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We use a numerical method, the finite-mode approach, to study inhomogeneous condensation in
effective models for QCD in a general framework. Former limitations of considering a specific ansatz
for the spatial dependence of the condensate are overcome. Different error sources are analyzed and
strategies to minimize or eliminate them are outlined. The analytically known results for 1 + 1
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I. INTRODUCTION

Quantum Chromodynamics (QCD) cannot be solved analytically at low energies. However, several aspects of
QCD can be understood by using effective models which exhibit the same symmetries as QCD, most notably chiral
symmetry. Some models utilize exclusively hadronic degrees of freedom [such as chiral o models [1-5]], while others
feature constituent quarks [such as the Nambu—Jona-Lasinio (NJL) model [6-11] and the Gross-Neveu (GN) model
[12]]. A model with both hadronic and quark degrees of freedom has also been discussed [13, [14].

All these effective descriptions of QCD include the spontaneous breaking of chiral symmetry, which implies the
emergence of a chiral condensate at low temperatures and densities denoted as o. This quantity is represented by
a nonzero expectation value of a scalar-isoscalar mesonic field in hadronic chiral models or, equivalently, by the
quark-antiquark expectation value (¥1)) in quark-based models.

The chiral condensate is, in general, a function of space, 0 = o(&). In principle, the determination of o(Z) is
straightforward: one has to find the field configuration which minimizes the effective action at a given temperature
and density. In practice, this task is, however, very difficult. This is why o is often assumed to be spatially constant.
This assumption is usually valid in the vacuum and at low densities, but not anymore at high densities. One of
the simplest non-constant field configurations is the so-called chiral density wave (CDW) which, in chiral hadronic
models, corresponds to a one-dimensional condensate of the form o(z3) = ¢ cos(pzrs) together with pion condensation,
70(z3) = ¢sin(prs). Various studies have found that the CDW is favorable compared to a constant condensate at
sufficiently high densities [15-26]. Interestingly, a CDW has recently also been obtained within the extended Linear
Sigma Model [27], which is a general chiral hadronic model with (axial-)vector degrees of freedom |4, 5]. Moreover,
inhomogeneous phases were also investigated in Refs. |[28441)] in the framework of the NJL model as well as in the
quark-meson model and the skyrmion model.

A general method to determine space-dependent condensates at non-zero temperature and density has not yet
been established. There are a few exploratory studies of such methods in the context of the 1 + 1 dimensional GN
model [42-44], but usually one uses a specific ansatz for the condensate [31,134, 45]. In this respect models for which
analytic inhomogeneous solutions are known are extremely interesting. This is the case for the 1 + 1 dimensional
GN model [46-50], where a soliton-like solution for the spatial dependence of the condensate is found, which is
mathematically represented by a Jacobi elliptic function [46, 47]. Further interesting 1 + 1 dimensional models for
which inhomogeneous phases have analytically been determined are extensions of the GN model: the chiral Gross-
Neveu (xGN) model [51, 152], which has a continuous chiral symmetry, and the two-flavor NJLy model [53]. These
1+1 dimensional models are relevant, because at high densities QCD effectively reduces from 3+1 to 1+1 dimensions
137, 154, 155).

Thus, while the existence of inhomogeneous phases has been verified by several different approaches, it is highly
desirable to develop a general and reliable numerical method to study inhomogeneous condensation, which does not
require a specific ansatz for the spatial dependence of the condensate. This is the aim of the present work. We
adapt and extend techniques introduced and explored in Refs. [43, 44]. We first test the validity and reliability of the
resulting method, the finite-mode approach, by applying it to 1 + 1 dimensional models, the GN, the YGN, and the
NJL2 model. We correctly reproduce both soliton-like and CDW modulations without supplying any specific ansatz.


http://arxiv.org/abs/1508.06057v1

Then we apply the finite-mode approach to study the phase structure of the 3 + 1 dimensional NJL model. Recent
findings [31] concerning one-dimensional modulations are confirmed. In addition, we determine the shape of the
so-called inhomogeneous “continent” at high density [56, [57]: in agreement with these works, the phase boundary
between chirally restored and inhomogeneous phase first increases with temperature. However, for larger chemical
potential u it decreases. Thus, the inhomogeneous phase exhibits a shape which is surprisingly similar to that of the
crystal phase of the GN model.

The paper is organized as follows. In Sec. [Tl quark-based effective models for QCD in 1+ 1 and 3+ 1 dimensions are
introduced. In Sec. [Tl Sec.IV] Sec.[V] and Sec.[VI] the phase diagrams of these models are investigated numerically
using the finite-mode approach, with particular focus on inhomogeneous condensation. Finally, we present conclusions
and an outlook in Sec. [VII}

II. QUARK-BASED EFFECTIVE MODELS

In this section we introduce the Lagrangians of the models that we use to investigate inhomogeneous condensation.
We start with 1+ 1 dimensional models and then turn to the 3 4+ 1 dimensional NJL model.

A. 1+ 1 dimensions: the GN model and its extensions
GN model

The GN model [12, 46, 47, |58] is a fermionic model that contains only a single quark flavor. In the large-N
limit (where N is the number of colors) it exhibits QCD-like features such as asymptotic freedom, dynamical chiral
symmetry breaking and its restoration, dimensional transmutation, and meson and baryon bound states [59-62]. The
Lagrangian of the GN model in Euclidean space is

N s, N 2
Lon = Z%‘ (%ﬁu + mo)i/fj - % (Z%‘%‘) ; (1)
j=1 j=1

with 79 = 01 and 71 = o3 implying 7, =7, = v}, and {v,,7} = 26,,. Chiral symmetry is realized in a discrete way,
1 = v5t;. The term proportional to mg breaks chiral symmetry explicitly (it is analogous to a quark mass term).
Therefore, in this work it is always set to zero, mg = 0 (similar choices are also implemented for the other models
studied by us).

Spontaneous symmetry breaking is only realized in the limit N — oo [12], since for any finite N spontaneous
symmetry breaking is excluded in 1+ 1 dimensions [63, 64]. The chiral condensate arises upon condensation of the
scalar-isoscalar field combination 11, i.e., o = ();1);) (Where a sum over j is implied).

