erences in the individual sectors (shown in Figure 1), and
exactly these di�erences give rise to quite good estimates for� t . As a generic
property, it is easy to measuresjQj accurately (in gauge theories it is given
by the mean plaquette value), so it is motived to estimate� t in this way also
in higher dimensional models.

3.2 Magnetic susceptibility

In this model, the correlation function in a �xed sector of topological charge
Q has a peculiar form. For a continuous time variablet it reads [14]

h~e(0) � ~e(t)i Q =
1
2

exp
�

�
t(L cont � t)
2� cont L cont

�
cos

� 2�Qt
L cont

�
; (3.8)

with ~e(t) =
�

cos' (t)
sin' (t)

�
:

The unusual last factor in eq. (3.8) obstructs the determination of a corre-
lation length � Q6=0 , and we recall that the BCNW method does not apply to
results, which are obtained in various volumes, but always atQ = 0.

By integrating over the time shift t, however, we obtain a quantity, which
is suitable for testing this method, namely the magnetic susceptibility

� m =
h~M 2i � h ~M i 2

L cont
=

Z L cont

0
dt h~e(0) � ~e(t)i �

1
L cont

�D Z L cont

0
dt~e(t)

E� 2
;

(3.9)
where ~M =

RL cont

0 dt~e(t) is the magnetization. The subtracted term vanishes
in our case due to the global O(2) invariance,h~M i = ~0. The magnetic
susceptibility is physical in the framework of statistical mechanics;we can
interpret a con�guration [~e] as a spin chain. Based on eq. (3.8) we obtain
for its topologically restricted counterpart

� m;jQj = 2
Z L cont =2

0
dt exp

�
�

t
2� cont

+
t2

2� cont L cont

�
cos

� 2�Qt
L cont

�
: (3.10)

In each sector, the limitL cont ! 1 leads to� m = � m;jQj = 4� cont . If we insert
the large volume expansions of exp(t2=(2� cont L cont )) and cos(2�Qt=L cont ) up
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to O(1=L3
cont ), and perform the integral, we arrive at

� m;Q ' � m +
4� cont

� 2L cont � t

�
1 +

3=� 2 � Q2

L cont � t

�

+
12� cont

� 4(L cont � t )3

� 5
� 2

� 2Q2
�

+ O
� 1

(L cont � t )4

�
; (3.11)

where we substituted the in�nite volume value� t = 1=(4� 2� cont ) [26], cf. eq.
(3.4).4 This is exactly the form of the BCNW approximation (2.2), with

c =
4� cont

� 2
; �c =

12� cont

� 4
; (3.12)

and in this case the third order is complete. If we only consider the second
order and neglect its �c-term, we are left with the BCNW approximation (2.3).

Therefore the magnetic susceptibility is fully appropriate for numerical
tests of the validity of this approximation, where we use the corresponding
lattice terms, like ~M =

P L
t=1 ~et . The sources of systematic errors (errors

in the BCNW approximation) are sub-leading �nite size e�ects and lattice
artifacts.

In analogy to Subsection 3.1, Figure 2 gives an overview over the values of
� m;jQj up to jQj = 3, at di�erent L. Again we see that the value measured in
all sectors is stable inL, whereas the topologically restricted results strongly
depend onL and jQj. Hence the setting is suitable for the BCNW method
also with respect to the magnetic susceptibility.

We proceed to the �ts to search the optimal values | according to formula
(2.3) | for the (over-determined) susceptibilities � m and � t . Table 2 shows
the results in the �tting ranges L = Lmin : : : 400, Lmin = 150; 250, 300, and
jQj = 0 : : : jQjmax , with jQjmax = 2 or 3.

The �tting results for both susceptibilities are compatible with the cor-
rect values, albeit the uncertainty of� t is rather large. Without knowing the
exact value one could combine the results of separate �ts, which reduces the
uncertainty, but it leads to a � t -value which is somewhat too small. On the
other hand, for � m the values are far more precise, and the relative uncer-
tainty is on the percent level (or below) in each case. Here a combination
which reduces the uncertainty is welcome, although it has to be donewith
care since the partial results are not independent of each other.We add that

4The �nite size e�ects in � t , and those due to the upper bound of the integral in eq.
(3.10), are exponentially suppressed.
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Figure 2: The magnetic susceptibility in the 1d O(2) model at� = 4 on
lattices of sizeL = 150 : : :400, with the standard action (left) and the Manton
action (right). We show � m measured in all sectors (practically constant in
this range ofL), as well as� m;jQj in the sectorsjQj = 0 : : : 3 (well distinct).

standard action Manton action
Lmin jQjmax � m � t � m � t

150 2 13.64(16) 0.0072(13) 16.11(35) 0.0054(18)
150 3 13.67(22) 0.0070(22) 16.14(41) 0.0050(26)
250 2 13.64(5) 0.0071(5) 16.00(14) 0.0060(8)
250 3 13.65(13) 0.0074(15) 15.99(28) 0.0064(20)
300 2 13.64(5) 0.0071(5) 16.02(12) 0.0058(8)
300 3 13.66(13) 0.0073(17) 16.02(29) 0.0061(23)

all 13.6545(4) 0.007554 16.0187(5) 0.006333

Table 2: Results based on �ts to formula (2.3), with input data for the
magnetic susceptibility in the rangeL = Lmin : : : 400 andjQj � j Qjmax . The
last line displays� m measured in all sectors atL = 400, and � t at L = 1 .

the �tting results for the coe�cient c are consistent with eq. (3.12),c ' 1:6,
within (considerable) uncertainties.

The observed precisions for� m and � t can be understood if we consider
the impact of the sub-leading contributions, which are missing in the BCNW
formula (2.3): taking into account the additional terms up to the incomplete
third order modi�es the �tting results for � m only on the permille level, but
those for� t in O(10) %, both with somewhat enhanced errors. Also a variety
of further �tting variants, with the terms of a complete second orcomplete
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third order of approximation (3.11), with �xed or free additional terms, leads
to consistent results for� m and � t , but with enlarged errors. In summary,
there seems to be no �tting strategy which improves the results compared to
the simple 3-parameter �t based on the BCNW approximation (2.3).

