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For qguantum eld theories with topological sectors, Monte Carlo simlations
on ne lattices tend to be obstructed by an extremely long auto-aoelation
time with respect to the topological charge. Then reliable numericahea-
surements are feasible only within individual sectors. The challenge tis
assemble such restricted measurements in a way that leads to a stati-
ated approximation to the fully edged result, which would correspnod to the
correct sampling over the entire set of con gurations. We test aapproach
for such a topological summation, which was suggested by Brow&han-
drasekharan, Negele and Wiese. Under suitable conditions, eneilgyels
and susceptibilities can be obtained to a good accuracy, as we destoate
for O(N) models, SU(2) Yang-Mills theory, and for the Schwinger model.
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1 Motivation

We consider quantum eld theories with topological sectors, in Euclehn
spacetime. These sectors are characterized by a topological rgeaQ 2
Z, which is a functional of the eld con guration. In in nite volume, th e
con gurations with nite action are divided into these disjoint sectas. The
same property holds in nite volume with periodic boundary conditions



Examples are ON) models ind= N 1 dimensions, all 2d CP{ 1)
models, 4d SUN) Yang-Mills gauge theories  2), as well as QCD, and
2d U(1) gauge theory, as well as the Schwinger model. In all thesodels,
a continuous deformation of a given con guration (at nite action)can only
lead to con gurations within the same topological sectoi,e. the deformation
cannot alter the topological chargeQ.

In light of this de nition, lattice regularized models have in general no
topological sectors | strictly speaking. Nevertheless, it is often geful to
divide the set of lattice eld con gurations into sectors, which turn into
the topological sectors in the continuum limit. The de nition of a tope
logical charge on the lattice is somewhat arbitrary. In presence chiral
fermions (where the lattice Dirac operator obeys the Ginsparg-Wds re-
lation), the fermion index provides a sound formulation |1]. For the ON)
models the geometric de nition [2] is optimal, since it guarantees inger
topological charges on periodic lattices (for all con gurations eept for a
subset of measure zero). In gauge theory, eld theoretic de ndns are of-
ten applied, usually combined with smearing or cooling techniques, seg.
Ref. [3]. These techniques are computationally cheap and provide, ae lat-
tices or at xed topology, results which agree well with the comput#onally
demanding fermion index[[4{6].

As we proceed to ner and ner lattices, the formulation becomes ore
continuum-like, and changing a (suitably de ned) topological sectoof the
lattice eld is getting more and more tedious | for this purpose, continuous
deformations have to pass through a statistically suppressed daim of high
Euclidean action. To a large extent, this property persists for nie but small
deformations, as they are carried out in the Markov chain of a MoatCarlo
simulation which performs small update steps.

In QCD simulations with dynamical quarks, the gauge con gurations
are usually generated with a Hybrid Monte Carlo (HMC) algorithm, with
small updates, on lattices of a spacing in the range Q05 fm< a< 0:15 fm.
The artifacts due to the nite lattice spacing tend to be the main sotce
of systematic errors. Therefore, the lattice community will try tosuppress
them further by proceeding to even ner lattices,a < 0:05 fm.

This will provide continuum-like features, which are highly welcome in
general, but as a draw-back it will become harder to change the tological
sector. A HMC simulation may well be trapped in a single sector over a
tremendously long trajectory; in particular, this is the experiencen QCD
simulations with dynamical overlap quarksl[]7].
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In some circumstances it is even motivated to suppress topologit@nsi-
tions on purpose, in particular when dealing with dynamical chiral fenions.
In that context, con gurations in a transition region cause techical prob-
lems, like a bad condition number of an overlap or domain wall Dirac opser
tor. This can be avoided by the use of unconventional lattice gaugetions,
known as \topology conserving gauge actions['][4, 8] (see also R8j. for a
very similar formulation).

A further option is the use of a \mixed action”, where one implements
chiral symmetry only for the valence quarks, which requires just moderate
computational e ort. In particular, overlap valence quarks havebeen com-
bined with Wilson sea quarks. However, in this set-up the continuum liitn
is not on safe ground, because (approximate) valence quark zenodes are
not compensated by the sea quark spectrum _|10]. This problem mighe
avoided by xing the topological sector particularly toQ = 0.

In such settings, there are obvious questions about the (e ec8y ergodic-
ity of the algorithm, since the simulation does not sample properly thentire
space of all con gurations. Even if we ignore this conceptual quem, in
practice the measurement of an observable may well be distortedhis is
the issue to be addressed in this work.

Section 2 describes the Brower-Chandrasekharan-Negele-WigBENW)
approach, and Sections 3 and 4 probe it in the 1d O(2) and the 2d Q(3
non-linear -model. It is explored further in 4d SU(2) Yang-Mills theory
in Section 5, and in the Schwinger model in Section 6. The eld theoiet
models discussed in Sections 4 to 6 share fundamental featureshwtCD.
Section 7 is devoted to our conclusions.

2 The BCNW method

As a remedy against the topological freezing of Monte Carlo histosielascher
suggested the use of open boundary conditions, such that theptdogical
charge can change continuously [11]. This overcomes the problenat i
breaks translational invariance and one gives up integer topologiaharges
Q. However,Q 2 Z provides a valuable link to aspects, which are analytically
known or conjectured in the continuum, for instance regarding # -regime
of QCD, or properties based on an instanton picture.

In this work we maintain periodic boundary conditions (in some volume
V) for the bosonic elds involved, so the topological charge® are integers.



Moreover we consider models with parity invariance. This implielQi = 0,
and the topological susceptibility is given by

(= Q% (2.1)

In this framework, we are going to test the BCNW approximation[[12].lt
can be written in the form of an expansion in inverse powers df .,

1 1 2
hOig ' hOi + c+ cC C —
: vt w € 9 o

cQ: (2.2)

The left-hand-side refers to the expectation value of some obgaole O (Refs.
[12] inserted speci cally the pion mass) within the sectors of topolazl
charges Q. Itis accessible even in simulations which are con ned to one |
or a few | topological sectors.

All the unknown terms on the right-hand-side,i.e. the expectation value
hOi,  and the coe cients ¢ and c, are quantities that asymptotically sta-
bilize in large volume. Hence this form enables the use of results fiDiq,
measured in several volumes and for distingQj, to determine these un-
known terms. In particular we are interested irhOi and ; the coe cients
are determined as well, but their values are hardly of physical intese (for
instancec = 2hOi%¢ )j —).

Actually the third order in approximation (£.2) is incomplete, but the a-
ditional term in this order would bring along another free parameterThese
terms are identi ed and discussed in detail in Refs_ [18{15]. Here weostly
focus on the simplest form which captures th@-dependence ohOig, and
which involves only three parameters (though an incomplete secoondder),

2
hoio hoi + -5 1 &

2.3

In the following, we will refer to this approximation as theBCNW formula.
Obviously we cannot determine the quantitiehOi,  and c within a single
volume; for instance

C

hOig, hOi o, 7~

(Q: Q) (2.4)

only determines the ratioc= 2. If we include di erent volumes V; and V.,
however, we could use.g.hOiy(V1) hOi o(Vo) %(1:\/1 1=\b)to x c=y,
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and we obtain | along with relation (4.4) | all three quantities, hOi,
and c (we repeat that only the former two are of interest). In practiceone
would rather involve several volumes and topological sectors, apérform a
3-parameter t to the (over-determined) system.

We distinguish three regimes for the volum&/

Small volume: there are signi cant nite size e ects of the ordinary
type, not related to topology xing, in particular in hOi and ;.

Moderate volume:ordinary nite size e ects are negligible (they tend
to be exponentially suppressed), buhOiq still depends signi cantly
onjQjand V.

Large volume: there are hardly any nite size e ects left, even the
correction terms in approximations [Z.R), [2Z13) are negligible.