In the limit N — oo analytic solutions for thermodynamical quantities including inhomogeneous condensation have
been found [62] (see also the discussion in Sec. [I)).

x GN model

A straightforward extension of the GN model is obtained by adding a pseudoscalar term. The Lagrangian of the
XGN model is

N B 2 N B 2 N B 2
Lyon =Y 0y — % [(Z?ﬁﬂ/}j) + <Z¢j2751/)j) } : (2)
Jj=1 j=1 j=1

This model contains a scalar field combination 1/_)j1/1j, which corresponds to a o-like particle, and a pseudoscalar field
combination z/?ng,z/}j, which corresponds to an 7-like particle. It is invariant under continuous U4 (1) chiral symmetry
transformations, 1); — €¥754);, and has certain similarities to one-flavor QCD (when the chiral anomaly is excluded).

The xGN model is particularly interesting, because both the scalar and the pseudoscalar field configurations con-
dense, when the temperature exceeds a critical value. The ground state is then a CDW [65, 166].



NJLs model

A further extension of the GN model is obtained by considering, in addition to the scalar-isoscalar field combination,
three pion-like field combinations. In this respect the model is similar to two-flavor QCD. The Lagrangian of this
so-called NJLsy model is

2 N 2 N 2
Lxa, = Y Y 05 Oty — % > szg,f%, > (Z%ﬁl%%f) ] ; (3)
j=1

f=1j=1 f=1 =
where f = 1,2 is the flavor index. The model is invariant under chiral symmetry transformations SU(2) x SUR(2),

YL = Ui Yir— UrYjr, (4)
with

Y = <¢]:’1 > YL ="Pr; . ir=Pri;, (5)
1/1%2

and P;, and Pg are projectors onto left- and right-handed components, respectively.
In contrast to the YGN model the ground state is not a CDW. Using the finite-mode approach we find that the
phase diagram coincides with that of the GN model (cf. Sec. [V]).

B. 3+ 1 dimensions: the NJL model

The NJL model in 3 + 1 dimensions is one of the most famous effective chiral approaches to QCD. It has been
extensively used in the vacuum and at non-zero temperature and density to study the spontaneous breaking of chiral
symmetry and its restoration [cf. e.g. Refs. |67, [68]]. The Lagrangian (in the chiral limit for NV colors and two flavors)
is |8, [10]

2 N B 3G 2 N B 2 N B 2
Lxon =) > i rmdutis — 57 D {(ij,fwj,f) + (ij,ﬁmwj,f) } : (6)
f=1 j=1

f=1j=1 Jj=1

Chiral symmetry is realized in the same way as in the NJLy model [cf. Egs. @) and (H)].
In the vacuum, the quark field obtains an effective mass, if the coupling constant G exceeds a critical value,

2 N
mi = =S 33 i gtag) > 0 ™

This effective mass is proportional to the chiral condensate in the vacuum, i.e., 0o = —(N/6+/2G)mj [8, [10], where
the chiral condensate is defined according to

0= \/— Z Z waz/]L : (8)

f=15=1

In other words, the field combination which gives rise to a non-zero condensate is again 1; r1b; . When restricting
this condensate to be constant, chiral symmetry restoration at high densities occurs via a first-order phase transition
[69-73]. However, when allowing for an inhomogeneous condensate, the latter occurs at slightly smaller chemical
potentials than the first-order phase transition. This is in agreement with the extended Linear Sigma Model results
of Ref. [217].

Contrary to the 1 + 1 dimensional models of Sec. [TA]l the NJL model is not renormalizable. The equation for o
takes the form

2\/§N 7 ith I . / d4p 2 / d3p 1 (9)
g — — m, W1 =1 = ,
0 0 2m)Tp? —mg? @2m)® 2+ mg?

where the integral I corresponds to a closed quark loop, i.e., to a tadpole diagram arising from the quartic NJL interac-

tion of Eq. (@), which affects the quark propagator at the resummed one-loop level in the Hartree-Fock approximation
[see Refs. |[810] for a detailed derivation].



The integral I is, however, quadratically divergent. Indeed, the NJL model is properly defined only after a regular-
ization scheme has been chosen and a corresponding high-energy scale enters as a new parameter. Strictly speaking,
each choice of regularization corresponds to a different version of the NJL model. Once the regularization has been
fixed, the quantity m§ in Eq. () and, as a consequence, all the relevant thermodynamical quantities, are finite.

Especially in studies of the NJL model at nonzero density it is common to implement a three-dimensional cutoff
[see e.g. Ref. [11]] according to which

A 2
d
N - 10)
0

271'2 /1?2 + mEk)Z

Note that the use of a four-dimensional covariant cutoff is possible for studies of the vacuum [8;[10], but it is not easy
to implement at nonzero temperatures and densities.

However, a three-dimensional cutoff strongly suppresses the appearance of inhomogeneous phases. Namely, in an
inhomogeneous phase such as a CDW the quark propagator is not diagonal and the ingoing and outgoing momenta
can differ by a full wavelength. This hardly takes place when the momentum |p] is limited by the cutoff A [74]. Hence,
in order to realize a CDW, other regularization approaches must be used, such as the Pauli-Villars scheme [57] or the
proper-time regularization scheme |9, [10, [75].

In this work we use the Pauli-Villars approach, which is a Lorentz (and gauge) invariant regularization procedure
[8,[76]. It amounts to introduce Npy additional fictitious heavy fermions with mass M}, in such a way that the tadpole
integral of Eq. (@) is modified according to

2d 1 Npv
2t NP+ me? o VP M

with the masses given by
M = mg? + arhpy (12)

where Apy is the so-called Pauli-Villars high-energy scale. The constants Cy and «y, are real dimensionless numbers,
which are chosen in such a way that Ipy is finite. Let us show this explicitly for the case Npy = 2. For large values
of p? the quantity in parentheses in Eq. ([I)) can be approximated by a Taylor expansion,

()= Ltliic 1o LmBU4 Gt Co) + Apy(enCr + 000

= ; = ro(a™)| . (13)

Then, by requiring
1+4C1+Cy3=0 and a1Ci+aCy=0 (14)

the integrand of Eq. () falls off as |]5'|_3 and is, therefore, convergent (although it explicitly depends on the scale
Apv). Once Ipy is finite, the quark condensate, the quark mass, as well as all other relevant quantities are also finite.
The conditions in Eq. (I4) are met for a; =2 and as = 1 with C; =1 and Cy = —2.