4 Applications to the 2d Heisenberg model

Our study of the 2d Heisenberg model, or 2d O(3) model, uses quadratic
lattices of unit spacing and square-shaped volumesV = L � L. On each
lattice site x there is a classical spin~ex 2 S2, and we implement periodic
boundary conditions in both directions. We consider the standard lattice
action as well as the constraint action [30],

S[~e]standard = �
X

x;�

(1 � ~ex � ~ex+ �̂ ) ;

S[~e]constraint =
�

0 ~ex � ~ex+ �̂ � cos� 8x; � = 1; 2
+ 1 otherwise;

(4.1)

where � is the constraint angle, and ^� is the unit vector in � -direction.
Our simulations were performed at� = 1:5 and � = 0:55� , respectively,

with the correlation lengths

standard action (L = 84) : � = 9:42(2) ;

constraint action (L = 96) : � = 3:58(5) : (4.2)

The cluster algorithm allowed us to performO(107) measurements at each
lattice size shown in Figures 3 and 4.

For the topological charge we use again a geometric de�nition [2]. To this
end, each plaquette is split into two triangles, in alternating orientation. We
consider the oriented solid angle of the spins at the corners of a triangle: the
sum of the two angles (divided by 4� ) within a plaquette (associated with
the site x) amounts to its topological charge densityqx . Due to the periodic
boundary conditions, their sum must be an integer,Q =

P
x qx 2 Z. Details

and explicit formulae are given in Refs. [20,30].

4.1 Action density

A study of the BCNW formula with respect to the action density (3.7)can
only be performed with the standard action (in case of the constraint action

14



all contributing con�gurations have actionSconstraint = 0). Figure 3 shows the
values ofs and sjQj, jQj � 2 in the rangeL = 32 : : :84. The total expectation
values is stable within 0:0003 forL � 56, while the topologically constrained
results di�er by O(10� 3) even at L = 84. ThereforeL = 56 : : : 84 is a regime
of moderate volumes, which is suitable for testing the BCNW formula.
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2d O(3) model: standard action at b=1.5
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Figure 3: The action density in the 2d O(3) model, onL � L lattices with
the standard lattice action, in the sectors with topological chargejQj = 0, 1,
2, and summed over all sectors (i.e. all con�gurations used for the numerical
measurements). The latter stabilizes to 0:3 permille for L � 56.

The �tting results, for jQj � 2 and various ranges ofL are listed in Table
3. The �ts do not match the BCNW formula perfectly, as expected,since
the latter is an approximation, and the input data have very small statistical
errors ofO(10� 5).5 Nevertheless, the value ofs is obtained correctly up to a
high precision of 0:2 permille. On the other hand, the determination of the
topological susceptibility is less successful; only the �t withL = 76 and 84
yields a result, which is correct within the errors.

5Of course, the ratio � 2=d.o.f. could be reduced by adding more terms to the 1=V-
expansion. However, in Table 4 we are going to demonstrate that this does not improve
the results for the observable and for� t , in qualitative agreement with Section 3.
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�tting range in L s � t � 2=d.o.f.
56 | 64 1.1955(2) 0.0035(5) 2.66
56 | 76 1.19538(6) 0.0031(3) 2.66
56 | 84 1.19536(5) 0.0030(3) 2.63
64 | 76 1.19532(7) 0.0031(3) 2.65
64 | 84 1.19531(5) 0.0031(3) 2.58
76 | 84 1.1953(1) 0.0026(3) 2.60

L = 84, all sectors 1.195089(5) 0.002323(3)

Table 3: Fitting results for the action densitys and the topological suscep-
tibility � t in the 2d O(3) model. The input data in �xed topological sectors
are plotted in Figure 3.

4.2 Magnetic susceptibility and correlation length

We proceed to the constraint action (4.1) where our choice of� yields a
shorter correlation length, which favors the stabilization of observables (mea-
sured in all sectors) at smallerL. This can be seen in Figure 4, which shows
the magnetic susceptibility� m, analogous to eq. (3.9) (again the disconnected
part vanishes due to rotational symmetry), and the correlation length � . Sta-
bilization within the errors is attained for � m at L � 48 (with errors around
0:2 permille), and for � already at L � 16 (with errors of O(1) %). On the
other hand, forL = 128 the � m;jQj-values are not distinguished anymore from
� m beyond the errors, and the same happens for� jQj already at L = 96. Fi-
nally, we have to excludeL = 16, because here we only obtainhQ2i ' 0:63,
hence its inverse is not suitable as an expansion parameter. This singles out
the regime of moderate volumes, where the BCNW formula is appropriate,
to the rangeL = 48 : : :96 for � m, and L = 32 : : : 64 for � .

Our �tting results are given in Table 4. In the case of� m we probe the
BCNW formula (2.3) (with its incomplete second order,O(1=V2)), as well
as its extensions to the second order plus an incomplete third orderas given
in formula (2.2). For the latter option, the approximation is more precise,
but an additional free parameter �c hampers the �ts.

For both �tting versions, the results for � m and � t are compatible with the
directly measured values. We observe, however, that the inclusionof terms
beyond the BCNW formula enhances the uncertainty (due to the additional
�tting parameter). The uncertainty is on the permille level for � m , but large
for � t , in particular with extra terms. (Without these terms it is around
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Figure 4: Results for the magnetic susceptibility (above) and for the corre-
lation length (below) in the 2d O(3) model, with the constraint action at
� = 0:55� . The windows, which are suitable for applications of the BCNW
formula, are given byL = 48 : : :96 for � m, and by L = 32 : : :64 for � .

8 %.) It turns out to be non-pro�table to extend the approximation beyond
the BCNW formula.

The simple BCNW approximation is also superior for the �ts with respect
to � , where the additional terms drastically increase the uncertainty.The
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�tting BCNW incomplete all sectors
range formula 3rd order at Lmax

� m 48 | 64
36.56(4) 36.64(11) 36.590(9)

� t 0.0026(2) 0.0031(6) 0.0027935(14)
� m 48 | 96

36.58(3) 36.64(7) 36.616(9)
� t 0.0026(2) 0.0032(6) 0.0027942(11)
�

32 | 64
3.56(2) 3.58(4) 3.59(2)

� t 0.0027(3) 0.0034(14) 0.0027935(14)

Table 4: Fitting results based on data for� m and for � in the 2d O(3) model,
in �tting ranges Lmin | Lmax , and sectors with jQj � 2. In the case of
� m, with the optimal range, we show results for the BCNW approximation
(2.3), as well as its extension to the complete second order plus oneterm of
O(1=V3), according to formula (2.2).

results in Table 4 are correct, within percent level for� , but again with a
large uncertainty of the � t -value.