In small volumes, the formulae[(2]3) and (2]2) cannot be applied, brcse
results from various volumes cannot be used for the sameldtin large vol-
umes, we obtain the correct value fohOi anyhow, without worrying about
frozen topology, as we see from the expansions (2.2) and {2.3). wdwger,
such large volumes may be inaccessible in realistic simulations, due to limi-
tations of the computational resources. Hence we are interedgt®n moderate
volumes,where the determination ofhOi is di cult, but possibly feasible by
means of the BCNW approximation. Moreover, that regime also prades an
estimate for ¢, which is particularly hard to measure directly.

The derivation of formula (2.2) involves approximations, which assueff

hQ? =V . islarge. As we mentioned before, eq[{2.2) takes the form
of an expansion in #Q?% . Once . is stable, this can also be viewed
as a large volume expansion.

j Qj=hQ?i is small, so we should work in the sectors with a small abso-
lute value jQj. This is less obvious from the formulag{2.2) and{2.3)

LAn extension of the BCNW approximation (2:3) including ordinary nite size e ects
has been derived in Refs[16]. This extension can be used for ts toala obtained from
small volumes. It involves, however, additional tting parameters.

2For convenience, this formula has been re-derived in Subsection 5& Ref. [17] in a
way, which highlights the r6le of these two assumptions.



(although the terms/ Q? are related to this condition), but it is re-
quired for a step in its derivation, which relies on a stationary phase
approximation.

Here we employ numerical data to explore how larg&?i has to be for
this approximation to be sensible, and up to which absolute valug)j the
data are useful in this context. In practice it is rather easy to wd at small
jQj, but the former condition could be a serious obstacle.

So far there have been only few attempts to apply this approximatio
to simulation data. This was done for the 2- avor Schwinger model ith
dynamical overlap fermions[]17,18] with respect to the pseudoatar mass
M and the chiral condensate . Tests for a quantum rotor | more pr ecisely
a scalar particle on a circle with a potential | are reported in Refs. [1314].

Another approach was derived | similarly to the BCNW approximation
| in Ref. [19]] It refers togthe long-distance correlation of the topdogical
charge densityg(x), Q = dxq(x). The applicability of that method has
been tested in a set of models [20], and variants had been studiedvioesly
[21]. Further approaches to extract physics from topologically feen Markov
chains include Refs.[[22{24]. Preliminary results of this work have hee
anticipated in some proceeding contributions [13,15,116,25].

3 Tests for the quantum rotor

As a simple but precise test, we rst consider a toy model from qué&m
mechanics (e. 1d quantum eld theory), namely the quantum rotor, or
1d XY model, or 1d O(2) model. It describes a free quantum mechaalc
particle moving on a circle, with a periodicity condition in Euclidean time.
A theoretical discussion of this system, in the continuum and for derent
lattice actions, is given in Ref. [Zdﬂ Below we write down the continuum
action, and on the lattice the standard action and the Manton actio [28] (in

3For the analytic treatment, Ref. [26] uses the Hamiltonian formalism A discussion in
terms of path integrals is given in Ref. [2T].



lattice units),

Seont[[ ] = czont dt I_(t)z ;
0

b

Sstandard [I] = 1 COS( It) ;
t=1
b

Smanton [ ] = 5 ("% 3.1)
t=1

Leont @and L are the extent of the periodic Euclidean time interval in the
continuum and on the lattice, respectively, (t) and ' ; are time dependent
angles, with" (Lgone + t) = " (1), ' L+t = "t. cont @and can be interpreted
as an inverse temperature, or in this case also as the moment of treer In
the terms for the lattice actions we de ne

"t=("w ‘gmod2 2( ; 1; (3.2)

i.e. the modulo function is implemented such that it minimizeg ' j. Thus
' ¢ also de nes the lattice topological charge densitg (geometric de ni-
tion) and the chargeQ,

1 X
qzz—'t; Ql 1= GQ27Z: (3.3)

t=1

In the continuum and in nite size L., the correlation length and its
product with the topological susceptibility amount to

1
cont =2 cont ; t cont — ﬁ : (3.4)

Analytic expressions for the corresponding quantities on the lat&; with the
standard action and the Manton action, are given in Refl [26].

Our simulations were carried out with the Wol cluster algorithm [29],
which performs non-local update steps. This algorithm is highly e ciet
and provided a statistics of 5 10° measurements for each setting. Since it
changes the topological sector frequently, in this case the obsarles could
also be measured directly to high precision, which allows for a detaileest
of the BCNW method. In most quantum eld theoretic models no e cient
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cluster algorithm is known, in particular in the presence of gauge etd Then
one has to resort to local update algorithms, which motivates thisrpject,
as we pointed out in Section 1.

For our tests we set = 4 and consider six lattice sizes in the range
L =150:::400. This is large compared to the correlation length, which was
measured atL =400 as

standard = 0:81495(4); Manton = 7:9989(1); (3.5)

very close to the analytic values at. = 1 . This demonstrates that ordinary
nite size e ects are very small, but | as we are going to see | there are
signi cant xed topology nite size e ects. Hence we are in the regine of
moderate volumes, as desired. Moreover, this regime is sensible Alscause
lattice artifacts are quite well suppressed.

The BCNW formula consists of leading terms in an expansion in-iQ?i,
cf. Section 1. In the range. = 150:::400 we obtain

hQ?%i standarg = 1:13:::3:02: Q% manton = 0:95:::2:53: (3.6)

This suggests that we are in the transition regime to the validity of tis
method, which is interesting to explore.

3.1 Action density

We rst consider the action density
s=hSi=V : (3.7)

This quantity is not directly physical, but it is suitable for testing the BCNW
method, based on topologically restricted expectation valusg,; = hSijq;=V.
Moreover, the corresponding ts provide a value for ;, which is physical.

Figure[1 shows the action density for both lattice actions under ceid-
eration, measured at xedjQj = 0:::4, and by including all sectors (the
way the simulation samples them). The latter is constant to high accacy
for L = 150:::400, which con rms that ordinary nite size e ects are neg-
ligible. On the other hand, at xed jQj we see deviations far beyond the
statistical errors, depending orL and jQj, so this setting is appropriate for
the application of the BCNW method.

Table [1 presents our results obtained by least-square ts to the &NW
approximation (2.3): we use data forsjg; in all six volumes, and in the
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1d O(2) model: standard action at b=4

1d O(2) model: Manton action at b=4
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Figure 1: The action density in the 1d O(2) model at = 4 on lattices of

sizeL = 150:::400, with the standard action (left) and the Manton action
(right). We show s measured in all sectors (which is practically constant in
this range ofL ), as well as the values dd;q; in the sectorsjQj = 0 :::4, which
strongly depend onjQj and V.

topological sectorgQj =0 :: :jQjmax, WherejQjmax varies from 1 to 4. Similar
results are obtained when we only involve the larger volumes, such lass
250:::400 or 30Q::400.

standard action Manton action
1 Qlmax S t S t
1 0.545910(1)| 0.007552(4)|| 0.500073(3)| 0.006135(9)
2 0.545910(1)| 0.007555(3)|| 0.500072(2)| 0.006132(8)
3 0.545912(2)| 0.007559(5)|| 0.500072(2)| 0.006132(8)
4 0.545912(2)| 0.007559(5)|| 0.500072(2)| 0.006131(7)
all 0.545910(1) 0.007554 0.500041(1) 0.006333

Table 1: Results based on ts to the formula[(2I3), with input data fo the

action density in the rangeL = 150:::400 andjQ)j

j Qjmax- The last line

displayss measured in all sectors at = 400, and the analytic value of  at

L=1.

Regarding the value of, the method works perfectly (to the given preci-

sion) for the standard action, and up to a deviation of about 006 % for the
Manton action. For the standard action the ts yield values for ¢, which are
again compatible with the correct value, with uncertainties around :05 %.
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In case of the Manton action a systematic discrepancy of 3% is obh&sl, as
a consequence of the approximations in formula_(2.3).

