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Dynamo 

•  A process that converts one form of energy into 
another. e.g., the electric generator (magnetic + 
kinetic = electric).  

•  Here, we are dealing with an astrophysical dynamo 
(electric + kinetic = magnetic) 



Magnetic field in the universe	  
•  Astrophysical magnetic fields exist at various scales from those as 

large as intergalactic space, to those comparably smaller on the size 
of planets. 

•  Magnetic fields also exhibit a wide variety of temporal behavior; in 
some astrophysical systems, they do not vary much on timescales 
comparable to the lifetime of that system, while in some case, they 
vary rapidly on very short timescales (e.g., the Sun) 

•  Their origin and behavior is also different in different systems; 
however in general, if in any system the magnetic field varies on 
timescales much shorter than the lifetime of the system, then a 
dynamo is probably at the origin 



Magnetic field in the universe (cont.) 
Galactic magnetic field 
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M51 
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Solar magnetic field 
SDO (UV-EUV) 

•  The best studied astrophysical object is the Sun 

Movie	  here	  



Solar cycle 
Butterfly diagram 

11 years 

11 years 

Solar activity is changed ~ 11years  



Solar cycle (cont.)	  
SOHO–EIT (EUV) 



Sun spots 
•  Sun spots are 

emerged on solar 
surface with pair 
(N-S) 



Solar cycle (cont.)	  
Polarity rules 

ー	  

Polarity change ~ 11years 

Magnetogram (Zeeman effect) 



Solar cycle 
(cont.) 



Solar cycle (cont.)	  



Dynamo hypothesis 
•  Larmor (1919): Magnetic field of Earth and Sun maintained by 

self-excited dynamo 
•  Dynamo: v x B => j => B => v (Faraday, Ampele, & Lorentz) 

motion of an electrical conductor in an ’inducing’ magnetic field 
=> induction of electric current 

•  Self-excited dynamo: inducing magnetic field created by the 
electric current (Siemens 1867) 

•  Example:  
–  homopolar (disk) dynamo 
–  Homogeneous dynamo (no wires in Earth core or solar 

convection zone) => complex motion necessary 
–  Kinematic (v prescribed, linear) 
–  Dynamic (v determined by forces, including Lorentz force, non-

linear) 
 



Kinetic and Dynamic Dynamo 
•  Time evolution of magnetic field is described by induction 

equation  

•  If plasma velocity v is a given function of x and t,  eq(9.1) becomes 
a linear equation.  

•  The dynamo in such a case is called kinetic dynamo or linear 
dynamo. 

•  The kinetic dynamo is applied to the situation where J x B force is 
much smaller than other forces. 

�B

�t
= �� (v �B) + ��2B � = 1/µ0�(9.1) 



Kinetic and Dynamic Dynamo (cont.)	  

•  However, in many astrophysical situations, this is not necessarily 
the case 

•  We must solve the momentum equation including J x B force term 

•  Since this equation includes the term with B, the velocity v is a 
function of B. 

•  Hence in this case eq (9.1) becomes a nonlinear equation. 
•  The dynamo process determined by eq (9.1) & (9.2) is called 

nonlinear dynamo or dynamic dynamo 

�

�
�v

�t
+ (v ·�)v

�
= ��p +

1
µ0

(��B)�B � ��� (9.2) 



Vector potential 
•  Because                    , we can write 

     
     where A is called the vector potential.   

•  The induction equation in term of A is 

� · B = 0

B = ��A, � · A = 0
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Axisymmetric field decomposition 
•  If the magnetic field and the flow are axisymmetric, the field 

decomposition is  

•  The induction equation becomes 

B = B�̂ + Bp = B�̂ +��A�̂,

v = R��̂ + vp = R��̂ +�� �

R
�̂,

R = r sin �

(9.3) 

(cylindrical) 

toroidal 

poloidal toroidal 

poloidal 



Axisymmetric field decomposition 
(cont.)	  

•  This gives some important insight into the dynamo process. 
•              : advection term, which movies field around 
•                       : diffusion term, which cannot create field 
•  The toroidal field (B) can be generated from poloidal field (Bp) 

through the term,                  , provided gradients of angular velocity 
along the field lines 

•  Poloidal field is stretched out by differential rotation         to generate 
toroidal field 

•  However, the poloidal field (A) itself has no source term, so it will 
just decay unless we can find a way to sustain it. 

•  This requires some non-axisymmetric terms to be present. 