We add that we also tried �ts to the complete second order approximation,
without the third order term that appears in formula (2.2). However, this
scenario (which also involves the �tting parameter �c) is clearly unfavorable:
in this case, it often happens that the least-square �t even fails toconverge
to values in the correct magnitude.

To conclude, this study suggests that the simple BCNW formula, with
only three free parameters, is in fact optimal for extracting values for the
considered observable, and for� t . Moreover, we con�rm that the method
works best for the determination of the observable; it is less successful with
respect to the determination of� t .

5 Results in 4d SU(2) Yang-Mills theory

5.1 Simulation setup

We consider 4d SU(2) Yang-Mills theory, which has the continuum action

Scont [A] = � cont

Z
d4x F a

�� (x)F a
�� (x) ; (5.1)
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and the topological charge

Q[A] =
1

16� 2

Z
d4x � ���� F a

�� (x)F a
�� (x) : (5.2)

On the lattice we simulate Wilson's standard plaquette action. For the
topological charge of a lattice gauge con�guration [U], we use an improved
�eld-theoretic de�nition [3],

Q[U] =
1

16� 2

X

x

� ����

X

2 =1 ;2;3

c2

2 4
F (2 � 2 )

x;�� [U]F (2 � 2 )
x;�� [U] ; (5.3)

whereF (2 � 2 )
x;�� [U] denotes the lattice �eld strength tensor, clover averaged over

square-shaped loops of size2 � 2 , and (c1; c2; c3) = (1 :5; � 0:6; 0:1). Before
applying eq. (5.3), we perform a number of cooling sweeps with the intention
to remove local uctuations in the gauge con�gurations, while preserving the
topological structure.

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60

Q

number of cooling sweeps

Q =0
Q =1
Q =2

Figure 5: Cooling and assignment of the topological charge for three typical
gauge con�gurations, at� = 2:5, in a lattice volumeV = 184.

A cooling sweep amounts to a local minimization of the action,i.e. a
minimization with respect to each gauge link within a short-range. Forthis
minimization we use again an improved lattice Yang-Mills action,

S[U] =
�
16

X

x

X

��

X

2 =1 ;2;3

c2

2 4
Tr

�
11� W (2 � 2 )

x;�� [U]
�

; (5.4)
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whereW (2 � 2 )
x;�� [U] is a clover averaged loop of size2 � 2 with the coe�cients

c2 given above (for comparison, the standard plaquette action corresponds
to (c1; c2; c3) = (1 ; 0; 0)). Choosing an appropriate number of cooling sweeps
is a subtle and somewhat ambiguous task, which is carried out for each gauge
con�guration one by one. After every cooling sweep we computeQ[U] ac-
cording to eq. (5.3). As soon asQ[U] is stable (it varies by less than 10 % and
is close to an integer for at least 50 cooling sweeps), the corresponding close
integer is the topological charge that we assign to the gauge con�guration
[U]. Figure 5 shows examples for typical cooling histories of gauge con�gu-
rations with Q = 0, 1 and 2. (Details of this procedure, and a comparison
to other de�nitions of the topological charge, are discussed in Ref. [6].)

Our simulations were performed with a heatbath algorithm, seee.g. Ref.
[31]. We set� = 2:5, which corresponds to a lattice spacinga � 0:073 fm,
if the scale is set with the QCD Sommer parameterr0 = 0:46 fm [32]. This
value is in the range of lattice spacings 0:05 fm<

� a <
� 0:15 fm typically used

in contemporary QCD simulations. We generated gauge con�gurations in
lattice volumes V = L4, with L = 12; 14; 15; 16; 18.6 In each volume,
observables were measured on 4000 con�gurations, separated by 100 heatbath
sweeps. This guarantees their statistical independence; in particular, even
the auto-correlation time with respect to the topological chargeQ is below
20 heatbath sweeps.

5.2 Computation of observables

The observable we focus on is the static quark-antiquark potential Vq�q(r ) for
separationsr = 1; 2: : : 6. This quantity can be interpreted as the mass of a
static-static meson. To determineVq�q(r ), we consider temporal correlation
functions of operators

Oq�q(r ) = �q(~r1) UAPE (~r1; ~r2) q(~r2) ; r = j~r1 � ~r2j ; (5.5)

where �q, q represent spinless static quarks, whileUAPE (~r1; ~r2) denotes a prod-
uct of APE smeared spatial links [34] along a straight line connecting the
lattice sites~r1 and ~r2 on a given time slice. For the quarks we use the HYP2
static action, which is designed to reduce UV uctuations and, therefore, to
improve the signal-to-noise ratio [33]. These temporal correlation functions
can be simpli�ed analytically resulting in Wilson loop averageshW(r; t )i with

6Unless stated otherwise, we continue using lattice units.
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APE smeared spatial and HYP2 smeared temporal lines of lengthr and t,
respectively. Thus we arrive at the vacuum expectation value

h
 jOy
�qq(t)O�qq(0)j
 i /

D
W(r; t )

E
: (5.6)

We chose the APE smearing parameters asNAPE = 15 and � APE = 0:5,
which (roughly) optimizes the overlap ofO�qqj
 i with the ground state of the
static potential (for details of the smearing procedure we refer to Ref. [35],
where a similar setup had been used).