In summary, this rst numerical experiment can be considered a suess
of the BCNW method. The good results foss are highly non-trivial in view
of the sizable di erences in the individual sectors (shown in Figuig ,1and
exactly these di erences give rise to quite good estimates for. As a generic
property, it is easy to measuresjg; accurately (in gauge theories it is given
by the mean plaquette value), so it is motived to estimate, in this way also
in higher dimensional models.

3.2 Magnetic susceptibility

In this model, the correlation function in a xed sector of topologichcharge
Q has a peculiar form. For a continuous time variablé it reads [14]

. 1 t(Lcont t) 2 Qt
0 i = —eXx —————~ COS X 3.8
0) ®Wie = e S e L oomt (38)
: _cos' (b)
with €t) = sin’ (1)

The unusual last factor in eq. [[3.B) obstructs the determination foa corre-
lation length oeo, and we recall that the BCNW method does not apply to
results, which are obtained in various volumes, but always & = 0.
By integrating over the time shift t, however, we obtain a quantity, which
is suitable for testing this method, namely the magnetic susceptibility
Az h Wiz~ e 1 Dt E 2

I-cont 0 a he(O) dt)l I—cont 0 a .e(t) ;
(3.9)

R
whereM = OL°°”t dt €(t) is the magnetization. The subtracted term vanishes

in our case due to the global O(2) invariancefimi = 0. The magnetic
susceptibility is physical in the framework of statistical mechanicsye can
interpret a con guration [€] as a spin chain. Based on eq_(3.8) we obtain
for its topologically restricted counterpart

m

Z L cont =2 2
eon t t 20t
m;jQj = 2 dt exp + cos i : (3.10)

0 2 cont 2 cont L cont L cont

In each sector, the limitLeone ' 1 leadsto m = mijoj =4 cont- If We insert
the large volume expansions of extf=(2 contL cont)) and cos(2Qt=L ¢ont) UP
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to O(1=L3,,), and perform the integral, we arrive at

4 cont 3= 2 Q2
. ' + — 1+ —=
mie " 2L cont t Lcont t
12 cont 5 2 1
+ = 2 +0 —m— 3.11
4(I-cont t)3 2 Q (I-cont t)4 ( )

where we substituted the in nite volume value ; =1=(4 2 ) [26], cf. eq.
@) A This is exactly the form of the BCNW approximation [Z:2), with

4 cont c= 12 cont

c= 2 1 - 4 ’

(3.12)
and in this case the third order is complete. If we only consider the gmnd
order and neglect itsc-term, we are left with the BCNW approximation (2.3).

Therefore the magnetic susceptibility is fully appropriate for numecal
tests of the validity of th|§ apprOX|mat|on where we use the corrpsnding
lattice terms, like M = =~ -, &. The sources of systematic errors (errors
in the BCNW approximation) are sub-leading nite size e ects and lattce
artifacts.

In analogy to Subsection 3.1, Figurel2 gives an overview over the veduof

m;joj Up to jQj = 3, atdierent L. Again we see that the value measured in
all sectors is stable irL, whereas the topologically restricted results strongly
depend onL and jQj. Hence the setting is suitable for the BCNW method
also with respect to the magnetic susceptibility.

We proceed to the ts to search the optimal values | according to formula
(23) | for the (over-determined) susceptibilities |, and . Table[2 shows
the results in the tting ranges L = L, :::400, L, = 150; 250, 300, and
JQj =0 :::jQjmax, With jQjmax =2 or 3.

The tting results for both susceptibilities are compatible with the ca-
rect values, albeit the uncertainty of . is rather large. Without knowing the
exact value one could combine the results of separate ts, whichdwces the
uncertainty, but it leads to a (-value which is somewhat too small. On the
other hand, for , the values are far more precise, and the relative uncer-
tainty is on the percent level (or below) in each case. Here a combiiwen
which reduces the uncertainty is welcome, although it has to be dométh
care since the partial results are not independent of each othéie add that

4The nite size eects in ¢, and those due to the upper bound of the integral in eq.
(3:10), are exponentially suppressed.
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1d O(2) model: standard action at b=4

1d O(2) model: Manton action at b=4
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Figure 2: The magnetic susceptibility in the 1d O(2) model at = 4 on

lattices of sizeL. = 150:::400, with the standard action (left) and the Manton
action (right). We show ,, measured in all sectors (practically constant in
this range ofL), as well as njo; in the sectorsjQj = 0 :::3 (well distinct).

standard action Manton action
I-min JQJmax m t m t
150 2 13.64(16) | 0.0072(13)|| 16.11(35) | 0.0054(18)
150 3 13.67(22) | 0.0070(22)|| 16.14(41) | 0.0050(26)
250 2 13.64(5) 0.0071(5) || 16.00(14) | 0.0060(8)
250 3 13.65(13) | 0.0074(15)|| 15.99(28) | 0.0064(20)
300 2 13.64(5) 0.0071(5) || 16.02(12) | 0.0058(8)
300 3 13.66(13) | 0.0073(17)|| 16.02(29) | 0.0061(23)

all 13.6545(4)| 0.007554 | 16.0187(5)| 0.006333

Table 2: Results based on ts to formula [(213), with input data for tre
magnetic susceptibility in the rangel = Ly, :::400 andjQj | Qjmax. The
last line displays , measured in all sectors at. =400, and atL =1 .

the tting results for the coe cient c are consistent with eq. [(3.12)¢"

1:6,

within (considerable) uncertainties.

The observed precisions for,, and ; can be understood if we consider
the impact of the sub-leading contributions, which are missing in the BNW
formula (Z.3): taking into account the additional terms up to the inomplete
third order modi es the tting results for |, only on the permille level, but
those for { in O(10) %, both with somewhat enhanced errors. Also a variety
of further tting variants, with the terms of a complete second orcomplete
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third order of approximation (3.11), with xed or free additional terms, leads
to consistent results for ,, and ¢, but with enlarged errors. In summary,
there seems to be no tting strategy which improves the results ogpared to
the simple 3-parameter t based on the BCNW approximation[(Z]3).

4  Applications to the 2d Heisenberg model

Our study of the 2d Heisenberg model, or 2d O(3) model, uses quatic

lattices of unit spacing and square-shaped volumé&s = L L. On each
lattice site x there is a classical spirg, 2 S?, and we implement periodic
boundary conditions in both directions. We consider the standard tiice

action as well as the constraint action’[30],

X
Sl€lstandarda = 1 & 84r);

X5

0 +« COs 8x;, =12
Sl€lconstraint = +1 & otherwise (4.1)

where is the constraint angle, and /s the unit vector in -direction.
Our simulations were performed at = 1:5 and = 0:55 , respectively,
with the correlation lengths

standard action L =84) : =9:42(2);
constraint action (L =96) : =3:58(5): (4.2)

The cluster algorithm allowed us to performO(10’) measurements at each
lattice size shown in Figure§13 andl4.

For the topological charge we use again a geometric de nition [2]. Tais
end, each plaquette is split into two triangles, in alternating orientabn. We
consider the oriented solid angle of the spins at the corners of a tigle: the
sum of the two angles (divided by 4) within a plaguette (associated with
the site X) amounts to its topological charge density. [Bue to the periodic
boundary conditions, their sum must be an integerQ = | ¢ 2 Z. Details
and explicit formulae are given in Refs[]20,30].

4.1 Action density

A study of the BCNW formula with respect to the action density (3.¥)can
only be performed with the standard action (in case of the consira action
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all contributing con gurations have action Seonstraint = 0). Figure B shows the
values ofs and siq;, JQj 2 inthe rangelL = 32:::84. The total expectation
values is stable within 0:0003 forL 56, while the topologically constrained
results di er by O(10 3) even atL = 84. ThereforeL =56:::84 is a regime
of moderate volumes, which is suitable for testing the BCNW formula.