The procedure can be easily generalized to an arbitrary number of heavy fermions Npv,

Npv Npv

14+ Ce=0 , Y ayCr=0. (15)
k=1 k=1

For the case Npy = 3 the previous equations are fulfilled by a; = 1, as = 2, a3 = 3 and C; = -3, Cy = 3,
C3 = —1. In Sec. [T we will compute the phase diagram of the NJL model with inhomogeneous condensation using
the Pauli-Villars regularization with two and three heavy fermions.

III. FINITE-MODE REGULARIZATION OF THE 1+ 1 DIMENSIONAL GN MODEL

In the following we discuss the finite-mode approach in detail, in particular its technical aspects, in the context of
the 1+ 1 dimensional GN model in the large-N limit [cf. also Refs. |43, 144, [77-79]]. We reproduce the analytically
known phase diagram, which exhibits an inhomogeneous crystal phase.



A. Partition function and Euclidean action

The partition function of the 1+1 dimensional GN model () in Euclidean spacetime is

/ (prjpw ) BlYs9s] | (16)

with the action

Seldj vl = [ &z {Zu)y(mﬁw)w—%(é&mﬂ , (17)

where p is the chemical potential. One can get rid of the four-fermion term by introducing a real scalar field o,

N N
_ 1 _
_ 2 2
7Z = /Da (jl_l1 Dz/JjDz/Jj> exp [— /d x (2—920 —i—jE:l ij¢j>] , (18)
with the Dirac operator

Q=70+ vp+0. (19)

Performing the integration over the fermionic fields results in

/Do (det Q)Y exp(— QL 2) . (20)

Since det Q is real [857], (det Q)? = det(QTQ) > 0. Consequently, for even N

:/Dae_SE’“ff[U] . Sketlo N/d2 {—)\0 ——1n[det(QTQ)]} (21)

where A = Ng?. Due to numerical reasons discussed in detail in Ref. [43], when using the finite-mode approach it is
highly advantageous to regularize the effective action expressed in terms of det(QTQ) instead of the mathematically
equivalent expression containing det Q.

B. Finite-mode regularization, homogeneous condensate ¢ = constant

For numerical calculations it is convenient to work exclusively with dimensionless quantities. Therefore, we express
all dimensionful quantities in units of o9 which is the non-vanishing value of the constant condensate o at temperature
T = 0 and chemical potential u = 0. The resulting dimensionless quantities are denoted by a hat °, e.g. £, = x,00,
T =T/oo, i = /oo, 6 = /oo, ete.

We consider a finite spacetime volume with temporal extension Lo = Lyoy (corresponding to the inverse temperature

1/ T= ﬁo) and spatial extension Ly = Lyoo. The fermionic fields are expressed as superpositions of plane waves with
periodic boundary conditions in spatial direction and antiperiodic boundary conditions in temporal direction,

N /(Z) T ,I 7Z(koxg+k1x1)

iy = BRI 5 b -
no,Mn1 LQLl

P 1/) Io,Il +1(kodo+kid1)

wj (IO’ Il) —= Z 77] no,M1 T e (23)

ng,n1 V LOLI ,

with discrete momenta

~ 2w 1 - 2
ko=—=—1(no— = , ki=—=—n1 , mnog,n €N,
0 L0<0 2) 1 i 0511

where 1) ng.n, and 7j p,.n, are dimensionless Grassmann variables.



For a homogeneous condensate o = constant, In[det(QTQ)] can be expressed as a product over the modes (ko, k1),

In[det(Q1Q)] = { [T det | (+ 0k vo/l+6)(—mffu+70ﬂ+6)]}
ko, k1
- 1n{ 11 [(12:3 + k62— )2+ (2;11%0)2} } : (24)
ko k1
Considering only a finite number of modes ng = —Ng+1,—No+2,...,Ng—1,Ngand n; = =Ny, —N; +1,...,N; —
1, N1, i.e., introducing momentum cutoffs

~ 27T 1
kcut —T‘—N ) kcut (N + ) ) 25
7, o N G (25)

(chosen to be 7/ IA/OJ larger than the largest momenta considered) yields the finite-mode regularized effective action,

Sper(d)  LoLi5?
N 2/\

35 B (D] Gl oo o (o 2)])

no=—No+1ni=—
- 27T2N0(N1 + 1/2)0’
)\]%cut];.cut

Ny 2 2 2 2
_ Cutno — 1/2 .cut m A2 A2 L2 eut O — 1/2
>y [ (7 2) (i ) o]+ (ke 2) Y e

no= 1n1 7N1

which is suitable for numerical evaluation. Minimizing this effective action with respect to ¢ for various i and T
yields 6(fi, T), i.e., the “homogeneous phase diagram of the GN model” [58]

Infinite-volume contlnuum results are obtained in the limit L; — oo, kcut — 00, and kC“t — 00, which implies
an infinite number of modes. Numerically one is, of course, restricted to a ﬁmte number of modes In the following
we discuss how to determine the parameters \, Ng, Ny, kc‘“, and k$"* [Lo and L, are then given by Eq. @3)] in
an optimal way, i.e., how to obtain numerical results with a finite and rather limited number of modes, which are
nevertheless very close to infinite-volume continuum results.

C. Choosing and determining suitable parameters A\, Ny, N, l%g“t, and l;‘f“t

The condensate ¢ minimizes the effective action (26]). For p = 0 it is the solution of

d Sge(0) 21°No(N1 +1/2) Mo Cut —1/2\? e 2 91
0= dé N =20 )\ké‘“ki“t Z Z No k1 N +1/2 +o . (27)

no= 1n1 7N1

An obvious solution is & = 0. It corresponds to a minimum for 7" > T, and to a maximum for T' < T,. For the latter
case there are two additional solutions (corresponding to minima), which can be obtained from

212 No(N1 +1/2) o —1/2\% [+ o \° !
_ 0 L -9 kcuti kcuti ~2 ) 28
/\kgutkclzut Z Z 0 Ny + 1 Ny + 1/2 to ( )

no= 1 nl_—N1

To appropriately determine the parameters A, Ny, Ny, l;:g“t, and I%f“t, we consider and relate computations at g = 0
and a low temperature T ~ 0, where o(T) ~ 0¢, and at u = 0 and the critical temperature T = T, where o just
vanishes, i.e., o(T —€) > 0 and o(T) = 0. The parameters A, Ny, k§™, and kS are the same for both simulations,
while Ng = Ny for T'~ 0 and Ny = NQC & Nog for T =T.,.