(vp ·�)
(�2 � 1/R2)

RBp ·��

��



Cowling’s theorem  
•  Fundamental theorem in the dynamo theory, called Cowling’s theorem 

(anti-dynamo theorem) 
  
“A steady axisymmetric magnetic field cannot be maintained” 

•  Assume: steady axisymmetric magnetic fields have both poloidal (Br 
& Bz) and toroidal (Bφ) components in cylindrical geometry 

•  Consider Ohm’s law 

•  From assumption of axisymmetry, we have a circle path C where 
Br=Bz=0 (neutral point, see figure)  

j

�
= E + v �B



Cowling’s theorem (cont.)	  
•  Integrating Eq (9.3) on C,  

•  Using Stoke’s theorem, 

•  The first-term in R.H.S. becomes 0, 
because from steady assumption  

•  The second-term in R.H.S. becomes 
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•  Since Br=Bz=0 on the path C, second term also vanishes. 
•  Thus, 

•  So, jφ=0 on C. 
•  Since jφ should not vanish on C to maintain the poloidal field, this 

means that  
       the steady axisymmetric magnetic field cannot be maintained. 

•  But, Cowling’s argument holds only for exact axisymmetry 
•  Slight departures from axisymmetry may allow a dynamo to work. 

Cowling’s theorem (cont.)	  

�

c

j�

�
ds = 0



Beyond anti-dynamo theorem 
•  Parker (1955) pointed out that as rising blobs of plasma expand they 

also tend to rotate because of the Coriolis force in the Sun 
•  Such anticylonic (helical turbulent) motions are clockwise in the 

northern hemisphere and anti-clockwise in the southern hemisphere 
•  If they carry flux tubes up with them, the twist converts toroidal 

field into poloidal ones. 
•  He consider the rate of generation of Bp is proportional to Bφ	


•  So Parker modeled the net effect of many convection cells 
(turbulence) by adding an electric field (α-effect) 

•  Bφ => Eφ => jφ => Bp 

E� = �B�



Beyond 
anti-dynamo 

theorem 
(cont.)	  



Mean field dynamo theory	  
•  α-effect removes certain symmetry to work 

dynamo (overcome anti-dynamo theorem). 
•  The α-effect can work only rotating systems, 

where Coriolis force exists (differential 
rotation) and therefore results in non-zero 
helicity. 

•  Fortunately, most astrophysical systems rotate 
and also host sustain convective turbulence 

•  In a turbulent magnetized medium, the flow 
and field components can be expressed as a 
sum of fluctuating and mean components. 

•  This kind of dynamo theory is called mean-
field dynamo 

velocity: v

volticity: � = �� v

helicity: H = v · �



Averaging dynamo equations 
•  The basic idea is to split of the magnetic field and flow into mean and 

fluctuating parts, 

•  Apply the Reynolds averaging rules: assume linear averaging process 

•  And 

•  Assume averaging commutes with differentiating, so 

B1 + B2 = B1 + B2, v1 + v2 = v1 + v2

B� = v� = 0

B = B + B�, v = v + v�

B = B, v = v

�B

�t
=

�

�t
B, � · B = � · B



Mean field induction equation 
•  we average the induction equation 

•  Using the Reynolds averaging rules, 

•  The interesting term is 

•  Therefore, we can write induction equation (                      ) 

 
 
•  ε is called mean e.m.f (electro-motive force) and it is new term of 

induction equation.	


�B

�t
= �� (v �B) + ��2B

(v �B)

(v �B) = v �B + v �B� + v� �B + v� �B�

�B

�t
= �� (v �B) + ��2B

(9.4) 

(9.5) 
�B

�t
= �� (v �B) +�� E + ��2B, E = v� �B�

B� = v� = 0



Mean field induction equation (cont.) 
•  We usually think of the primed quantities as being small scale 

turbulent fluctuations. 
•   The average mean e.m.f. can be nonzero if the turbulence has 

suitable averaged properties. 

•  No longer does Cowling’s theorem apply (break axisymmetry by the 
small turbulent fluctuation).  

 



Mean field induction equation (cont.)	  
•  If we subtract the mean field equation (9.3) from the full equation 

(9.1), 

•  This is a linear equation for B’, with a forcing term 
•  Therefore, B’ can be thought of as the turbulent field generated by the 

turbulent v’ acting on the mean field 
•   Therefore we can plausibly write (average mean e.m.f can be related to 

mean B-field, tensor approach) 

•  Where the tensor aij and bijk depend on 

�B�

�t
= �� (v �B�) +�� (v� �B) +�� G + ��2B�

G = v� �B� � v� �B�

�� (v� �B)

B

Ei = aijBj + bijk
�Bj

�xk
+ . . .

v� & v



Mean field induction equation (cont.)	  
•  We don’t know v’ and its unobservable, so we assume aij and bijk are 

simple isotropic tensors (realistically it may have directional dependence) 

•  We now have the mean field dynamo theory (MFDT) equations in 
their usual form, 

•  If β is constant,                                                so the β-term acts like 
an enhanced diffusivity (turbulent diffusivity).  