2d O(3) model: standard action at b=1.5

1.196 = -
° [} [ ) [ ]
1194 | s &, ¥ ¥R
2 * ¥
D 1.192 ¥ -
) *
S 119} °® .
g ’ +
2 1188 F -
@
B Q=0 i
1.186 ISI:% L
= el
1184 1 . | | . allsectors + e 7
30 40 50 60 70 80
L

Figure 3: The action density in the 2d O(3) model, ol L lattices with
the standard lattice action, in the sectors with topological charggj =0, 1,
2, and summed over all sectors.é. all con gurations used for the numerical
measurements). The latter stabilizes to @ permille forL  56.

The tting results, for jQj 2 and various ranges of are listed in Table
3. The ts do not match the BCNW formula perfectly, as expectedsince
the latter is an approximation, and the input data have very small sitistical
errors of O(10 °).8 Nevertheless, the value of is obtained correctly up to a
high precision of 02 permille. On the other hand, the determination of the
topological susceptibility is less successful; only the t witi. = 76 and 84
yields a result, which is correct within the errors.

SOf course, the ratio ?=d.o.f. could be reduced by adding more terms to the V-
expansion. However, in Table[#t we are going to demonstrate that tis does not improve
the results for the observable and for ¢, in qualitative agreement with Section 3.
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tting range in L S 2=d.o.f.

t
56 | 64 1.1955(2) | 0.0035(5) 2.66
56 | 76 1.19538(6) | 0.0031(3) 2.66
56 | 84 1.19536(5) | 0.0030(3) 2.63
64| 76 1.19532(7) | 0.0031(3) 2.65
64 | 84 1.19531(5) | 0.0031(3) 2.58
76 | 84 1.1953(1) | 0.0026(3) 2.60

| L =84, all sectors|| 1.195089(5)| 0.002323(3)| |

Table 3: Fitting results for the action densitys and the topological suscep-
tibility ¢ in the 2d O(3) model. The input data in xed topological sectors
are plotted in Figure[3.

4.2 Magnetic susceptibility and correlation length

We proceed to the constraint action [[4]1) where our choice of yields a
shorter correlation length, which favors the stabilization of obseables (mea-
sured in all sectors) at smallet.. This can be seen in Figurél4, which shows
the magnetic susceptibility ., analogous to eq.[(319) (again the disconnected
part vanishes due to rotational symmetry), and the correlation legth . Sta-
bilization within the errors is attained for ,, at L 48 (with errors around
0:2 permille), and for already atL 16 (with errors of O(1) %). On the
other hand, forL = 128 the n;oj-values are not distinguished anymore from
m beyond the errors, and the same happens fop; already atL = 96. Fi-

nally, we have to excludeL = 16, because here we only obtaihQ? ' 0:63,
hence its inverse is not suitable as an expansion parameter. This s@sgout
the regime of moderate volumes, where the BCNW formula is approgte,
to the rangeL =48:::96 for ,,, andL =32:::64 for .

Our tting results are given in Table 4. In the case of ,, we probe the
BCNW formula (2.3) (with its incomplete second orderO(1=V?)), as well
as its extensions to the second order plus an incomplete third ordes given
in formula (Z2). For the latter option, the approximation is more preise,
but an additional free parameterc hampers the ts.

For both tting versions, the results for , and ; are compatible with the
directly measured values. We observe, however, that the inclusiofh terms
beyond the BCNW formula enhances the uncertainty (due to the atkional
tting parameter). The uncertainty is on the permille level for ,, but large
for , in particular with extra terms. (Without these terms it is around
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2d O(3) model: constraint action at d=0.55 p
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2d O(3) model: constraint action at d=0.55 p
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Figure 4: Results for the magnetic susceptibility (above) and for thcorre-

lation length (below) in the 2d O(3) model, with the constraint action &
= 0:55 . The windows, which are suitable for applications of the BCNW

formula, are given byL =48:::96 for ,, and byL =32:::64 for .

8%.) It turns out to be non-pro table to extend the approximation beyond
the BCNW formula.

The simple BCNW approximation is also superior for the ts with respetc
to , where the additional terms drastically increase the uncertainty.The
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tting BCNW | incomplete all sectors
range formula | 3rd order at L max
" | 48|64 36.56(4) | 36.64(11) 36.590(9)
¢ 0.0026(2)| 0.0031(6) || 0.0027935(14
m | 48 96 36.58(3) | 36.64(7) 36.616(9)
¢ 0.0026(2)| 0.0032(6) || 0.0027942(11
32| 64 3.56(2) 3.58(4) 3.59(2)
¢ 0.0027(3)| 0.0034(14)| 0.0027935(14

Table 4: Fitting results based on data for ,, and for

in tting ranges Lmin | Lmax, and sectors withjQj 2.

in the 2d O(3) model,
In the case of

m,» With the optimal range, we show results for the BCNW approximatio
(Z3), as well as its extension to the complete second order plus daem of
O(1=V?), according to formula [Z.2).

results in Table[4 are correct, within percent level for, but again with a
large uncertainty of the -value.

We add that we also tried ts to the complete second order approxiation,
without the third order term that appears in formula (2.2). Howeve, this
scenario (which also involves the tting parameter) is clearly unfavorable:
in this case, it often happens that the least-square t even fails toonverge
to values in the correct magnitude.

To conclude, this study suggests that the simple BCNW formula, with
only three free parameters, is in fact optimal for extracting value for the
considered observable, and for,. Moreover, we con rm that the method
works best for the determination of the observable; it is less susséul with
respect to the determination of ;.

5 Results in 4d SU(2) Yang-Mills theory

5.1 Simulation setup

We consider 4d SU(2) Yang-Mills theory, which has the continuum aicin
Z
d*xF2 (X)F? (X) ;

Scont [A] = (5- 1)

cont

18



and the topological charge

Z
1

16 2
On the lattice we simulate Wilson's standard plaquette action. For the

topological charge of a lattice gauge con guration{], we use an improved

eld-theoretic de nition [3],

1 X X (o))

2 4
16 X 2=1;2;3 2

Q[A] = d*x F2 (X)F2(x) : (5.2)

QU] = FiZ 2UIRE 2u]; (5.3)

WhereF>5;2 2)[U] denotes the lattice eld strength tensor, clover averaged over
square-shaped loops of siZ2 2, and (c;;¢;¢3) = (1:5; 0:6;0:1). Before
applying eq. [5.3), we perform a number of cooling sweeps with the énttion
to remove local uctuations in the gauge con gurations, while presrving the
topological structure.

4 g ‘
i 9%
3 b X ~ Q=1 |,
R X - —
Q=2
2 ‘ X o XK
H X ’,n'
4 1 ;(»—j%\
i
-1 (
-2
0 10 20 0 40 50 60

number of cooling swesps

Figure 5: Cooling and assignment of the topological charge for tlergypical
gauge con gurations, at = 2:5, in a lattice volumeV = 184,

A cooling sweep amounts to a local minimization of the action,e. a
minimization with respect to each gauge link within a short-range. Fothis
minimization we use again an improved lattice Yang-Mills action,

X X X g
S[U]= — —=Tr 1 W& 2] (5.4)
16 .2
X 2=1;2;3
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WhereW>§;2 2)[U] is a clover averaged loop of siZ2 2 with the coe cients
C; given above (for comparison, the standard plaquette action c@sponds
to (cp;¢;¢3) =(1;0;0)). Choosing an appropriate number of cooling sweeps
is a subtle and somewhat ambiguous task, which is carried out for agauge
con guration one by one. After every cooling sweep we comput@[U] ac-
cording to eq. [5.8). As soon a@Q[U] is stable (it varies by less than 10 % and
is close to an integer for at least 50 cooling sweeps), the corresgiog close
integer is the topological charge that we assign to the gauge comgtion
[U]. Figure[8 shows examples for typical cooling histories of gauge cguo-
rations with Q = 0, 1 and 2. (Details of this procedure, and a comparison
to other de nitions of the topological charge, are discussed in R4B].)