5.3 Numerical results

5.3.1 The static potential

Figure 6 shows results for the static potential measured in all topological
sectors, i.e. for each r and t the Wilson loop average is computed on all
con�gurations, which are available in some volume.7 The volumes 144, 154,
164 and 184 yield identical results within statistical errors, but the static po-
tential in the 124 volume di�ers by several� for quark-antiquark separations
r � 3. We conclude thatV = 124 entails sizable ordinary �nite volume
e�ects (not associated with topology �xing), whereas for volumesV � 144

such ordinary �nite volume e�ects are negligible. Consequently, we do not
use the 124 lattice in the following �xed topology studies.8

For V = 154, Figure 7 demonstrates that static potentials obtained at
�xed topology from di�erent sectors jQj = 0 : : : 5 (by averaging only over
con�gurations of a �xed charge jQj), Vq�q;jQj, di�er signi�cantly. 9 For ex-
ample Vq�q;0(r = 6) and Vq�q;4(r = 6) di�er by more than 6 � . They are
also well distinct from the corresponding result in all sectors,Vq�q;jQj� 1(6) <
Vq�q(6) < Vq�q;jQj� 2(6). These observations show thatV = 144 : : : 184 is in
the regime that we denoted asmoderate volumes(cf. Section 2), where the
BCNW method is appropriate to extract observables from �xed topology
measurements. Similar results for the static potential in SU(3) Yang-Mills
theory have been reported in Ref. [4].

7As usual, we determinedVq�q(r ) by searching for a plateau value of the e�ective mass
me� (r; t ) = log( hW (r; t + 1) i =hW (r; t )i ).

8We repeat that the BCNW formula can be extended by incorporating ordinary �nite
volume e�ects [16].

9Again we determined Vq�q(r ) by �tting constants to e�ective mass plateaux. Even
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Figure 6: The static potential Vq�q(r ) in a variety of lattice volumes V =
124 : : : 184.

To extract the physical static potential from Wilson loop averages, sepa-
rately computed in distinct topological sectorsjQj � 7 and some volumeV,
hWV (r; t )i jQj, we follow the procedure discussed in Ref. [13].

� We perform � 2 minimizing �ts of either the 1=V expansion of the cor-
relation function [12],

CQ;V (t) =
D

WV (r; t )
E

jQj

� � (r ) exp
�

�
�
Vq�q(r ) +

1
2

V00
q�q(r )

1
V � t

�
1 �

Q2

V � t

��
t
�

(5.7)

(cf. formula (2.3)), or of the improved approximation [14]

CQ;V (t) '
� (r )

p
1 + V00

q�q(r )t=(� t V)

� exp
�

� V q�q(r )t �
1

� t V

�
1

1 + V00
q�q(r )t=(� t V)

� 1
�

1
2

Q2

�
(5.8)

with respect to the parametersVq�q(r ), V00
q�q(r ) = @2

� Vq�q(r; � )j � =0 , � (r )
(r = 1 : : : 6) and � t to the numerical results forhWV (r; t )i jQj in the

though topology has been �xed, the e�ective masses exhibit a constant behavior (within
statistical errors) at large t.
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Figure 7: The static potential at separationr = 6, Vq�q(6), for �xed topolog-
ical sectorsjQj � 5, and without topology �xing, in the volume V = 154.

range tmin � t � tmax , where tmin and tmax are displayed in Table 5.
When �tting formula (5.8), we also study the scenario where� t is �xed
to � t = 7 � 10� 5, which was obtained in Ref. [3] by means of a direct
measurement, in agreement with the �xed topology study in Ref. [20].
Moreover, we checked that the resulting �t parameters are stable within
errors when we varytmin and tmax by � 1.

V tmin tmax maximum jQj ful�lling maximum jQj ful�lling
1=(� t V); jQj=(� t V) < 1 1=(� t V); jQj=(� t V) < 0:5

144 5 7 2 1
154 5 7 3 1
164 5 8 4 2
184 5 8 7 3

Table 5: Temporal �tting ranges tmin : : : tmax , and maximum topological
chargesjQj, for the lattice volumesV under consideration.

� The results forhWV (r; t )i jQj entering the �t are restricted to those jQj
and V values for which 1=(� t V); jQj=(� t V) < 1 or < 0:5; we recall
that the approximations (5.7) and (5.8) are only valid for su�ciently
large � t V = hQ2i , and smalljQj. To implement this selection we insert
� t = 7 � 10� 5 [3]; Table 5 gives an overview.
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� We either perform a single combined �t to all considered separations
r = 1 : : :6, or six separate �ts, one for eachr . In the latter case we
obtain six results for � t , which agree within the errors in most cases,
cf. Subsection 5.3.2.

Table 6 collects the results forVq�q(r ) from �xed topology computations
(using four volumes,V = 144; 154; 164; 184), and computed in all sectors at
V = 184. There is agreement between most of these results within about 2� .
Only for r = 1, and the relaxed constraint 1=(� t V); jQj=(� t V) < 1, there
are a few cases with discrepancies beyond 3� , in particular for the expansion
(5.7) (the corresponding data in Table 6 are displayed in italics).

The extent of the errors of the �tting results is fairly independentof the
choice of the expansion ((5.7), or (5.8), or (5.8) with� t = 7 � 10� 5 �xed).
The errors increase, however, by factors up to� 2, when we implement the
stringent constraint 1=(� t V); jQj=(� t V) < 0:5, which is expected, since less
input data are involved, see Table 5. All �ts of the expansions (5.7) and (5.8)
capture well the �xed topology results.

For the extraction of the potential it seems essentially irrelevant whether
a single combined �t or six separate �ts are performed. Both the mean
values and the statistical errors ofVq�q(r ) are in most cases very similar. A
single combined �t, however, seems somewhat advantageous regarding the
determination of � t , see Subsection 5.3.2.

Figure 8 compares the static potential obtained from �xed topology Wil-
son loops, and computed without topology �xing atV = 184. As reected
by Table 6 there is excellent agreement within the errors.