The parameters Noy., Noo, N1, and k" can be chosen independently. The maximum number of modes oc NooN;
is, of course, limited by the available computer resources. Strategies for choosing these four parameters in an optimal



way, i.e., where systematic errors due to the finite spatial extension and the finite number of modes are minimized,

are discussed in Secs. IIIIE:I, and [ITC 3] below.
In contrast to that, k" and )\ cannot be chosen independently: kS = 2w Ny T, [which follows from Eq. (Z3)],

e., kC“t is related to Np.. Since 7. is a priori unknown, setting kC“t to an appropriate value is a non-trivial task.
Similarly, A depends on Ny, Ny, k§™, and k" via Eq. (28) at T = T, where ¢ = 0,

Noc 24 —1
72(Ny +1/2) n0—1/2\>  [iew ™
- 7 kcu - = )L — . 29
Akgut fgut NOc 2 Z Noc N ER (29)

no= 17l :—Nl

To determine k" (without knowing 7,.), we consider Eq. (28) also for T ~ 0, where 6 ~ 1, i.e.,

Noo Ny 2 -1
Ny +1/2) 1 1/2 -
T LSS (e s () (30
)\kﬁutkﬁm 0,5 Noo Ny +1/2
Since the left-hand sides of Eqs. (29) and (B0) are identical, we can equate their right-hand sides and eliminate A,

Ny Noc 2 21 —1
Z 1 Z jreut 10 — 1/2 4 (ent__™
Noe O Noe LN +1/2

n1=—Ni no=1

R ) e

nol

For given Ny, Noyo, N1, and l%f“t one has to solve this equation to obtain /%8‘“. Then, A can be calculated using either

Eq. (29) or (30).

1. Optimizing Noc

The numerically obtained critical temperature T, = l%g“t /27w Ny, should be insensitive with respect to variations
of Noc, when keeping the other parameters fixed, in particular Npo. The corresponding optimal Ng¥ ' is, therefore,

defined as the value of Ny, which minimizes
o .
— 1T, 32
P (32)

(since No. € N, the derivative 9/9Ny. has to be understood as a finite difference).

To study this optimization of Ny, independently of any error due to the finite spatial momentum cutoff /%f“t and
the finite spatial extension L; = 2w (N, + 1/2)//%‘1““7 we consider for a moment the limit l%f“t — 00 and L1 — oo
(implying N7 — 00). In this limit

Ny

SIS S S SST YT
By Tl maeo o ZN N1z dhey . (33)
1

ni=—

Inserting these relations into Eq. (3I]) and solving the integral results in

Noc -1 Noo 2 -1/2
1 ~eaeT0 — 1/2 1 ~eae 0 — 1/2
E Jeut 2 /7 - E Jeut 2 /7 1 =0. 34
No. 1( 0 Noc ) Noo “~—, [( 0 Noo * (34)
no= no=

As previously Eq. (31)) this equation has to be solved to obtain l%g“t, which now only depends on Ny. and Nyg.

In FIG. [ we study the corresponding T, = k§™ /27 No, as a function of Ny, (left panel) and No./Noo (right panel)
for Noo € {64, 128,256}

e For sufficiently large Noo and a suitably chosen Ng. the resulting T. should be close to the analytically known
infinite-volume continuum result 7. = /7 &~ 0.566 (where C' denotes Euler’s constant) [58]. One can clearly
see that there are plateau-like regions, where this is the case.



e For a small number of temporal modes Ny there are strong deviations, because the temporal momentum cutoff
is rather small, k§"* = 27 No.T.. (for small No., curves obtained with different Ng fall on top of each other when
plotted versus No. o< k§").

e For Ny./Ngp 2 0.2 there are also strong deviations, because the temperature corresponding to Npp temporal
modes, Ty = T-No./Noo, is a poor approximation of zero temperature (for No./Nog 2 0.2, curves obtained with
different Nog fall on top of each other when plotted versus No./Noo = To/T¢).
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FIG. 1: T. as a function of No. (left panel) and Noc/Noo (right panel) for Nog = 64 (green dots), Noo = 128 (red dots), and
Noo = 256 (blue dots) obtained from Eq. (34) (the black lines indicate the infinite-volume continuum result 7, = e /x).

In other words, to obtain accurate results, 1 < Ny, << Ngg has to be fulfilled, which is only possible, if a sufficiently
large number of temporal modes Ny are used. According to the definition ([B2) the optimal Ny, for given Ny is the
minimum of the corresponding curves in FIG. [l R

In TABLE [[ one can see the accuracy 1—1./(e“ /n) of the numerically obtained T}, for various values of Ngg. Note
that even with a comparatively small number of Nog = 32 temporal modes, the error is less than 0.1%. Also listed
in TABLE [l are N;P*, the corresponding temporal momentum cutoff IAC(C)”t’Opt = 27 NSP'T., and the corresponding
temporal extension Lgh* = Noo/T.NgP* approximating T = 0. When increasing Noo, there is a similar increase in
the temporal momentum cutoff k;""°P", but only a slight increase in the temporal extension Lgh'. This is typical for
lattice calculations, where cutoff effects are only polynomially suppressed, while finite-volume effects are exponentially
suppressed.

Noo |1 = T./(e€ /m) [ NgP* | kg"oPt | Lopt
32 1—6.320-10° 7] 6 [2.139-10'[9.401
64 | —1.981-10"%| 11 [3.919-10'[10.26
128 | —6.158 -107° | 20 [7.125-10'[11.29
256 | —1.881-10"" | 36 [1.282-10°][12.54
512 | =5.650-10° [ 66 [2.350 - 10°]13.68
1024| —1.672-10"° | 120 [4.275 - 10%|15.05
2048| —4.886 - 10~ 7 | 222 [7.908 - 10%]16.27
4096| —1.413 1077 | 412 [1.468 - 10°]17.53

TABLE I: Accuracy of the numerically obtained Tc for various values of Ngg.

cut

2. Optimizing kg

In the following we investigate the error associated with a finite spatial momentum cutoff /%f“t, i.e., instead of Eq.
(4) we return to Eq. (BI) and solve this equation to obtain k§"* for given No., Noo, N1, and k§{**. Similarly to



Sec. IIIC 1l we define the optimal k$*"°P" as the value of k$"* which minimizes

‘ 2 p (35)