Our simulations were performed with a heatbath algorithm, see.g. Ref.
[31]. We set = 2:5, which corresponds to a lattice spacing  0:073 fm,
if the scale is set with the QCD Sommer parametear, = 0:46 fm [32]. This
value is in the range of lattice spacings:05fm< a< 0:15fm typically used
in contemporary QCD simulations. We generated gauge con guratig in
lattice volumes V = L% with L = 12; 14 15 16, 188 In each volume,
observables were measured on 4000 con gurations, separatgd 00 heatbath
sweeps. This guarantees their statistical independence; in pattiar, even
the auto-correlation time with respect to the topological charg®) is below
20 heatbath sweeps.

5.2 Computation of observables

The observable we focus on is the static quark-antiquark potenti&/qq(r) for
separationsr = 1;2:::6. This quantity can be interpreted as the mass of a
static-static meson. To determineVy(r), we consider temporal correlation
functions of operators

O(r) = ) UNE (F 1) () 5 r=j1 o ; (5.5)

whereq, g represent spinless static quarks, while”PE (+;; ¥,) denotes a prod-
uct of APE smeared spatial links[|34] along a straight line connectindhé¢
lattice sites+, and ¥, on a given time slice. For the quarks we use the HYP2
static action, which is designed to reduce UV uctuations and, thefore, to
improve the signal-to-noise ratio[|[33]. These temporal correlatiomrictions
can be simpli ed analytically resulting in Wilson loop averageBW (r; t)i with

SUnless stated otherwise, we continue using lattice units.
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APE smeared spatial and HYP2 smeared temporal lines of lengthand t,
respectively. Thus we arrive at the vacuum expectation value

D E
h jOY()Oug@)j i/ W(rt) : (5.6)

We chose the APE smearing parameters ddape = 15 and ape = 035,
which (roughly) optimizes the overlap 0fOyq i with the ground state of the
static potential (for details of the smearing procedure we refeotRef. [35],
where a similar setup had been used).

5.3 Numerical results
5.3.1 The static potential

Figure [8 shows results for the static potential measured in all topagical
sectors,i.e. for eachr and t the Wilson loop average is computed on all
con gurations, which are available in some volumi@. The volumes 14, 15,
16" and 18 yield identical results within statistical errors, but the static po-
tential in the 124 volume di ers by several for quark-antiquark separations
r 3. We conclude thatV = 124 entails sizable ordinary nite volume
e ects (not associated with topology xing), whereas for volumey/  14*
such ordinary nite volume e ects are negligible. Consequently, wealnot
use the 12 lattice in the following xed topology studies

For V = 154 Figure @ demonstrates that static potentials obtained at
xed topology from di erent sectors jQj = 0:::5 (by averaging only over
con gurations of a xed charge jQj), Vq;oj, dier signicantly. I For ex-
ample Vyqo(r = 6) and Vyqa(r = 6) dier by more than 6 . They are
also well distinct from the corresponding result in all sectors/yqiq; 1(6) <
Voq(6) < Vggioj 2(6). These observations show thav = 14%:::18" is in
the regime that we denoted asnoderate volumegcf. Section 2), where the
BCNW method is appropriate to extract observables from xed toplogy
measurements. Similar results for the static potential in SU(3) YagiMills
theory have been reported in Ref[[4].

"As usual, we determinedVgq(r) by searching for a plateau value of the e ective mass
me (r;t) =log( AW (r;t + 1) i=hW (r;t)i).

8\We repeat that the BCNW formula can be extended by incorporating ordinary nite
volume e ects [16].

9Again we determined Vqgq(r) by tting constants to e ective mass plateaux. Even
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Figure 6: The static potential Vy4(r) in a variety of lattice volumesV =
124:::18"

To extract the physical static potential from Wilson loop averagessepa-
rately computed in distinct topological sectorgQj 7 and some volumeé/,
Wy, (r; 1)i0;, we follow the procedure discussed in Ref. [13].

We perform 2 minimizing ts of either the 1=V expansion of the cor-

relation function [12],
D E

Cov(t)= Wy(rt) o

2
Mexp V) VNG 1t 6
t
(cf. formula (Z3)), or of the improved approximation [[14]
(r)
Cov(t)' p
RIS e - 0= gn )
exp V (Nt ! 1 1 }QZ (5.8)

vV 1+ VINOE( V) 2

with respect to the parametersVyq(r), ViXr) = @V(r; )j =0, (1)
(r =1:::6) and  to the numerical results foriWy (r; t)ijq; in the

though topology has been xed, the e ective masses exhibit a cortant behavior (within
statistical errors) at large t.
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Figure 7: The static potential at separationr = 6, Vy(6), for xed topolog-
ical sectorsjQj 5, and without topology xing, in the volume V = 154,

rangetmin  t  tmax, Wheretnin and tya are displayed in Table[b.
When tting formula (5.8), we also study the scenario where ; is xed
to =7 10 ° which was obtained in Ref.[]3] by means of a direct
measurement, in agreement with the xed topology study in Refl_[30
Moreover, we checked that the resulting t parameters are stdé within
errors when we varytn,i, and tya by 1.

V | tmin | tmax | Maximum jQj ful lling maximum jQj ful lling
1=( V), jQj=( V) < 1| 1= V), jQj=( V)< 05

14| 5 7 2 1

15| 5 7 3 1

16*| 5 8 4 2

18| 5 8 7 3

Table 5: Temporal tting ranges tyin :::tmax, and maximum topological

chargesjQj, for the lattice volumesV under consideration.

The results for Wy, (r; t)ijq; entering the t are restricted to those jQj

and V values for which H V); jQj=( {V) < 1 or < 0:5; we recall

that the approximations (5.4) and [5.8) are only valid for su ciently

large V = hQ?i, and smalljQj. To implement this selection we insert
¢ =7 10 ° [3]; Table[5 gives an overview.
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We either perform a single combined t to all considered separations
r =1:::6, or six separate ts, one for eaclr. In the latter case we
obtain six results for , which agree within the errors in most cases,
cf. Subsectio 5.3]2.

Table [@ collects the results foly(r) from xed topology computations
(using four volumes,V = 144; 15% 16* 18%), and computed in all sectors at
V =18% There is agreement between most of these results within about.2
Only for r = 1, and the relaxed constraint = V); jQj=( (V) < 1, there
are a few cases with discrepancies beyond, 3n particular for the expansion
(B.17) (the corresponding data in Tablé6 are displayed in italics).

The extent of the errors of the tting results is fairly independentof the
choice of the expansion [(517), o (5.8), of (5.8) with, =7 10 °> xed).
The errors increase, however, by factors up to 2, when we implement the
stringent constraint 1=( ;V); jQj=( V) < 0:5, which is expected, since less
input data are involved, see Tabl€l5. All ts of the expansions (5l 7)rad (5.8)
capture well the xed topology results.

For the extraction of the potential it seems essentially irrelevant tether
a single combined t or six separate ts are performed. Both the nan
values and the statistical errors oVq,(r) are in most cases very similar. A
single combined t, however, seems somewhat advantageous meljag the
determination of ;, see Subsection 5.3.2.

Figure[8 compares the static potential obtained from xed topolog Wil-
son loops, and computed without topology xing atV = 184. As re ected
by Table [6 there is excellent agreement within the errors.