The expansion (5.7) of �xed topology Wilson loop averageshWV (r; t )i jQj

is a decaying exponential int. This suggests to de�ne a static potential at
�xed topological chargejQj and volumeV,

Vq�q;jQj;V (r ) = �
d
dt

ln
�D

WV (r; t )
E

jQj

�
(5.9)

for some value oft, where formula (5.7) is a rather precise approximation.
Within statistical errors Vq�q;jQj;V (r ) is independent oft for tmin � t � tmax .
Therefore, we determineVq�q;jQj;V (r ) by a � 2 minimizing �t of a constant
to the right-hand-side of eq. (5.9), with the derivative replaced bya �nite
di�erence (this is the common de�nition of an e�ective mass) in the interval
tmin � t � tmax . For jQj = 0 : : : 4 and V = 144; 154; 164; 184, the values for
Vq�q;jQj;V (r = 6) are plotted in Figure 9. As already shown in Figure 7, there
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method Vq�q(1) Vq�q(2) Vq�q(3) Vq�q(4) Vq�q(5) Vq�q(6)

all sectors, V = 184

0.04229(1) 0.09329(2) 0.1646(1) 0.2190(1) 0.2664(2) 0.3101(3)

�xed topology, V 2 f 144; 154; 164; 184g, 1=(� t V); jQj=(� t V) < 1
(5.7)c 0.04240(3) 0.09343(8) 0.1646(2) 0.2189(3) 0.2662(4) 0.3097(5)
(5.7)s 0.04241(3) 0.09342(9) 0.1646(2) 0.2189(3) 0.2662(4) 0.3097(6)
(5.8)c 0.04230(3) 0.09324(8) 0.1644(2) 0.2187(3) 0.2661(4) 0.3098(6)
(5.8)s 0.04240(3) 0.09338(9) 0.1645(2) 0.2188(3) 0.2661(4) 0.3098(6)

(5.8)c� t 0.04225(3) 0.09326(8) 0.1643(2) 0.2186(3) 0.2660(4) 0.3097(6)
(5.8)s� t 0.04225(3) 0.09326(8) 0.1643(2) 0.2186(3) 0.2660(4) 0.3097(6)

�xed topology, V 2 f 144; 154; 164; 184g, 1=(� t V); jQj=(� t V) < 0:5
(5.7)c 0.04227(4) 0.09326(14) 0.1645(3) 0.2190(5) 0.2665(7) 0.3103(10)
(5.7)s 0.04226(4) 0.09322(13) 0.1644(3) 0.2189(5) 0.2666(8) 0.3105(11)
(5.8)c 0.04227(4) 0.09326(14) 0.1645(4) 0.2190(5) 0.2665(7) 0.3104(10)
(5.8)s 0.04226(4) 0.09323(13) 0.1645(3) 0.2189(5) 0.2665(8) 0.3104(10)

(5.8)c� t 0.04225(4) 0.09317(12) 0.1643(3) 0.2186(4) 0.2660(6) 0.3096(8)
(5.8)s� t 0.04225(3) 0.09317(12) 0.1643(3) 0.2186(4) 0.2660(6) 0.3096(8)

Table 6: Results for the static potentialVq�q(r ) for separationsr = 1 : : : 6
measured with and without topology �xing. In the column \method" the
equation number of the expansion is listed, \c" denotes a singlecombined�t
for all separationsr = 1 : : :6, \s" denotes aseparate�t for each separation,
and � t indicates that the topological susceptibility is not a �t parameter, but
�xed to � t = 7 � 10� 5. Fixed topology results, which di�er by more than 3�
from the directly computed value, are written in italics.
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Figure 8: Comparison of static potential obtained from �xed topology Wilson
loops, in the volumesV = 144; 154; 164; 184, with 1=(� t V); jQj=(� t V) < 1,
using expansion (5.8) with one combined �t, and directly measured atV =
184. (Since un�xed and �xed topology results coincide within the errors, they
are shifted horizontally for better visibility.)

is a strong dependence on the topological sector, which becomes increasingly
prominent for smaller volumes. From expansion (5.7) the �xed topology
static potential is expected to behave as

Vq�q;jQj;V (r ) � V q�q(r ) +
1
2

V00
q�q(r )

1
V � t

�
1 �

Q2

V � t

�
: (5.10)

The corresponding curves forjQj = 0 : : : 4, with parameters Vq�q(r = 6),
V00

q�q(r = 6) and � t determined by the previously discussed �ts (V = 144 : : : 184,
1=(� t V), jQj=(� tV) < 1, expansion (5.7) and a single combined �t), are also
shown in Figure 9. One clearly sees that approximation (5.10) nicely de-
scribes the numerical results forVq�q;jQj;V (r = 6).

We conclude that one can obtain a correct and accurate physical static
potential from Wilson loops separately computed in di�erent topological sec-
tors. The errors are larger by factors� 2: : : 5 (cf. Table 6) for a �xed topol-
ogy computation using four ensembles, compared to a corresponding direct
computation using a single ensemble (V = 184).
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Figure 9: The �xed topology static potential Vq�q;Q;V (r = 6) for jQj = 0 : : : 4,
as a function of 1=V, and the curves corresponding to approximation (5.10).

5.3.2 The topological susceptibility

In Table 7 we present results for the topological susceptibility extracted from
�xed topology Wilson loopshWV (r; t )i jQj. Again we use the 1=V expansions
(5.7) or (5.8), the constraints 1=(� t V); jQj=(� t V) < 1 or < 0:5, and either a
single combined �t to all considered separationsr = 1 : : : 6, or six separate
�ts, one for each r . The latter yields six di�erent results for � t .

Not all of the extracted � t values perfectly agree with each other or with
the result � t = (7 :0 � 0:9) � 10� 5 from Ref. [3], which we take as a refer-
ence. Using the weak constraint 1=(� t V); jQj=(� t V) < 1 there seems to be
a slight tension in form of � 2� discrepancies, when performing �ts with
formula (5.7). The extended expansion (5.8) gives somewhat better results:
no tension shows up, and most results agree with the reference value within
� .