Akt

for given NOC, Noo, and Nl.
We choose Nog = 256, the corresponding optimal Ny, = 36 (cf. TABLE [l) and various numbers of spatial modes

Ny. In FIG. Blwe study T, = k§" /27 Ny, as a function of kS (left panel) and kS /(Ny +1/2) (right panel) obtained
from Eq. B1)) for Ny € {64,128,256}:
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FIG. 2: T, as a function of k" (left panel) and k™t /(N1 +1/2) (right panel) for N1 = 64 (green curve), N; = 128 (red curve),
and N1 = 256 (blue curve) obtained from (]3]]) with Noo = 256 and No. = 36 (the black lines indicate the infinite-volume
continuum result 7. = e /7).

e For sufficiently large N7 and a suitably chosen l%f“t the resulting T. should be close to the analytically known

infinite-volume continuum result 7, = €€ /m ~ 0.566. Again one can observe plateau-like regions, where this is
the case.

e For a small spatial momentum cutoff I%f“t there are strong deviations (for small l;:‘f“t, curves obtained with
different N; fall on top of each other, when plotted versus k§"*).

e For kC“t /(N1 4+ 1/2) 2 1.0 there are also strong deviations, because the extent of the periodic spatial dimension
L, = 2w (N1 + 1/2)/ kc‘“ is quite small and, therefore, a poor approximation for infinitely extended space
(for kS™t/(Ny + 1/2)>1.0, curves obtained with different Ny fall on top of each other, when plotted versus
kUt /(N1 +1/2) o< 1/Ly).

In other words, to obtain accurate results, 1 <« /Aﬁ‘fut <& N7 has to be fulfilled, which is only possible, if a sufficiently
large number of spatial modes Ny is used. According to the definition (B5]) the optimal l%f“t for given N; is the
maximum of the corresponding curves in FIG. .

In TABLE [ one can see the accuracy 1 —17./(e” /) of the numerically obtained 7,. for various values of N, again
for Noo = 256 and the corresponding optimal Ny, = 36. Note that errors due to the finite-mode regularization in
temporal direction and in spatial direction have opposite sign (cf. FIG. dland FIG. [2). Consequently, one obtains the
most accurate result for Tc not for N1 — oo, but when both errors almost cancel each other. This is the case for
N; = 249, i.e., for Ny similar to Nyy (for a more detailed discussion cf. Sec. [ILC3)). Also listed in TABLE [ are
the spatial momentum cutoff £*"°"" and the corresponding spatial extension L = 2w (N + 1/2)/k{"°P". Again,
when increasing N7, there is a similar increase in the spatial momentum cutoff l%f”t")pt, but only a slight increase in
the spatial extension ffl)pt approximating infinite volume. As already mentioned this is typical for lattice calculations,
where cutoff effects are only polynomially suppressed, while finite-volume effects are exponentially suppressed.
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Ni |1 =To/(e/m)| k0Pt | LeP
32 [ +5.789-10"* [2.273 - 10* | 8.99
64 | +1.766-10"71[3.991 - 10" [10.15
128 | +4.324 - 10~° [7.138 - 101 [11.31

249 [ —2.720-10"° [1.261 - 10°]12.43

256 | —1.003 - 10°]1.291 - 10%[12.48
512 | —1.460 - 10" ° [2.329 - 10%|13.83
1024| —1.798 - 10~ ° [4.179 - 10*[15.41
2048] —1.871-107° |7.616 - 10%]16.90
4096 | —1.882 - 107° [1.403 - 10°]18.35

TABLE II: Accuracy of the numerically obtained Tc for Noo = 256, No. = 36, and various values of Nj.

3. Optimizing the ratio of Noo and N1

As already mentioned the maximum number of modes oc Nog V1 is limited by the available computer resources. In
the previous subsection it has been observed that for Nog = 256 and N1 = 249 the errors in T, due to the finite-mode
regularization almost cancel. Also for other choices of Ny such a nearly perfect cancellation is present for N1 ~ N,
as collected in TABLE [Tl Moreover, note that the temporal momentum cutoff k5""°""* and the spatial momentum
cutoff kS"°P* are close to each other.

Similarly, in FIG. [3] we compare the numerically obtained T, for various Ngo and N; with the infinite-volume
continuum result 7, = e“/r. The figure suggests choosing Ngo = N; as a simple rule, which obviously leads to very
accurate numerical results (the black filled circles in FIG. B]). Unless mentioned otherwise, we will use Nog = N7 in
the following. Of course, such a cancellation of errors might not occur for quantities other than 7,. Moreover, when
considering also the possibility of an inhomogeneous condensate, as we will do in Sec. [ITD] it could be necessary to
have a finer resolution or a larger extent of the spatial dimension, which might require a rather large N7 > Nyo.

N00| ]\/v1 |N85t| l;‘:gut,opt | ];;ut,opt
32 130 ] 6 [2.137-10"]2.190 - 10*
64 | 62 | 11 [3.919-107[3.932- 10"
128 [ 125 | 20 [7.124 -10"|7.034 - 10*
256 [ 249 | 36 [1.282-10%[1.261 - 10°
512 [ 497 | 66 [2.351-10%]2.287 - 10°
1024|994 | 121 [4.310 - 10%|4.188 - 10?
2048]1985| 223 [7.844 - 102[7.710 - 10°
40963966 | 414 |1.475 - 10%|1.428 - 103

TABLE III: Pairs Noo and N1, where the errors due to the finite-mode regularization for Tc almost cancel, and the corresponding
Noopt lg‘gut,opt and l;;ut,opt
c ) .

4. Summary

Based on these investigations we propose and adopt the following strategy to determine the parameters Ny., Ny,
kent kent and A:

(1) Use Nog = N; as large as possible (limited by the available computer resources).

(2) Determine the corresponding optimal Ny, from a computation in the limit N3 — oo and I%i“t — 00 as described
in Sec. [ITCTl (cf. also TABLE [} third column). This computation also provides a value for k§"* (TABLE [
fifth column), which is a good approximation for k§{"* at finite, but large Ny and k§"*. Assign this value to k§"*

(cf. Sec. MIC3).
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FIG. 3: T, - as a function of Ny for several Ny (filled black circles indicate symmetric choices Noo = N1, the black line is the
infinite-volume continuum result 7, = ¢ /).

3) Solve Eq. to determine kS"* (now for finite Ny and k$'t) for the previously chosen Ny and N; [step (1
0 1
and Ny, and k$U* [step (2)].