The expansion [(5.F7) of xed topology Wilson loop averagdsVy (r;t)ijq;
is a decaying exponential irt. This suggests to de ne a static potential at
xed topological chargejQj and volumeV,

D E

d
Vegioiv (1) = a'n Wv(r?t)j (5.9)

Qj

for some value oft, where formula [5.7) is a rather precise approximation.
Within statistical errors Vggjojv (1) is independent oft for tyi,  t tmpax.
Therefore, we determineVygiojv(r) by a 2 minimizing t of a constant
to the right-hand-side of eq. [5.B), with the derivative replaced by nite
di erence (this is the common de nition of an e ective mass) in the inerval
tmin  t thax. FOrjQj =0:::4 andV = 144 15% 16* 18 the values for
Vyajojv (I = 6) are plotted in Figure @. As already shown in Figuré&l7, there
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| method |

Vqq(1)

V@) | V) |

Vqq(4)

| Vg(5)

Vqq(6)

all sectors,

vV =18*

[0.04229(1)] 0.09329(2) [ 0.1646(1)] 0.2190(1)] 0.2664(2)] 0.3101(3)

xed topology,

V 2f14% 15% 16% 18'g,

1=( V) jQi=( V) < 1

G.0)c | 0.04240(3)] 0.09343(8) ] 0.1646(2)] 0.2189(3)] 0.2662(4)[ 0.3097(5)
G7)s | 0.04241(3)| 0.09342(9) | 0.1646(2)| 0.2189(3)| 0.2662(4)| 0.3097(6)
G.8)c | 0.04230(3)| 0.09324(8) | 0.1644(2)] 0.2187(3)| 0.2661(4)| 0.3098(6)
G38)s | 0.04240(3)| 0.09338(9) | 0.1645(2)| 0.2188(3)| 0.2661(4)| 0.3098(6)
G.8)c . | 0.04225(3)] 0.09326(8) | 0.1643(2)| 0.2186(3)| 0.2660(4)| 0.3097(6)
G38)s . | 0.04225(3)| 0.09326(8) | 0.1643(2)| 0.2186(3)| 0.2660(4)| 0.3097(6)
xed topology, V 2f14% 15% 16% 18'g, 1= .V);jQj=( (V) < 05
G0)c | 0.04227(4)] 0.09326(14) 0.1645(3)] 0.2190(5) 0.2665(7)] 0.3103(10)
G7)s | 0.04226(4)| 0.09322(13) 0.1644(3)| 0.2189(5)| 0.2666(8)| 0.3105(11)
G.8)c | 0.04227(4)] 0.09326(14) 0.1645(4)| 0.2190(5)| 0.2665(7)| 0.3104(10)
(G8)s | 0.04226(4)| 0.09323(13) 0.1645(3)| 0.2189(5)| 0.2665(8)| 0.3104(10)
G.8)c . | 0.04225(4)] 0.09317(12)] 0.1643(3)] 0.2186(4)| 0.2660(6)| 0.3096(8)
G38)s . | 0.04225(3)| 0.09317(12)| 0.1643(3)| 0.2186(4)| 0.2660(6)| 0.3096(8)

Table 6: Results for the static potentialVy(r) for separationsr = 1:::6
measured with and without topology xing. In the column \method" the
equation number of the expansion is listed, \c" denotes a singt®embined t

for all separationsr = 1 :::6, \s" denotes aseparate t for each separation,
and . indicates that the topological susceptibility is not a t parameter, hut

xed to

=7

from the directly computed value, are written in italics.
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Figure 8: Comparison of static potential obtained from xed topolgy Wilson
loops, in the volumesV = 144; 15% 16% 18', with 1=( V); jQj=( V) < 1,
using expansion[(5I8) with one combined t, and directly measured af =
18*. (Since un xed and xed topology results coincide within the errorsthey
are shifted horizontally for better visibility.)

is a strong dependence on the topological sector, which becomesaasingly
prominent for smaller volumes. From expansion (5.7) the xed topofyy
static potential is expected to behave as

Q2
Vagiiv () V gqlr) + ZVSS(r) 1 Vv (5.10)
t
The corresponding curves fofQj = .14, with parameters Vg(r = 6),

V°°(r =6)and . determined by the preV|oust discussed ts\{ = 144:::18",

—( tV),jQj=( V) < 1, expansion[(5.l7) and a single combined t), are also
shown in Figure[®. One clearly sees that approximatiori (5]10) nicely -de
scribes the numerical results foWyq;qj.v (r = 6).

We conclude that one can obtain a correct and accurate physicdahsc
potential from Wilson loops separately computed in di erent topologal sec-
tors. The errors are larger by factors 2:::5 (cf. Table[8) for a xed topol-
ogy computation using four ensembles, compared to a correspmgddirect
computation using a single ensemblev(= 18%).
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Figure 9: The xed topology static potential Vyq.q.v (r = 6) for jQj =0:::4,
as a function of £V, and the curves corresponding to approximatior(5.10).

5.3.2 The topological susceptibility

In Table [71 we present results for the topological susceptibility exacted from
xed topology Wilson loops Wy, (r; t)ijo;. Again we use the ¥V expansions
(B2) or (5.8), the constraints H (V); jQj=( (V) < 1 or< 0.5, and either a
single combined t to all considered separations = 1 :::6, or six separate
ts, one for eachr. The latter yields six di erent results for .

Not all of the extracted . values perfectly agree with each other or with
the result = (7:0 0:9) 10 ° from Ref. [3], which we take as a refer-
ence. Using the weak constraint ;V); jQj=( (V) < 1 there seems to be
a slight tension in form of 2 discrepancies, when performing ts with
formula (5.7). The extended expansion_(5.8) gives somewhat bettesults:
no tension shows up, and most results agree with the referencéueawithin

One might hope for further improvement by using the stronger catraint
1=( V); jQj=( (V) < 0:5, since then formulae[{5]7) and(518) are more ac-
curate. Indeed this leads to consistency with the reference vajumit in most
cases the errors are very large, of the order of 100% or even endror this
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[method| V@) | Vi@ | V@ | V@ | Vea®) | Vea(6) |
xed topology, V 2f14% 15% 16% 18'g, 1= .V);|Qj=( V)< 1

B.)c 8.8(0.5)
©2)s | 8.8(0.5) | 8.7(0.6) [ 8.6(0.7) | 8.6(0.9) | 8.8(1.0) | 8.9(1.2)
G8)c 7.1(0.6)

B8)s | 8.6(05) | 82(0.7) | 7.7(0.8) | 7.3(0.9) | 7.0(1.0) | 6.7(1.1)
xed topology, V 2f 14*;15%; 16*; 18'g, 1= V);|Qj=( V) < 0:5

Ea)c 11.8(5.9)
G.2)s | 10.0(14.0)] 20.7(44.3)] 11.1(8.2) | 11.8(16.0)] 12.8(8.7) | 15.4(52.1)
E8)c 11.9(5.4)

E8)s | 10.2(21.8)] 10.7(12.5)] 11.3(8.7) | 11.8(5.8) | 13.09.7) | 14.6(12.2)

Table 7: Results for the topological susceptibility ; 10° from xed topology
computations of the static potentialVyq(r) for various separationg =1 :::6.
In the column \method" the equation number of the expansion is listd
\c" denotes a single combined t for all separationsr = 1:::6, and \s"
denotes a separate t for each separation. The reference valinem a direct
computationis ; 10°=(7:0 0:9) [3].

strong constraint the availableVyy;oj-data are not su cient to extract a use-
ful result for . Note that here the error for one combined t is signi cantly
smaller than those for the separate ts.

We conclude that | in principle | one can extract the topological sus-
ceptibility in Yang-Mills theory from the static potential at xed topo logy
using formulae like [5.7) or[(5.B). In practice, however, one needsepise data
in several large volumes. Only when a variation of the input datee(g. by us-
ing di erent bounds with respect to 1I=( V); jQj=( {V)) leads to precise and
stable ; values, one should consider the result trustworthy. The data uden
this work are not su cient to achieve this standard. As we mentiond before,
more promising methods to determine ; from simulations at xed topology
using the same lattice setup have recently been explored|[20{2Z].2
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6 Results in the Schwinger model

6.1 Simulation setup

We nally proceed to the Schwinger model | or 2d Quantum Electrody-
namics | as a test model with dynamical fermions. This model has the
continuum Lagrangian

X 1
Lean(s iA)= O (@+igonA)+m" O+ ZF F o (61)
f=1

where N¢ is the number of fermion avors. It is a widely used toy model,
which shares important features with QCD. In particular the U(1) quge the-
ory in two (spacetime) dimensions allows for topologically non-trivial @uge
con gurations, similar to instantons in 4d Yang-Mills theories and in QO.
The topological charge is given by

12
QA]= = d* F : (6.2)

Moreover, for N = 2 the low lying energy eigenstates contain a light iso-
triplet composed of quasi Nambu-Goldstone bosons, which we arma@rg to
denote as \pions". This model also exhibits fermion con nement.