One might hope for further improvement by using the stronger constraint
1=(� t V); jQj=(� t V) < 0:5, since then formulae (5.7) and (5.8) are more ac-
curate. Indeed this leads to consistency with the reference value, but in most
cases the errors are very large, of the order of 100 % or even more. For this
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method Vq�q(1) Vq�q(2) Vq�q(3) Vq�q(4) Vq�q(5) Vq�q(6)

�xed topology, V 2 f 144; 154; 164; 184g, 1=(� t V); jQj=(� t V) < 1
(5.7)c 8.8(0.5)
(5.7)s 8.8(0.5) 8.7(0.6) 8.6(0.7) 8.6(0.9) 8.8(1.0) 8.9(1.2)
(5.8)c 7.1(0.6)
(5.8)s 8.6(0.5) 8.2(0.7) 7.7(0.8) 7.3(0.9) 7.0(1.0) 6.7(1.1)

�xed topology, V 2 f 144 ; 154 ; 164 ; 184g, 1=(� t V); jQj=(� t V) < 0:5
(5.7)c 11.8(5.9)
(5.7)s 10.0(14.0) 20.7(44.3) 11.1(8.2) 11.8(16.0) 12.8(8.7) 15.4(52.1)
(5.8)c 11.9(5.4)
(5.8)s 10.2(21.8) 10.7(12.5) 11.3(8.7) 11.8(5.8) 13.0(9.7) 14.6(12.2)

Table 7: Results for the topological susceptibility� t � 105 from �xed topology
computations of the static potentialVq�q(r ) for various separationsr = 1 : : : 6.
In the column \method" the equation number of the expansion is listed,
\c" denotes a single combined �t for all separationsr = 1 : : : 6, and \s"
denotes a separate �t for each separation. The reference valuefrom a direct
computation is � t � 105 = (7 :0 � 0:9) [3].

strong constraint the availableVq�q;jQj-data are not su�cient to extract a use-
ful result for � t . Note that here the error for one combined �t is signi�cantly
smaller than those for the separate �ts.

We conclude that | in principle | one can extract the topological sus-
ceptibility in Yang-Mills theory from the static potential at �xed topo logy
using formulae like (5.7) or (5.8). In practice, however, one needs precise data
in several large volumes. Only when a variation of the input data (e.g.by us-
ing di�erent bounds with respect to 1=(� t V); jQj=(� t V)) leads to precise and
stable� t values, one should consider the result trustworthy. The data used in
this work are not su�cient to achieve this standard. As we mentioned before,
more promising methods to determine� t from simulations at �xed topology
using the same lattice setup have recently been explored [20{22,24].
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6 Results in the Schwinger model

6.1 Simulation setup

We �nally proceed to the Schwinger model | or 2d Quantum Electrody-
namics | as a test model with dynamical fermions. This model has the
continuum Lagrangian

L cont ( ; � ; A ) =
N fX

f=1

� (f)
�

 � (@� + i gcont A � ) + m(f)
�

 (f) +
1
4

F�� F�� ; (6.1)

where N f is the number of fermion avors. It is a widely used toy model,
which shares important features with QCD. In particular the U(1) gauge the-
ory in two (spacetime) dimensions allows for topologically non-trivial gauge
con�gurations, similar to instantons in 4d Yang-Mills theories and in QCD.
The topological charge is given by

Q[A] =
1
�

Z
d2x � �� F�� : (6.2)

Moreover, for N f = 2 the low lying energy eigenstates contain a light iso-
triplet composed of quasi Nambu-Goldstone bosons, which we are going to
denote as \pions". This model also exhibits fermion con�nement.

We simulated the Schwinger model on periodic lattices of volumeV =
L � L (as before we use lattice units), withN f = 2 mass degenerate avors.
They are represented by Wilson fermions, and we use the standardplaquette
gauge action (seee.g. Ref. [36]).

One can approach the continuum limit by increasingL, while keeping the
terms gL and M � L �xed, where M � denotes the pion mass.10 This requires
decreasing bothg and M � proportional to 1=L (for the latter the fermion
mass has to be adjusted). It is also common to refer to� = 1=g2, in analogy
to the previous sections.

As in Sections 3 and 4, we employ a geometric de�nition of the topological
charge on the lattice [37],

Q[U] =
1

2�

X

P

� (P) ; (6.3)

10In physical units, g has the dimension of a mass, so these products are both dimen-
sionless. This also introduces a dimensional lattice spacinga / g.
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where
P

P denotes the sum over all plaquettesP = ei � (P ) , � � < � (P) � � .
With this de�nition, Q 2 Z holds for any stochastic gauge con�guration.

We performed simulations at various values of� , m and L using the HMC
algorithm of Ref. [38], with multiple timescale integration and mass precon-
ditioning [39]. We started with rather short simulations (� 50 000: : :100 000
HMC trajectories) on small lattices (L = 8 : : : 28), to investigate the transi-
tion probability between topological sectors per HMC trajectory.This prob-
ability is plotted in Figure 10, as a function ofg = 1=

p
� and m=g, while

gL = 24=
p

5 is kept constant. (The ratio m=g is proportional to the bare
fermion mass in physical units.) As expected, topological transitions are fre-
quent at large couplingsg (coarse lattices), whereas at weak coupling (�ne
lattices) topology freezing is observed. Such a freezing is also observed in
QCD, which is the main motivation of this work. We see that the depen-
dence of the transition probability on the ratio m=g, and therefore on the
dimensional bare fermion mass, is rather weak.
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Figure 10: The transition probability to a di�erent topological sector per
HMC trajectory as a function of g = 1=

p
� (varying the lattice spacing in

physical units, a / g) and m=g (varying the bare fermion mass in physical
units) at gL = 24=

p
5 (�xed dimensional volume and coupling constant).

Similar to the previous two sections we now explore the possibility to
extract physical energy levels (the \hadron" masses in the Schwinger model)
from simulations at �xed topology. To obtain such results with small statis-

30



tical errors, we focused on a single coupling and a single \quark" mass,

� = 4 ; m = 0:1 ; (6.4)

and we performed long simulations (� 500 000 HMC trajectories) for volumes
V = L � L, with L = 40; 44; 48; 52; 56; 60.

6.2 Computation of observables

We determine the topological chargeQ[U] for each gauge con�gurationU
according to de�nition (6.3). (To measure observables at �xed topological
charge� , we only use the con�gurations withQ[U] = � .)

The hadron masses that we investigate are the static potentialV�qq(r ),
which has been discussed before in Yang-Mills theory (Subsection 5.2), and
the pion massM � . A suitable pion creation operator reads

O� =
X

x

� (u)
x  3 (d)

x ; (6.5)

where u and d label the two (degenerate) fermion avors.11 For the static
potential we use again

Oq�q = �q(r1)U(r1; r2)q(r2) ; r = jr1 � r2j : (6.6)

Also here �q and q represent spinless static fermions andU(r1; r2) denotes the
product of spatial links connecting the lattice sitesr1 and r2 on a given time
slice. Since there is only one spatial dimension, we do not apply any gauge
link smearing.

