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1. Introduction

We are concerned with semileptonic decayBafiesons B andB*) into orbitally excitedP
wave D mesons (collectively denoted &*'s): B*) — D**|v. These decays are of particular
interest, because there is a persistent conflict betweemytlaad experiment, the so-called /2
versus 32 puzzle”: while experimental results indicate that a deicaéy “1/2 P wave D**’s” is
more likely, theory favors the decay into/3P waveD**’s” (for recent reviews cf.[[1][]2]).

1.1 Heavy-light mesons

A heavy-light meson is made from a heavy quarskd) and a light quarky, d), i.e.
B = {bu, bd} andD = {cu, cd}.

In the static limit (n,, m; — o) there are no interactions involving the static quark spimere-
fore, it is appropriate to classify states according totpa#” and the total angular momentum of
the light quarks and gluonjs(cf. the left column of Tabl¢]1).

If my, m; are finite,j is not a good quantum number anymore. States have to befieldssi-
cording to parity#? and total angular momentudn(cf. the right column of Tablf] 1). Althoughis
not a “true quantum number” anymore, it is still an approxiemguantum number justifying the no-
tation Dg. The above mentioned waveD**’s are{D{, D/, D1, D5} = {D(l)/z, D}/z, Di’/z, Dg/z}.

(1)2° =S |0 =BD
1- = B*,D*
(1/2* = P. | 0t = D = D/?
1" =D) = Di/z
(3/2t =P, |1t =Dy = Dzi
2t = D5 = D;

Table 1: Classification of heavy-light mesons (left: static limight: finite heavy quark masses).

1.2 Thel/2 versus 3/2 puzzle

Experiments (ALEPH, BaBar, BELLE, CDF, DELPHI, D@), whichve studied the semilep-
tonic decayB — X.l v (whereX. is some hadronic part containingcajuark), find the following
composition ofX.:

e ~ 75%D andD*, i.e. Swave states (which is in agreement with theory).

e ~10% Df/z andDg/z, i.e. ] = 3/2 P wave states (which is in agreement with theory).

e For the remainingz 15% the situation is rather vague: a natural candidate Wbﬁlé/z

andDi/z, i.e. j =1/2 P wave states. This, however, would imply

rB— Da/lzl v)>T(B— Di/zzl v), which is in conflict with theory. This conflict between

experiment and theory is called thg2lversus 32 puzzle.
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On the theory side most statements are made in the staticrlignin; — . In this limit the
eight matrix elements relevant for decays— D**| v can be parameterized by two form factors,
the Isgur-Wise functions, , and 1z, [B]. Here we only list two of these matrix elements:

(D (V) [E¥syublB(v)) O Tyo(wW)(v—V)y (1.1)
(DY2(V,€)[EysyublB(v)) O r3/2(w)<(w+1)s;;av“ —e;;,Bv“vB\/V), (1.2)

wherev andV are the four velocities associated with 8and theD meson respectively,
w = (V -v) ande is the polarization tensor of tHe meson.

By means of operator product expansion (OPE) a couple of sles has been derived in the
static limit [4,[$]. The most prominent in this context is tHealtsev sum rule,

™|y ?) - 1
Z(‘Ts/z(l)‘ —(Tl/z(l)(> = 7 (1.3)
wherety/, = TS)Z, T3/p = 9

32 and the sum is over all/2 and 32 P wave states respectively. From
experience with sum rules one expects approximate satnrfsm the ground states, i.e.

(

] [l = 3

~ = 14

i (1.4)

which implies|t;/5(1)| < [T3/2(1)|. This in turn strongly suggests

rBe— Dé{fl v)<I(B— Di/ZZI V), which, as already mentioned, is in conflict with experiment
Phenomenological modelf] [f, 7] give the same qualitatieéupé, even when considering

finite heavy quark massefg [8].