(4) Determine X via Eq. (29) [or equivalently via Eq. B0)].

For all further computations, e.g. when computing the phase diagram for a homogeneous condensate o = constant
or an inhomogeneous condensate o = o(x1), the parameters Ny, l%g“t, l%f“t, and A\ are not changed anymore. The
temperature 7 = 1 / Lo = 12:8‘“ /2w Ny can be adjusted by using different numbers of temporal modes Ny. Ny,
corresponds to the critical temperature T..

D. Computation of the phase diagram for a homogeneous condensate ¢ = constant

To determine the phase diagram for a homogeneous condensate, i.e., o as a function of the chemical potential p
and the temperature T', one proceeds as in the previous subsection. From

0= %L’ﬁ(g) (36)
one can derive the generalization of Eq. (28)) for arbitrary u > 0,
R 2 R 2
2ING(Ny +1/2) | n (kgumzv—i/z> + (kf“tzvli—ll/z) +6% - i
P D D A I g (7)
no=tm==MN K’me"OTO) + (kf“tzvl"TH/z) + 62 _“2} + <2uk3ut"°N—0>

If this equation has a solution 62 = A > 0 for given (ji,T), and if Sgeg(VA) < Sg.es(0), this solution is the value
of the chiral condensate, i.e., & = +v/A, and (f, T) is inside the chirally broken phase. If there is no such solution,
or if Sger(VA) > Sper(0), then & = 0 and (f1,T) is a point inside the chirally symmetric phase or on the phase
boundary.

The phase diagram for a homogeneous condensate obtained with Nog = N7 = 192 (with corresponding Ny, = 28,

kent = 9.974 - 101, kSt = 1.011 - 102 and A = 0.3328) is shown in FIG. @l It is in excellent agreement with the
infinite-volume continuum result [58].
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FIG. 4: Phase diagram of the GN model for a homogeneous condensate o = constant for Noo = N1 = 192 [the light gray curve
is the infinite-volume continuum result [58]].

E. Finite-mode regularization, spatially inhomogeneous condensate o = o(z1)

To study the possibility of a spatially inhomogeneous condensate, & is written as a superposition of a finite number
of plane waves,

M

o o(x e 27 N
=2 = 3 T po P = (e (38)
m=—M Ly Ly

as done in Eqs. (22) and (23) for the fermionic fields z/AJj. The resolution of & should be coarser than the resolution of

1;, i.e., M < Ny, to obtain stable and meaningful numerical results [cf. Ref. [43] for a detailed discussion].
In the case of a spatially inhomogeneous condensate plane waves are no longer eigenfunctions of the Dirac operator
Q. Consequently, 1n[det(QTQ)] cannot be expressed as a product over modes as done in Eq. (24). One has to represent

QTQ as a matrix, where the rows and columns correspond to the plane-wave basis functions of the fermionic fields

e:Fz(fcoioJrfﬂi‘l)/\/iofjl [Cf Eqs. (m) and m],
(ko,k1|QTQ|%ak/1> =

1 /Lo Ly tulodotFadn) Z e~ W1
= dio/ dxq eTHOTOTIITL (—7 8 + Yofi + Cm—— >
LoLy Jo 0 g " I

~ w 671ﬁ,i1 A S
X ( + Y1 0u + ot + Z Cm! —F )e“kozﬁklzl)

m/—=—M Ll
Oy [T e
= “/ diq e+1k111<—|—1’y@k0+l”ylk1 + Y00+ Z Cm—F=— >
Ly Jo m=—M Ly
+M —p'
w = 1okt — e, + o MRS 39
~oky " 1+70'u+ Z Cm/ = € ( )
m'=—M Ly

with p = 27m/L; and §' = 27m//L;. These matrix elements can be calculated analytically. Note that this matrix
representation of det(QTQ) has a block-diagonal structure with 2Ny blocks of size 2(2N1 +1) (the blocks are labeled
by ko = ko, the rows and columns of each block correspond to the spatial momenta ky and k’ and the two spin

components). In[det(QTQ)] is then the sum over In[det(...)] of the blocks, where each term of that sum can be
evaluated numerically e.g. by means of an LU decomposition.
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F. Computation of the phase diagram for an inhomogeneous condensate o = o(x1)

When allowing for a spatially inhomogeneous condensate o = o(x1), there are three phases:

(I) For small chemical potential i and low temperature T chiral symmetry is broken by a homogeneous condensate
& = constant # 0 [corresponding to ¢g # 0, ¢, = 0 for m # 0 in Eq. (38))].

(II) For high temperature 7' chiral symmetry is intact and 6 = 0 [corresponding to ¢, = 0 for all m in Eq. (38))].

(IIT) For large chemical potential ji and low temperature T there is a spatially inhomogeneous condensate & = (1)
[corresponding to ¢, # 0 for at least one m # 0 in Eq. (38])].

The phase diagram for a spatially inhomogeneous condensate obtained with Ngg = N1 = 192 and M = 10 (with

corresponding No. = 28, k§™ = 9.974 - 10", kS = 1.011- 102 and A = 0.3328) is shown in FIG. Bl It is in excellent
agreement with the infinite-volume continuum result [46, 180)].

+
0.6

0.5
0.4F
0.3f

o \\

0.1f I

0.0 : : :
0.0 05 10 15

=

FIG. 5: Phase diagram of the GN model for a spatially inhomogeneous condensate o = o(x1) for Noo = N1 = 192 and M = 10
[the light gray curve is the infinite-volume continuum result [46, 80]].

The numerical determination of the phase boundaries is discussed in detail in Ref. [43] and, therefore, only sum-
marized briefly in the following.