•  We can now justify taking a large diffusion, choosing it to give 
agreement with observation. 

aij = �(x)�ij , bijk = ��(x)�ijk

�B

�t
= �� (v �B) +�� �B ��� (���B) + ��2B

�� (���B) = ���2B

(9.7) 

(9.6) 



First order smoothing 
•  The tensor approach is very general, but it gives lots of unknowns. 
•  Can we solve for B’ in terms of v’ directly? 
•  With a short correlation length, l, the mean velocity term (which is 

constant over the short length scale) can be removed by working in 
moving frame. 

•  Then, we have and order of magnitude is 

               O(B’/τ)    O(Bbarv’/l)         O(B’ v’ /l)                           O(B’/l2) 

•  If the small-scale magnetic Reynolds number v’l/η is small, curl term 
(2nd term in R.H.S.) is negligible. 

�B�

�t
= (B ·�)v� +�� (v� �B� � v� �B�) + ��2B�



First order smoothing (cont.)	  
•  First-order smoothing assumption gives 

•  This implies that                 (but it is probably not true in Sun). 
•  Now suppose the turbulence to be a random superposition of waves, 

•  Then using eq (9.8)   

�B�

�t
= (B ·�)v� + ��2B�

B� � B

v� = Re{v exp i(k · x� �t)}

(9.8) 

B� = Re{ i(k · B)v
�k2 � i�

exp i(k · x� �t)}



First order smoothing (cont.)	  
•  Now evaluate 

•  Where * denotes complex conjugate, equivalent to 

•  If the turbulence has no preferred direction, i.e. it is isotropic,   

E
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First order smoothing (cont.)	  
•  Now consider the helicity 

•  Taking the trace of eq (9.9) gives 

•  This means that under first order smoothing, the mean e.m.f. is 
proportional to the helicity of the turbulence. 

•  Mirror-symmetric turbulence has zero helicity.  
•  Rotating convection has non-zero helicity in general. 

H = v� ·�� v� =
1
2
ik · (v� � v)

� = �1
3

�k2H

�2k4 + �2

velocity: v

volticity: � = �� v

helicity: H = v · �



Parker loop mechanism 
•  Mean field theory predicts an e.m.f. parallel to the mean magnetic 

field, 

     Where ηT: turbulent diffusivity (resistivity) ( β >>η, ηeff = β =ηT ) 
 
•  This contrasts with              which is perpendicular to the mean field. 
•  With constant α, the α-effect predicts growth of field parallel to the 

current 
•  Recalling that the α-effect depends on helicity, we can picture this 

process (next page) 

�B

�t
= �� (v �B) +�� �B + �T�2B

v �B

µ0��B



Parker loop mechanism (cont.) 

•  A rising twisting element of fluid brings up magnetic field.  
•  A loop of flux is created, which then twists due to helicity (volticity).  
•  The loop current is parallel to the original mean field.  
•  Poloidal field has been created out of toroidal field. 

•  Note that if there is too much twist, the current is in the opposite 
direction. First order smoothing assumes small twist. 

velocity: v

volticity: � = �� v

helicity: H = v · �
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Axisymmetric mean field dynamos 
•  The mean field dynamo equations with isotropic are derived from eq 

(9.3) 

•  The α-effect term is the source for generating poloidal field (A) from 
toroidal field (B) (no dynamo if α = 0,). 

•  There are two ways of generating toroidal field B from poloidal field 
BP : the α-effect or the ω-effect (stretch).  

•  If the α-effect dominates, the dynamo is called an α2-dynamo. 
•  If the ω-effect dominates its an αω dynamo 
•  We can also have α2ω dynamo where both mechanisms operate 

(9.10) 

(9.11) 

turbulent diffusion 

Stretching  
(ω-effect) 

α-effect 

toroidal 

poloidal 



The Omega effect 

•  In figure, an initial loop of meridional field threads through the 
sphere. 

•  The inside of the sphere is rotating faster than the outside: so we have 
differential rotation. 

•  The induction term                    generates toroidal field by stretching 
•  As seen in figure, opposite sign Bφ is generated on either side of the 

equator, as in the Sun. 

RBp ·��



αω dynamo 



Dynamo wave 
•  One of the most remarkable property of the (linear) αΩ dynamo 

equations is that they support travelling wave solutions. 
•  This was first demonstrated in Cartesian geometry by Parker (1955), 

who proposed that a latitudinally-travelling dynamo wave was at the 
origin of the observed equatorward drift of sunspot emergences in 
the course of the cycle.  