Possible explanations to resolve the¥ersus 32 puzzle include the following:

e The experimental signal for the remaining 15%gfis rather vague; therefore, only a small

part might actually b(E)(l)/2 and Di/z.

e Sum rules like [(1]3) might not be saturated by the grounestat

e Sum rules derived by OPE hold in the static limit and mightrgjeafor finite heavy quark
masses.

e Sum rules make statements about the zero recoil situatiea 1), where theB and theD
meson have the same velocity; to obtain decay rates, hoy@wehas to integrate over

With a dynamical lattice computation @f»(1) and13/>(1) in the static limit, which is pre-
sented in the following section, we attempt to shed some bgtthis puzzle.

2. Lattice computation of 71, and 73/,

For a more detailed presentation of this computation we teffd]. We use a method, which
was proposed and tested in the quenched cage]in [10].
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Since the “Isgur-Wise relations[ (1.1) ar{d {1.2) are noedily useful to compute; ,(1) and
T3/2(1) (the right hand sides vanish at zero recoil), they have tebeitten as shown inT11]:

(D5 *(v)[CIe1 DKbIB(Y)) = —igj(m(Dg?) — m(B))11/(1) (2.2)
(D3 (v &) Gy DibIBV)) = +iv3ej(m(DF?) — m(B))ta/5(2). (2:2)
We computery , by means of[(2]1) and an “effective form factor”:

Ti2(1) = im . T2 effective(to — t,t1 — t2) (2.3)

to 7t1~>°0 ,t]_ —tr—

Ty 27effective(t0 —ly,t1 — t2) =
1] NN ((070) (@D 05 1)
22| (mp)-m9) {(6P100)) 0Pt {(69t) 09(1)) |

To this end we need static-light meson creation operatéts ¢(P-) and¢(P+), static-light meson
massesn(S), m(P-) andm(P,.), 2-point and 3-point functions, and norisS), N(P-) andN(P,.).
Zg is a perturbatively computed renormalization constanpsehderivation is explained in detail
in [13, §]. The computation of;), is analogous. Explicit formulae can be foundfih [9].

(2.4)

2.1 Simulation setup

We usel3 x T = 243 x 48 gauge configurations produced by the European Twisted Kaks
laboration (ETMC). The gauge action is tree-level Symaitzigroved and the fermionic action
N¢ = 2 Wilson twisted mass at maximal twist yielding automatia) improvement of physical
guantities. The lattice spacing &= 0.0855fm. To be able to extrapolate our results to physi-
cal light quark masses, we consider three different barekquassegiy corresponding to “pion
masses'imps, which are listed in Tablg 2. For more details regardingetguge configuration we

refer to [IB[TH].

Hq mpsin MeV | number of gauge configurations
0.0040 314(2) 1400
0.0064 391(1) 1450
0.0085 4481) 1350

Table 2: Bare quark masses, pion masses and number of gauge corifigsrat

2.2 Static-light meson creation operators

The meson creation operators we use are latticized versidhge continuum expression

oM(x) = d(x)/dﬁl'(ﬁ)u(x;x+rﬁ)tp(“>(x+rﬁ), (2.5)

whereQ(x) creates a static antiquark at positiany(¥) (x+r) creates a light quark separated by a
distance from the static antiquark) is a gauge covariant parallel transporter &ralcombination

of spherical harmonics andmatrices yielding well defined parity? and total angular momentum
of the light degrees of freedoin The operators are collected in Taffle 3.
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I (A) 37| 7 | On lattice |7 notation
V5 0 | (1/2) || Av | (1/2)~, (7/2)—, ... S
1 ot | (1/2)* 1/2)F, (7/2*, ... || P
yifn — Yoz (cyclic) 2t 1 (3/2T || E | (3/2)", (5/2)*, ... P,
¥s(yaf — yoi) (cyclic) | 27 | (3/2)~ (3/2)°,(5/2)~, .. || D«

Table 3: J: total angular momentunj; total angular momentum of the light degrees of freedsf;parity.