6.3 Numerical results

6.3.1 The pion mass and the static potential

Similar to eq. (5.9) one can de�ne a pion mass at �xed topological charge
jQj and volumeV by

M �; jQj;V = �
d
dt

ln
�D

Oy
� (t)O� (0)

E�
(6.7)

11For an introduction about the construction of hadron creation operators, seee.g.
Ref. [40].
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Figure 11: The pion massesM �; jQj in distinct topological sectorsjQj = 0 : : : 4,
and M � obtained in all sectors, in the volumeV = 402.

for some value oft, where approximation (5.7) is quite precise. Within statis-
tical errors, M �; jQj;V is independent oft for large t. Therefore, we determine
M �; jQj;V by a � 2 minimizing �t of a constant to the right-hand-side of eq.
(6.7) (with the derivative replaced by a �nite di�erence).

Figure 11 shows that pion masses obtained at �xed topology in di�erent
topological sectors,M �; jQj, di�er signi�cantly at V = 402. For exampleM �; 0

and M �; 3 di�er by more than 6� . The physically meaningful value measured
in all sectors,M � , also deviatese.g. from M �; 0 by more than 7� . Figure 11
demonstrates also here the necessity to analytically assemble �xedtopol-
ogy results, when the Monte Carlo algorithm is unable to generate frequent
changes inQ.

To determine the pion mass and the static potential from correlation func-
tions evaluated in single topological sectors,M �; jQj and Vq�q;jQj, we follow the
lines of Section 5. We perform least-square �ts using expansion (5.7) or (5.8)
of the correlation functions. We choose a suitable �tting rangetmin : : : tmax ,
which typically leads to � 2=d.o.f.<

� 1. The stability of the resulting M �; jQj

and Vq�q;jQj has been checked by varyingtmin and tmax by � 1. The t ranges
used for the determination of the pion mass are listed in Table 8.

We perform �ts in three di�erent ways: (\c") a single combined �t to
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V tmin tmax maximum jQj for maximum jQj for
1=(� t V), jQj=(� t V) < 1 1=(� t V), jQj=(� t V) < 0:5

402 12 16 7 3
442 12 18 9 4
482 12 20 11 5
522 12 22 13 6
562 12 24 15 7
602 12 24 17 8

Table 8: Temporal �tting ranges tmin : : : tmax and maximum topological
chargesjQj for the volumesV under consideration.

all �ve observables (M � , Vq�q(r = 1), Vq�q(r = 2), Vq�q(r = 3), Vq�q(r = 4));
(\c V") a single combined �t to the four static potential observables; (\s") �ve
separate �ts, one to each of the �ve observables. The results are collected in
Table 9, along with reference values obtained in all sectors atV = 602.12

The conclusions are essentially the same as for Yang-Mills theory dis-
cussed in Section 5. Results extracted indirectly, from simulations at �xed
topology, are in agreement with those obtained directly. The magnitude of
the errors is the same for the two expansions (5.7) and (5.8), and for the
�tting methods \c", \c V" and \s". They are, however, larger by factors of
� 2 when we use the stringent constraint 1=(� t V); jQj=(� t V) < 0:5, since
less input data are involved compared to 1=(� t V); jQj=(� t V) < 1. The �ts
all yield uncorrelated� 2=d.o.f.<

� 1, indicating that the �xed topology results
are well described by both formulae (5.7) and (5.8).

For jQj = 0 : : :4 and V = 402 : : : 602, the M �; jQj;V values are plotted in
Figure 12. Again we observe a strong dependence on the topological sector,
in particular in small volumes. From the expansion (5.7),M �; jQj;V is expected
to behave as approximation (2.3),

M �;Q;V = M � +
c

V � t

�
1 �

Q2

V � t

�
; c =

1
2

M 00
� (� )� j � =0 : (6.8)

The corresponding curves forjQj = 0 : : : 4 with parameters M � , M 00
� and

� t , determined by the previously discussed �t \(5.7)s", are also shown in

12In the continuum 2-avor Schwinger model, the pion mass is predicted as [41]
M �; cont = 2 :008� � � � (m2

cont gcont )1=3. Remarkably, there is almost perfect agreement
with our result for M � , if we insert the bare fermion mass and� given in eq. (6.4), which
yields M � ' 0:343.
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method M � Vq�q(1) Vq�q(2) Vq�q(3) Vq�q(4)

all sectors, V = 602

0.3474(3) 0.1296(2) 0.2382(5) 0.3288(7) 0.4045(10)

�xed topology, V 2 f 402; 442; 482; 522; 562; 602g, 1=(� t V), jQj=(� t V) < 1
(5.7)c 0.3466(16) 0.1293(19) 0.2370(23) 0.3261(29) 0.4022(62)

(5.7)cV 0.1295(10) 0.2372(12) 0.3386(15) 0.4052(16)
(5.7)s 0.3477(8) 0.1285(7) 0.2371(9) 0.3282(12) 0.4050(16)
(5.8)c 0.3467(10) 0.1293(6) 0.2377(9) 0.3321(32) 0.4059(69)

(5.8)cV 0.1295(5) 0.2379(11) 0.3392(14) 0.4049(16)
(5.8)s 0.3477(9) 0.1294(5) 0.2374(6) 0.3288(12) 0.4040(15)

�xed topology, V 2 f 402; 442; 482; 522; 562; 602g, 1=(� t V), jQj=(� t V) < 0:5
(5.7)c 0.3454(32) 0.1284(27) 0.2364(28) 0.3311(50) 0.4049(80)

(5.7)cV 0.1282(12) 0.2370(16) 0.3312(35) 0.4175(82)
(5.7)s 0.3478(32) 0.1292(12) 0.2377(21) 0.3275(61) 0.4027(91)
(5.8)c 0.3455(32) 0.1285(16) 0.2365(19) 0.3310(49) 0.4048(78)

(5.8)cV 0.1287(9) 0.2371(23) 0.3312(36) 0.4073(83)
(5.8)s 0.3482(35) 0.1291(11) 0.2376(13) 0.3290(22) 0.4036(55)

Table 9: Results for the pion massM � and the static potential Vq�q(r ) at
separationsr = 1; 2; 3; 4, with and without topology �xing. In the column
\method" the equation number of the expansion is listed, \c" denotes one
combined �t to all �ve observables, \cV" means one combined �t to the four
static potential observables, and \s" indicates separate �ts foreach of the
�ve observables.
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Figure 12. One can clearly see that approximation (6.8) nicely captures the
lattice results for M �; jQj;V .
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Figure 12: The �xed topology pion massM �; jQj;V for jQj = 0 : : :4, as a
function of 1=V, and the curves corresponding to formula (6.8).