•   This finding was subsequently shown to hold in spherical geometry, 
as well as for non-linear models (Yoshimura 1975, Stix 1976) 

•  A result now known as the Parker-Yoshimura sign rule 



Dynamo wave (cont.) 
•  The simplest analysis of dynamo waves uses Cartesian geometry, 

and we assume the waves are independent of y (toroidal). 

•  Set ψ=0, α =const., vy = Ωz, a constant shear, ignore the α term in 
the B equation (αω model) and set 

•  The dispersion relation is   
 
•  And 

B = (��A/�z, B, �A/�x), v = (���/�z, vy, ��/�x)
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Dynamo wave (cont.)	  
•  Assume αΩ < 0, i.e., α > 0, Ω < 0 and take k < 0 
 
•  Growth rate:  

•  Growing dynamo waves if αΩ term overcomes diffusion 
•  Frequency: 
–  Wave propagation in positive x-direction 
–  This is identical result for k  < 0 
–  if  αΩ > 0, wave propagation in negative x-direction 

•  In general, wave propagates along surfaces of constant rotation 
(Yoshimura 1975) 

•  Direction of propagation depends on sign(αΩ) 

� = i�k2 � (1 + i)
�

|��kx/2|

�Im(�) = ��k2 +
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|��kx/2| � 0 for
�

|��kx/2| � �k2

Re(�) = �
�

|��kx/2| < 0



Spherical αω dynamo	  
•  Integrating the spherical geometry mean field dynamo equations 

(9.10) & (9.11) with 
•  Various choices of the function f(r) and ω(r) is considered in  
•  As expected from simple analysis of plane dynamo waves, αω 

dynamos give oscillatory solutions 
•  The results show that both dipolar and quadrupolar dynamos can 

occur 
•  Dipolar dynamos generally onset before quadrupolar dynamos if 
αω’ < 0 

� = f(r) cos � and v = R�(r)�̂



Spherical αω dynamo (cont.) 

•  Dipolar oscillatory solution of axisymmetric αω-dynamo in a sphere. 
•  (a)-(h) goes through one period. 
•  Right: meridional (poloidal) field, left: toroidal field 
•  B antisymmetric about equator, A symmetric 



Spherical αω dynamo (cont.)	  

•  quadrupolar oscillatory solution of axisymmetric αω-dynamo in a sphere. 
•  (a)-(h) goes through one period. 
•  Right: meridional (poloidal) field, left: toroidal field 
•  B antisymmetric about equator, A symmetric 



Spherical mean field dynamo theory 
•  Brief summary of numerical findings about spherical MFDT model 
–  Generally, α2 models give steady dynamos (no dynamo wave), 
αω dynamos give oscillatory solutions. But, some α distributions, 
particularly if there are positive and negative values in the same 
hemisphere, can give steady αω dynamos. 

–  Meridional circulation, non-zero ψ, can also help to steady αω 
dynamos 

–  Unfortunately, it seems that a different dynamo behavior can be 
found depending on the spatial α distribution, even if α is 
restricted to the isotropic case. This is a major problem for 
modeling, as there is little prospect of determining α by 
observation 



Solar dynamo 
•  αω dynamo in convection zone (in solar interiors),   

�(r) with ��/�r < 0,� � cos �, �T = 1010cm2/s

Stix 1976 



Solar dynamo (cont.)	  
•  Theoretical butterfly diagram 

Charbnneau (2010) 



Solar dynamo (cont.)	  
•  Difficulties of convection zone αω dynamos 

–  Intermittency: B’ >> <B> 
–  Polarity rules: strictly obeyed => B ~ 105 G  (too strong to make dynamo by 

nonlinear saturation) 
–  Magnetic buoyancy and storage problem: rise time << cycle length 
–  Rotation law (does not fit theoretical model & observation) 

Taylor-Proudman state (theory) 

fast 

slow 

moderate 

Angular velocity distribution 
(solar seismology observation) 



Flux-transport dynamo 	  
•  Flux transport dynamos (Choudhuri et al. 1995, Dikpati et al. 1999) 
–  Regeneration of poloidal field through tilt of bipolar active 

regions close to surface (Babcock 1961, Leighton 1969) 
–  rotational shear in tachocline (inside the Sun) 
–  transport of magnetic flux by meridional circulation => 

determines migration direction and cycle period 

Calculated butterfly diagram 
Meridional flow model 



Flux-transport dynamo (cont.)	  
Toroidal filed generated 
at tachocline (inside)	  

Generated poloidal 
filed by α effect 
(Coriolis force)  

Lift-up by magnetic 
buoyancy to surface	  

Poloidal field transported 
inside the sun by medional 
flow 



Flux-transport dynamo (cont.)	  
Animation by 
NASA-GSFC (2008) 

Movie	  here	  



Fast and Slow dynamos 
•  If the magnetic diffusion time is much longer than the turn-over 

time of the flow, the induction equation (9.1) is 

•  Where                    is small. Time is scaled on the turnover time L/
V, L being the length scale of object and V is a typical velocity.  