¢ Phase boundary I-II:
The phase boundary between 6 = constant # 0 (phase I) and & = 0 (phase II) can be determined as explained
in Sec. [[IT D] for the phase diagram for a homogeneous condensate.

e Phase boundary I-III:
To determine the phase boundary between & = constant # 0 (phase I) and the inhomogeneous crystal phase
(phase III), one again has to find the minimum of Sg /N with respect to & as a function of (f1, 7). This time,
however, ¢ is not a constant, but a superposition of plane waves [cf. Eq. (38])]. The minimization has to be done
with respect to the coefficients c,,.

e Phase boundary II-III:

To determine the phase boundary between 6 = 0 (phase II) and the inhomogeneous crystal phase (phase I1I),
one can in principle proceed as for the phase boundary I-III. Note, however, that inside the crystal phase in
the vicinity of the phase boundary I-III the constant & of the phase diagram for a homogeneous condensate is a
local minimum (the corresponding phase transition is of first order), while in the vicinity of the phase boundary
II-III it is a saddle point (the corresponding phase transition is of second order). Therefore, a computationally
simpler and cheaper way to determine the phase boundary II-III is to study the smallest eigenvalue of the
Hessian matrix

0 0 Spen(6)

0Cp 0Cry N |y

Hmm/ = Cgm = Re(cm) N Cgm+1 = Im(cm) N (40)

with 0 < m,m’ < M. A negative eigenvalue amounts to a direction of negative curvature and, therefore,
indicates the existence of an inhomogeneous condensate.
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Since the finite-mode approach allows to determine the condensate o at given temperature T for arbitrary chemical
potential p, it is straightforward to study and reproduce the order of the transition along the phase boundaries I-11,
I-111, and II-ITT.

IV. PHASE DIAGRAM OF THE 1+ 1 DIMENSIONAL xGN MODEL

We proceed in the same way as explained in detail in the previous section for the GN model. After introducing two
real scalar fields o and 7, the partition function of the xGN model can be written as

2= [Doppeseaton syl =N [ @ {5 (a2 47) - jmiden@) }. (41)
where

Q = V.0, + yop + o +mys.

We then apply the finite-mode regularization, i.e., in analogy to Eq. (B8)) the scalar fields o and 7 (the condensates)
are represented as a sum over a finite number of modes,

—zpwl

Z Cm \/A—l ) Cim = (C—m) ’

(42)

d+m = (d—m)* ) ﬁ =

S IR :
Ly Ly
Similary, QTQ is written as a matrix, where the rows and columns correspond to plane-wave basis functions

eFrlhodotkadn) )\ /F T [ef. Sec. [ILE and Eqs. @2) and @3) for details]. Since SE eff is invariant under the transfor-
mation (o,n) — R(o,n) with R € O(2), dimensionful quantities are expressed in units of ¥o, where

(43)

) )\ /2
Zo=% . E= (a . ) , (44)
and denoted by a hat *

We have studied the phase diagram of the YGN model using M = 10 modes for the condensates and Nog = N1 = 96
modes for the fermionic determinant.

For temperatures 7' > T, = e© /7 and arbitrary chemical potential p chiral symmetry is restored, i.e., the effective
action (@I)) is minimized for ¢; = d; = 0, which corresponds to vanishing condensates o = 7 = 0.

For T < T, we find several local minima of Sg g, which are given by c,, = *id,, # 0 for a single mode m, while
¢;j = dj = 0 for all other modes, i.e., j # m. The condensates o and n are harmonic functions, i.e., CDWs, with the
same amplitude, but with a relative phase shift +7/2, implying ¥ = constant [cf. Eq. (#4)]. The minimal values of
SEg.eft are plotted in FIG. [l as functions of the chemlcal potential u for m = 0,1,2,3 and two different temperatures
T = 0. 378,0.189 (Ny = 24,48, while Nogg = N; = 96 and M = 10). For p = 0 the absolute minimum of Sg g
corresponds to m = 0, i.e., o,n = const. The wavelength is proportional to u, i.e., for increasing u the absolute
minimum of Sg g corresponds to larger and larger m > 0. Two examples of the resulting CDWs (T' = 0.095 < T,
[No = 96] and i = 0.295,0.875) are shown in FIG.[1

The resulting phase diagram is, therefore, quite different from the phase diagram of the GN model: there are only
two phases, for T' < T, a CDW, and for T' > T, chiral symmetry is restored. This is in agreement with analytically
known results [47, [65].

V. PHASE DIAGRAM OF THE NJL, MODEL

Again the technical steps needed to compute the phase diagram closely parallel those discussed for the GN model
and the xGN model. This time four real scalar fields o and 7;, j = 1,2, 3 are required, where

3

3
= /Da(jl:ll DWj)eSE'e“["’”j] . SEeenlo,m;] = N/de {% (02 + ZWJQ) - = ln[det(QTQ)]} , (45)

j=1
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FIG. 6: xGN model. Local minimal values of Sg s as functions of the chemical potential p for m = 0 (blue), m = 1 (red),
m =2 (green) and m = 3 (gray) and two different temperatures T' = 0.378 (No = 24, left panel) and 7' = 0.189 (N, = 48, right
panel).
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FIG. 7: xGN model. Resulting chiral CDWs for 7' = 0.095 < T. (No = 96) and /i = 0.295 (left panel) and /i = 0.875 (right
panel).

with

3

Q:7u3u+vou+0+w527m : (46)
j=1

o and 7; as well as det(QTQ) are then finite-mode regularized as done in Eqs. (8), @2), and @3] and Sec. [ITE} re-
spectively. Due to the invariance of Sg o with respect to (o, 71, 72, m3) — R(0, 71, 72, m3) with R € O(4), dimensionful
quantities are expressed in units of

3 1/2
Y =3 = o2 2 47
o=2 == (o +JZ_;75> , (47)

and denoted by a hat ~.

We have studied the phase diagram of the NJLy model using M = 4 modes for the condensates and Nyy =
N7 = 72 modes for the fermionic determinant. For any temperature and chemical potential the four condensates are
proportional to each other, i.e., 0 & 7 o w3 o< w3 «x X and also proportional to the chiral condensate o of the GN
model. Consequently, we obtain exactly the same phase diagram for the NJLs model as for the GN model, which is
shown in FIG.[Bl These findings extend existing results, where only a CDW [o(z)  cos(2bz) and 73(x) o sin(2bx)]
has been considered [81]. Our results show that an inhomogeneous phase is indeed present at larger p and not too
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large T'. However, this inhomogeneous phase exhibits solitonic structures and not a CDW. This result is similar to
those found for the NJL model in 3 + 1 dimensions, as discussed e.g. in Sec. [V or Ref. [56].