We conclude, similar to our study in Yang-Mills theory, that it is possible
to extract correct and accurate values for the pion mass and thestatic po-
tential from correlation functions computed in a number of �xed topological
sectors and volumes. The errors are somewhat larger than for direct compu-
tation, in our case by factors of� 2: : : 7. This is partly due to the smaller
amount of gauge con�gurations of the �xedQ ensembles at di�erentV , and
partly due to the extrapolation to in�nite volume.

6.3.2 The topological susceptibility

Table 10 presents results for the topological susceptibility extracted from
our data for M �; jQj and Vq�q;jQj. These values for� t are obtained from the
same �ts, which lead to the results in Table 9. The results for� t and their
interpretation are similar to those obtained in Yang-Mills theory. We observe
a slight tension of � 2� for some values, when using expansion (5.7) and
the relaxed constraint (1=(� t V); jQj=(� tV) < 1). This tension disappears
when we apply the improved expansion (5.8). When imposing the strict
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constraint (1=� t V; jQj=� t V < 0:5), we encounter the same problem as in
Subsection 5.3.2: all results are in agreement with the directly measured
� t = hQ2i =V (at V = 602), but the errors are very large.13

method M � Vq�q(1) Vq�q(2) Vq�q(3) Vq�q(4)

all sectors, V = 602

0.0048(1)
�xed topology, V 2 f 402; 442; 482; 522; 562; 602g, 1=(� t V), jQj=(� tV) < 1
(5.7)c 0.0038(5)

(5.7)cV 0.0042(5)
(5.7)s 0.0041(4) 0.0038(5) 0.0036(7) 0.0038(11) 0.0044(9)
(5.8)c 0.0044(4)

(5.8)cV 0.0042(6)
(5.8)s 0.0046(5) 0.0043(4) 0.0045(7) 0.0036(12) 0.0038(8)

�xed topology, V 2 f 402; 442; 482; 522; 562; 602g, 1=(� t V), jQj=(� t V) < 0:5
(5.7)c 0.0065(35)

(5.7)cV 0.0017(30)
(5.7)s 0.0014(38) 0.0049(32) 0.0057(31) 0.0037(48) 0.0032(27)
(5.8)c 0.0067(32)

(5.8)cV 0.0018(33)
(5.8)s 0.0017(32) 0.0043(34) 0.0022(46) 0.0015(38) 0.0048(52)

Table 10: Results for the topological susceptibility� t , directly measured (at
V = 602), and based on �xed topology computations ofM �; jQj and Vq�q;jQj(r )
for separationsr = 1; 2; 3; 4. In the column \method" the equation num-
ber of the expansion is listed, \c" denotes a single combined �t to all �ve
observables, \cV" means a single combined �t to the four static potential
observables, and \s" denotes a separate �t to each of the �ve observables.

We infer that a reasonably accurate determination of the topological sus-
ceptibility from M �; jQj and Vq�q;jQj requires extremely precise input data. The
�xed topology ensembles and correlation functions of this work arenot suf-
�cient to extract an accurate and stable value for� t .

13Ref. [42] presents results for� t in the 2-avor Schwinger model with staggered and
overlap fermions, with or without link smearing. The results at � = 4 and m = 0 :1 (in
large volume) are in the range� t ' 0:044: : : 0:064. This agrees with our value in Table 10,
which con�rms the mild renormalization of our bare fermion mass (cf. footnote 12).
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7 Conclusions

We have systematically explored the applicability of the Brower-Chandra-
sekharan-Negele-Wiese (BCNW) method [12] with lattice data in �xedtopo-
logical sectors. Our study encompasses the quantum rotor, theHeisenberg
model, 4d SU(2) Yang-Mills theory and the 2-avor Schwinger model.The
originally suggested application to the pion mass has been extended to other
observables, like the magnetic susceptibility and the static quark-antiquark
potential.

The primary goal of this method is the determination of a physical ob-
servable if only �xed topology results are available. Our observations show
that this can be achieved to a good precision with input data from various
volumes and topological sectors, which obey the (rather relaxed)constraint
1=(� t V); jQj=(� t V) < 1. Hence this method is promising for application in
QCD, where lattice spacings belowa ' 0:05 fm are expected to con�ne HMC
simulations to a single topological sector over extremely long trajectories.

As a second goal, this method also enables | in principle | the deter-
mination of the topological susceptibility � t . In our study we obtained the
right magnitude also for� t , but the results were usually plagued by large un-
certainties. For this purpose,i.e. for the measurement of� t based on �xed
topology simulation results, other methods are more appropriate,based on
the topological charge density correlation [19{21], or on an analysisof � t in
sub-volumes [22,24].

Regarding the optimal way to apply this method, it seems | for lattice
data of typical statistical precision | not really helpful to add addit ional
terms of the 1=(� t V) expansion, beyond the incomplete second order that
was suggested in Ref. [12]. Higher terms were elaborated in Ref. [14],and
they improve the agreement with the �xed topology lattice data, but due to
the appearance of additional free parameters they hardly improve the results
for the physical observable and for� t .

A step beyond, which deserves being explored in more detail, is the inclu-
sion of ordinary �nite size e�ects (not related to topology �xing) [16], which
even allows for the use of small volumes (in the terminology of Section2).

At this point, we recommend the application of the simple formulae (2.3)
and (5.7) or (slightly better) (5.8), with only three free parameters, for the
determination of hadron masses in QCD on �ne lattices, in particular inthe
presence of very light quarks.
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