We simulated the Schwinger model on periodic lattices of volumé =
L L (as before we use lattice units), witiN; = 2 mass degenerate avors.
They are represented by Wilson fermions, and we use the standgidquette
gauge action (see.g. Ref. [36]).

One can approach the continuum limit by increasingd., while keeping the
termsgL and M L xed, where M denotes the pion mas&] This requires
decreasing bothg and M proportional to 1=L (for the latter the fermion
mass has to be adjusted). It is also common to refer to= 1=¢?, in analogy
to the previous sections.

As in Sections 3 and 4, we employ a geometric de nition of the topologic
charge on the lattice [[377],

1 X
QU= 5 () 63)

P

101n physical units, g has the dimension of a mass, so these products are both dimen-
sionless. This also introduces a dimensional lattice spacing/ g.
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whereP » denotes the sum over all plaquette® = € ®), < (P)
With this de nition, Q 2 Z holds for any stochastic gauge con guration.
We performed simulations at various values of, m and L using the HMC
algorithm of Ref. [38], with multiple timescale integration and mass preo-
ditioning [39]. We started with rather short simulations ( 50000 : : 100 000
HMC trajectories) on small lattices C = 8 :::28), to investigate the transi-
tion probability between topological sectors per HMC t[5ajectory.This prob-
ability is [?Jo_tted in Figure L0, as a function ofg = 1= and m=g, while
gL = 24= 5 is kept constant. (The ratio m=g is proportional to the bare
fermion mass in physical units.) As expected, topological transitisrare fre-
guent at large couplingsg (coarse lattices), whereas at weak coupling ( ne
lattices) topology freezing is observed. Such a freezing is also obseé in
QCD, which is the main motivation of this work. We see that the depen-
dence of the transition probability on the ratiom=g, and therefore on the
dimensional bare fermion mass, is rather weak.

Figure 10: The transition probability topa di erent topological secta per

HMC trajectory as a function ofg = 1= (varying the lattice spacing in

physical units, a / ,g) and m=g (varying the bare fermion mass in physical
units) at gL = 24= 5 (xed dimensional volume and coupling constant).

Similar to the previous two sections we now explore the possibility to

extract physical energy levels (the \hadron" masses in the Schvgar model)
from simulations at xed topology. To obtain such results with small &tis-
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tical errors, we focused on a single coupling and a single \quark" nss
=4; m=0:1; (6.4)

and we performed long simulations ( 500 000 HMC trajectories) for volumes
V=L L,with L =40; 44;48;52;56;60.

6.2 Computation of observables

We determine the topological charg&[U] for each gauge con gurationU
according to de nition (6.3). (To measure observables at xed toplogical
charge , we only use the con gurations withQ[U] = .)

The hadron masses that we investigate are the static potentiadyy(r),
which has been discussed before in Yang-Mills theory (Subsection)5&hd
the pion massM . A suitable pion creation operator reads

X
O = Ly @y (6.5)

X

where u and d label the two (degenerate) fermion avor&] For the static
potential we use again

Oge = q(r)U(ry;r2)q(rz) 5 r=jri ry: (6.6)

Also hereq and g represent spinless static fermions and(r;r,) denotes the

product of spatial links connecting the lattice sites,; andr, on a given time

slice. Since there is only one spatial dimension, we do not apply any gau
link smearing.

6.3 Numerical results
6.3.1 The pion mass and the static potential
Similar to eq. (5.9) one can de ne a pion mass at xed topological chge
jQj and volumeV by
g D E

M v = 5 In O'(1O (0) (6.7)

1For an introduction about the construction of hadron creation operators, seee.g.
Ref. [40].
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Figure 11: The pion masseB . jo; in distinct topological sector§Qj = 0 ::: 4,
and M obtained in all sectors, in the volumeV = 402,

for some value of, where approximation [5.7) is quite precise. Within statis-
tical errors, M . jo;.v is independent oft for larget. Therefore, we determine
M .jqjv by @ 2 minimizing t of a constant to the right-hand-side of eq.
(6.2) (with the derivative replaced by a nite di erence).

Figure[11 shows that pion masses obtained at xed topology in di er¢
topological sectorsM . o;, di er signi cantly at V =402. For exampleM . o
and M . 3 di er by more than 6 . The physically meaningful value measured
in all sectors,M , also deviatese.g.from M .o by more than 7 . Figure[1]
demonstrates also here the necessity to analytically assemble xéapol-
ogy results, when the Monte Carlo algorithm is unable to generateefjuent
changes inQ.

To determine the pion mass and the static potential from correlatimfunc-
tions evaluated in single topological sectorddl . jo; and Vyg;oj, We follow the
lines of Section 5. We perform least-square ts using expansidn (pof (5.8)
of the correlation functions. We choose a suitable tting rangémin : : : tmax,
which typically leads to 2?=d.o.f.< 1. The stability of the resulting M . jo;
and Vyqjo; has been checked by varying,» and tn. by 1. Thet ranges
used for the determination of the pion mass are listed in Tablé 8.

We perform ts in three dierent ways: (\c") a single combined t to
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V | thin | tmax maximum jQj for maximum jQj for
1=( V), jQi=( V) < 1|1 V), jQj=( V)< 0:5
40° | 12 | 16 7 3
44 | 12 | 18 9 4
48 | 12 | 20 11 5
52| 12 | 22 13 6
56 | 12 | 24 15 7
60° | 12 | 24 17 8

Table 8: Temporal tting ranges tmin :::tmax @and maximum topological
chargesjQj for the volumesV under consideration.

all ve observables M , Vgq(r = 1), Vgq(r = 2), Vgo(r = 3), Vgo(r = 4));
(\c V") a single combined t to the four static potential observables; (8") ve
separate ts, one to each of the ve observables. The resultsacollected in
Table [9, along with reference values obtained in all sectors ¥t= 6027

The conclusions are essentially the same as for Yang-Mills theory dis-
cussed in Section 5. Results extracted indirectly, from simulationg aed
topology, are in agreement with those obtained directly. The magnitle of
the errors is the same for the two expansion§ (5.7) and (b.8), andr fthe
tting methods \c", \c V" and \s". They are, however, larger by factors of

2 when we use the stringent constraint V); jQj=( {V) < 0:5, since
less input data are involved compared to{ V); jQj=( (V) < 1. The ts
all yield uncorrelated 2=d.o.f.< 1, indicating that the xed topology results
are well described by both formulae{517) and{5.8).

For jQj = 0:::4 andV = 402:::6(, the M . ;v values are plotted in
Figure[I2. Again we observe a strong dependence on the topologgestor,
in particular in small volumes. From the expansion{5l7)M . jq;.v iS expected
to behave as approximation[{Z]3),

c 2
Maov =M +—-— 1 9

. _dop
v, v, C—ZM?)J=0- (6.8)

The corresponding curves foiQj = 0:::4 with parametersM , M ®and
¢, determined by the previously discussed t \(5.7)s", are also shawin

12In the continuum 2- avor Schwinger model, the pion mass is predictel as [41]
M. cont = 2:008 (M25nt Geont ) 1=, Remarkably, there is almost perfect agreement
with our result for M , if we insert the bare fermion mass and given in eq. (6.4), which
yieldsM ' 0:343.