VI. PHASE DIAGRAM OF THE NJL MODEL

We investigate the phase diagram of the NJL model at nonzero temperature and density under the assumption that
only the chiral condensate o defined in Eq. (8) condenses. Thus, we do not take into account condensation of the
pion-like field combinations ﬁj)fﬁ%wj)f appearing e.g. in Eq. ([6). The chiral condensate o is, in general, a function
of the three spatial coordinates ¥ = (x1,z2,23), i.e., 0 = o(&). However, previous investigations based on special
ansétze have shown that modulations in more than one dimension are not favoured energetically [36, [57]. Thus, for
the sake of simplicity in the following we assume that o depends only on one of the three spatial coordinates, e.g. s,
ie.,

. o o(x e~ W3 " 27
6=06(23) = (23) = Z Cm—L y Cym = (Com) y P = 7 m. (48)
m=—M 3 3

Of course, a study of the NJL model in the context of the finite-mode approach without this assumption is an
interesting topic which we plan to investigate in the future.
Proceeding as in Sec. [IT Al for the GN model we obtain the partition function of the NJL model in 3+ 1 dimensions,

Z = / Do e~ Smetlel 1 gp glo] = N / d%{fv—cia? —ln[det(QTQ)]} : (49)

where Q@ = 7,0, + vop + m§. The Pauli-Villars regularization can be implemented by adding heavy fermions as
explained in Sec. [TB]

Npv

S pv[o] = Spelo] — N / d'z Y CiIn[det(QLQr)] , (50)
k=1

with Qp = ")/#8# + yop + M.

For a convenient comparison with the existing literature on the NJL model (and in contrast to the previous
sections, where we discussed 1+1 dimensional models) we express our results in the following in units of GeV. To
this end, the two parameters of the NJL model, the coupling constant G and the Pauli-Villars energy scale Apy, are
fixed by requiring that a certain effective mass mg is realized (we perform computations for three different choices,
mg € {250 MeV, 300 MeV, 350 MeV}) and that the pion decay constant reproduces the correct value in the chiral
limit, f, = 88MeV |31, 56]. [For the evaluation of the pion decay constant in the framework of the NJL model, we
refer to Ref. [g].]

The resulting phase diagrams for Npy = 2 additional heavy fermions, effective quark masses mg§ €
{250 MeV, 300 MeV, 350 MeV} and M = 5 and Ngg = N1 = 120 modes are shown in FIG.[8l Quite remarkably, these
phase diagrams are similar to that obtained for the 141 dimensional GN model (cf. FIG.[]). This result suggests that
the 3+1 dimensional NJL model, which represents a non-renormalizable, but in many aspects realistic chiral model
of QCD, generates a phase diagram whose most salient features can be understood in a simpler 141 dimensional
field theory. However, it should also be stressed that this result is obtained in the specific case of the Pauli-Villars
regularization and that the existence of an inhomogeneous condensate depends on the chosen regularization scheme.

Independent of the concrete choice of the effective quark mass mg there is an inhomogeneous phase for large chemical
potential p and small temperature T', termed “continent” in Ref. [56]. However, at smaller p the detailed shape of
the phase diagram depends on the value of the effective quark mass. While at small m{; an inhomogeneous “island”
may be separated from the “continent”, at larger mg the island and the continent merge. Note that our results in the
region p < 0.4 GeV are in agreement with the findings of Ref. [31]. At somewhat larger p they agree with the results
of Ref. [56], although the outlines of the continent were not traced to very large p in that work. We find that, at even
larger values of u, the transition temperature between the chirally restored and the inhomogeneous phase decreases
with p, which is similar to the GN model.

We have also compared regularizations using Npy = 2 and Npy = 3 additional heavy fermions (cf. FIG. Q). The
effect of Npy on the shape of the phase diagram is rather mild: at intermediate chemical potential 1 and temperature
T the inhomogeneous continent becomes somewhat larger when using a larger number of regulators.
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FIG. 8 Phase diagram of the NJL model for a spatially inhomogeneous condensate o = o(x3) for Npy = 2, M = 5,
Noo = N1 = 120 and three different effective quark masses mg = 250 (red), mg = 300 (green) and mg = 350 MeV (black).
There are three phases: (I) a homogeneous chirally broken phase o = constant # 0, (II) a chirally restored phase o = 0, (III)
an inhomogeneous phase (the left panel is a zoomed version of the right panel).
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FIG. 9: Phase diagram of the NJL model for a spatially inhomogeneous condensate for Npy = 2 (blue) and Npy = 3 (black)
(further parameters chosen as in FIG.[]).

VII. SUMMARY AND OUTLOOK

In this work we have used the finite-mode approach to investigate numerically the emergence of inhomogeneous
chiral condensation in effective quark models in 1+ 1 and 3+ 1 dimensions. The main aim has been the determination
of inhomogeneous condensation in QCD-inspired models without using a specific ansatz.

We have shown that our method accurately reproduces well-known analytical results concerning the phase diagram
and the inhomogeneous condensation of 1 4+ 1 dimensional models, in particular the Gross-Neveu and chiral Gross-
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Neveu model. By applying the approach to the NJL model in 3 4+ 1 dimensions we could reproduce previous results
based on specific ansétze for small chemical potential. In addition to that we were able to show that the inhomogeneous
continent of Ref. [56] extends to very high densities, but not to arbitrarily large temperatures.

The finite-mode approach is a promising method for future studies of inhomogeneous condensation. Its connection
to lattice calculations allows to use established existing strategies and methods. Moreover, it is possible to investigate
and quantify all possible sources of systematic errors (e.g. finite volume or cutoff).

In the future one could also apply the finite-mode approach to study the phase diagram of purely hadronic the-
ories such as the extended Linear Sigma Model |4, [5]. This approach is capable to correctly describe the vacuum
phenomenology as well as the nuclear matter ground state properties [82]. As already shown in Ref. |27], an inho-
mogeneous condensate in the form of a chiral density wave is favored with respect to a constant condensate at high
density (= 2pg, where pg is the nuclear saturation density). It is an open question whether other structures minimize
the effective potential even further. More generally, one could also apply the finite-mode approach to quark-based
sigma models, e.g. Refs. |83, 184].

Other interesting projects are the study of higher-dimensional modulations beyond the ansatz used in Ref. [34]
and, since there is also no limitation in the number of inhomogeneous fields in the finite-mode approach, the study
of interweaving chiral spirals [38]. Further effects at high densities such as inhomogeneous diquark condensation in
1+1 as well as 3+ 1 dimensions can also be taken into account [48]. Moreover, the models that we have studied were
investigated in the chiral limit only. Future work could thus include a non-zero bare quark mass into the effective
approaches.
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