2.3 2-point functions, static-light meson masses, norms of meson states

With meson creation operatofs (2.5) at hand it is straigivéiod to compute the 2-point func-
tions

«0n) = ((600) 000) . T {m 1 ph- ). (2.6)

From these 2-point functions we extract the meson mas&8s m(P~) andm(P*) via effec-
tive mass plateaus. To illustrate the quality of our data maseffective masses fqrg = 0.0040
in Figure[1. For details regarding the computation of the Iging static-light meson spectrum
within our twisted mass setup we refer fo|[15], 16].

uq =0.0040 - meffeclivs(s) and meffeclivs(Pf) “q =0.0040 - meﬁeclive(P+)
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Figure 1: Effective masses fd8, P— andP;. for g = 0.0040.

Moreover, we obtain the ground state norsS), N(P-) andN(P;.) by fitting exponentials
to the 2-point functions[(2.6) at large temporal separation
2.4 3-point functions

The computation of the 3-point functions is again straigivtrd. We chose to represent the
covariant derivative inside the heavy-heavy current inraragtric way by a single spatial link in
positive and negative direction.

2.5 Reaults

In Figure[Ra we show the effective form factars efieciive (€0N. [2.44)) andrz ), effective for
to —to = 10 as functions ofg —t; for pg = 0.0040 (plots for the other two quark masses look
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qualitatively identical). We extraa ,, and 1z, by fitting constants to the central three data points
as indicated by the dashed lines. Results are collectedbile [la

Mg =0.0040 - Ty effective N Tgp effective (o - 1o = 10) extrapolation to the physical u/d quark mass (t; - t, = 10)
06 1 06
J'Y H
% 05 F g Froen Froneny ¥ Fiiiin, g | LT l | o5 ¥ 1
% I“n o
%‘ 04 - S04+
E 03| T T b E 03 § i ¥
g0 i T g .
% ¥
8 02f B 02| R —
. Ty
o1r Taip = 0.521 £ 0.013 rwrsres 1 01 lattice results s—e—s -
T2 = 0.300 +£ 0.014 extrapolations # =
0 . . ) ) 0 . . . .
0 2 4 6 8 10 0 0.05 0.1 0.15 0.2 0.25
-ty (Mpg)? in Gev?

Figure2: a) Effective form factors ; effective 2Nd 732 effective fOr to —t2 = 10 andiq = 0.0040.b) Linear
extrapolation ofry , andts, in (mps)? to the physicali/d quark mass.

g Ty/2(1) T32(1) || (T32)% — (T1/2)?
0.0040 || 0.300(14) | 0.521(13) |  0.181(16)
0.0064 || 0.31%10) | 0.540(13) |  0.194(13)
0.0085 || 0.30912) | 0.5248) 0.178(9)

Table 4: 11/, andts/, and their contribution to the Urlatsev sum rule.

As expected from sum rulesy ; is significantly larger thamy,. Moreover, we find that the
ground states fulfill the Uraltsev sum rufe {1.3) by arounéc80

We use our results at three different values of the pion natingarly extrapolate;,, and
T3/ N (mps)? to the physicali/d quark massrtirs = 135MeV; cf. FigurdRb). Our final result is

nhY1) = 029726 , 1,BY(1) = 0528(29) @7

3. Conclusions

Our result [2]7) confirms the sum rule expectation thag(1) >> 11/5(1) in the static limit.
When comparing to the experimentally measured form fac(mfﬁg’(l) =1.28 andrse;‘;(l) =0.75
[L7]) we find fair agreement for/» but a strong discrepancy fay .

In our opinion this discrepancy calls for action both on thedretical and the experimental
side: it would be highly desirable to have a first principlatsite computation of; , and s, be-
yond the zero recoil situation and also for finite heavy quaasses; on the other hand a thoroughly
refined experimental analysis of the decay int@ D**’s, for which the signal is rather faint, seems
to be necessary.
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