33



| method | M | V(@) Vaa(® [ Vee(3) Viq(4) |
all sectors, V =60?
[ 0.3474(3) [ 0.1296(2) | 0.2382(5) | 0.3288(7) | 0.4045(10)

xed topology, V 2f 40 44;48;52;56;60°g, 1=( V), jQj=( V)< 1

G.20)c | 0.3466(16)] 0.1293(19)] 0.2370(23)] 0.3261(29)] 0.4022(62)
GV 0.1295(10)| 0.2372(12)| 0.3386(15)| 0.4052(16)
G)s | 0.3477(8) | 0.1285(7) | 0.2371(9) | 0.3282(12)| 0.4050(16)
G8)c | 0.3467(10) 0.1293(6) | 0.2377(9) | 0.3321(32)] 0.4059(69)
GV 0.1295(5) | 0.2379(11)| 0.3392(14)| 0.4049(16)
G8)s | 0.3477(9) | 0.1294(5) | 0.2374(6) | 0.3288(12)| 0.4040(15)
xed topology, V 2 f 407 44%;48°,52;56°;,60°g, 1=( V), jQj=( V) < 0:5
G)c | 0.3454(32)] 0.1284(27)] 0.2364(28)| 0.3311(50)] 0.4049(80)
GV 0.1282(12)| 0.2370(16)| 0.3312(35)| 0.4175(82)
G7)s | 0.3478(32)| 0.1292(12)| 0.2377(21)| 0.3275(61)| 0.4027(91)
(G8)c | 0.3455(32) 0.1285(16)| 0.2365(19)| 0.3310(49)| 0.4048(78)
GV 0.1287(9) | 0.2371(23)| 0.3312(36)| 0.4073(83)
(G8)s | 0.3482(35)| 0.1291(11)| 0.2376(13)| 0.3290(22)| 0.4036(55)

Table 9: Results for the pion masdvl and the static potential Vqq(r) at
separationsr = 1;2;3;4, with and without topology xing. In the column
\method" the equation number of the expansion is listed, \c" denats one
combined t to all ve observables, \cV" means one combined t to the four
static potential observables, and \s" indicates separate ts foeach of the
ve observables.
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Figure[12. One can clearly see that approximatiori (8.8) nicely captes the
lattice results for M ; jo;.v -

0.354 | —e—i un xed topology o i

tofeq.(6.8) jQj =4

tof eq.(6.8) jQj =2
| tofeq.(6.8) jQj=1 g
0.35 tofeq.(6.8) Q =0
0.348 .
E B
0.346 .
~=_ T ¥ —F—
0.344 - i = =
0.342 - T3 :
0.34 ! ! | | | !
11 1 1 1 1
602 567 522 1482 742 402
v

Figure 12: The xed topology pion massM .jq;v for jQj = 0:::4, as a
function of 1=V, and the curves corresponding to formuld{8.8).

We conclude, similar to our study in Yang-Mills theory, that it is possible
to extract correct and accurate values for the pion mass and thstatic po-
tential from correlation functions computed in a number of xed tgological
sectors and volumes. The errors are somewhat larger than forelit compu-
tation, in our case by factors of 2:::7. This is partly due to the smaller
amount of gauge con gurations of the xedQ ensembles at di erentV, and
partly due to the extrapolation to in nite volume.

6.3.2 The topological susceptibility

Table [I0 presents results for the topological susceptibility extréed from
our data for M . jo; and Vgqjq;. These values for ; are obtained from the
same ts, which lead to the results in Tabld_ B. The results for; and their
interpretation are similar to those obtained in Yang-Mills theory. We bserve

a slight tension of 2 for some values, when using expansioh (b.7) and
the relaxed constraint (E( V);jQj=( V) < 1). This tension disappears
when we apply the improved expansion[{5.8). When imposing the strict
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constraint (1= V;jQj= {V < 0:5), we encounter the same problem as in
Subsection 5.3.2: all results are in agreement with the directly measd
¢ = hQ%i=V (at V = 602), but the errors are very large'?

[method]| M | V@) | Vea@ | V@ | V@ |
all sectors, V =602
0.0048(1)
xed topology, V 2 f 4(°; 44°;48;52°;567;60°g, 1=( V), jQj=( V)< 1
(5.7)c 0.0038(5)
(5.7)cV 0.0042(5)
(5.7)s | 0.0041(4) | 0.0038(5) | 0.0036(7) | 0.0038(11)] 0.0044(9)
(5.8)c 0.0044(4)
(5.8)cV 0.0042(6)
(5.8)s | 0.0046(5) | 0.0043(4) | 0.0045(7) [ 0.0036(12)] 0.0038(8)

xed topology, V 2 f 40 44;48;52;56;60°g, 1=( V), jQj=( V) < 05

(5.7)c 0.0065(35)

(5.7)cV 0.0017(30)

(5.7)s | 0.0014(38)] 0.0049(32)] 0.0057(31)] 0.0037(48)] 0.0032(27)
(5.8)C 0.0067(32)

(5.8)cV 0.0018(33)

(5.8)s | 0.0017(32)] 0.0043(34)] 0.0022(46)] 0.0015(38)] 0.0048(52)

Table 10: Results for the topological susceptibility {, directly measured (at
V =60?), and based on xed topology computations oM . jo; and Vyqo;(r)
for separationsr = 1;2;3;4. In the column \method" the equation num-
ber of the expansion is listed, \c" denotes a single combined t to allve
observables, \&/" means a single combined t to the four static potential
observables, and \s" denotes a separate t to each of the ve alrvables.

We infer that a reasonably accurate determination of the topologat sus-
ceptibility from M . o; and Vyqo; requires extremely precise input data. The
xed topology ensembles and correlation functions of this work aneot suf-
cient to extract an accurate and stable value for ;.

13Ref. [42] presents results for ¢ in the 2- avor Schwinger model with staggered and
overlap fermions, with or without link smearing. The results at =4 and m = 0:1 (in
large volume) are in the range ;' 0:044:::0:064. This agrees with our value in Table 10,
which con rms the mild renormalization of our bare fermion mass (cf. footnote 12).
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7 Conclusions

We have systematically explored the applicability of the Brower-Chaira-
sekharan-Negele-Wiese (BCNW) method [12] with lattice data in xedopo-
logical sectors. Our study encompasses the quantum rotor, tieisenberg
model, 4d SU(2) Yang-Mills theory and the 2- avor Schwinger modelThe
originally suggested application to the pion mass has been extendedather
observables, like the magnetic susceptibility and the static quarkatiquark
potential.

The primary goal of this method is the determination of a physical eb
servable if only xed topology results are available. Our observatiegnshow
that this can be achieved to a good precision with input data from viasus
volumes and topological sectors, which obey the (rather relaxeddnstraint
1=( «V); jQj=( (V) < 1. Hence this method is promising for application in
QCD, where lattice spacings below' 0:05 fm are expected to con ne HMC
simulations to a single topological sector over extremely long trajecies.

As a second goal, this method also enables | in principle | the deter-
mination of the topological susceptibility . In our study we obtained the
right magnitude also for , but the results were usually plagued by large un-
certainties. For this purpose,i.e. for the measurement of ; based on xed
topology simulation results, other methods are more appropriatéased on
the topological charge density correlation [19{21], or on an analysi . in
sub-volumes [22, 24].

Regarding the optimal way to apply this method, it seems | for lattice
data of typical statistical precision | not really helpful to add addit ional
terms of the =( V) expansion, beyond the incomplete second order that
was suggested in Ref. [12]. Higher terms were elaborated in Ref. [=4id
they improve the agreement with the xed topology lattice data, bt due to
the appearance of additional free parameters they hardly impreuvthe results
for the physical observable and for ;.

A step beyond, which deserves being explored in more detail, is thelinc
sion of ordinary nite size e ects (not related to topology xing) [16], which
even allows for the use of small volumes (in the terminology of Secti@h

At this point, we recommend the application of the simple formulae (2)3
and (5.7) or (slightly better) (5.8), with only three free parametes, for the
determination of hadron masses in QCD on ne lattices, in particular irthe
presence of very light quarks.
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