•  For steady flow, a dynamo driven magnetic field grows 
exponentially                 , and if 
The flow is a fast dynamo if   
 
 
The flow is a slow dynamo if 

�B

�t
+ v ·�B = B ·�v + ��2B
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B � e�t � = Re(�)

lim
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�(�) = �0 > 0
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��0

�(�) = �0 � 0



Fast and Slow dynamos (cont.)	  
•  Fast dynamos grow on the turnover time (months in the Sun) 

not the magnetic diffusion time (millions of years in the Sun).  
•  The solar magnetic cycle operates on a twenty-two year cycle, 

much shorter time than the diffusion time, so it must be a fast 
dynamo. 



The stretch-twist-fold dynamo 

•  A loop of flux is first stretched to twice its length, reducing the 
cross-section by half. 

•  Alfven’s theorem tells that the integrated flux through the loop 
cannot change if diffusion is small, so since the area is halved, the 
field strength must double. 



The stretch-twist-fold dynamo (cont.)	  
•  Now twist the loop to get to (b), and then fold to get to (c).  
•  Apply small diffusion at X to reconnection.  
•  Since the two loops in (d) both have the same flux as in (a), 

because each has half the area and double the field strength, we 
have doubled the total flux.  

•  Repeating the process doubles the flux again, so we have 
exponential growth in this process. 

•  This kind of dynamo process is called stretch-twist-fold dynamo or 
turbulent dynamo or small-scale dynamo 



The stretch-twist-fold dynamo (cont.)	  
•  The stretching phase of the process did work against the hoop stresses 
•  The Lorentz force can be written as 

•  If  

•  The term                      is hoop stress. 
•  Energy conservation means that, because energy is needed to generate 

magnetic field, the fluid flows must be doing work against the 
magnetic forces.   

•  This work must come from an energy source, such as thermal 
convection or mechanical driving (turbulence). 
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1
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The stretch-twist-fold dynamo (cont.)	  

•  This is a fast process, because it happens on the fluid velocity 
turn over time, L=V. 

•  It does however, appeal to ‘small diffusion’ to reconnect in 
step (c) to (d).  

•  The hope is that this reconnection occurs over a very short 
length scale over which diffusion can act quickly, so the small 
diffusion does not slow the process down significantly. 



Basic ideas in nonlinear dynamos 
•  The induction equation is linear in B, so it predicts dynamos that 

either decay or grow for ever. 
•  The field strength at which the dynamo stops growing is determined 

by terms nonlinear in B. 
•  The Lorentz force                                                 is the key nonlinear 

term 
•  Therefore, nonlinear dynamos require analysis of the equation of 

motion 
•  The dynamo stops growing when the Lorentz force changes the flow 

so that dynamo action is reduced.  
•  This process is called dynamo saturation 

j �B = (��B)�B/µ0



Dynamical regimes 
•  Saturation is poorly understood, and is probably different in different 

dynamical regimes. 
•  Here we focus on two problems:  

(i)  dynamo saturation in moderately rotating systems, e.g. the Sun 
(ii)  dynamo saturation in rapidly rotating systems, dominated by Coriolis force, 

e.g. the Earth’s core  

•  The essential difference between (i) and (ii) is whether the rotation 
rate is fast or slow compared to the flow turnover time. 

•  The Rossby number is defined by Ro = U/LΩ	

–  In the interior of the Sun, Ro ~ 1 (it is larger near the surface) 
–  In the Earth’s core it is 10-7, corresponding to very rapid rotation 



Stellar dynamo saturation mechanisms 

•  Three different mechanisms of saturation have been proposed for 
stellar dynamos: 

(1)  omega-quenching: 
–   in most solar dynamo models, differential rotation generates toroidal field 

from poloidal field.  
–  The Lorentz force acts to stop the differential rotation, because the tension 

in the field lines opposes the shear. 

(2) Magnetic buoyancy: 
–  a magnetic flux tube is lighter than its surroundings.  
–  Magnetic pressure in the tube means the gas pressure is reduced.  
–  Flux tubes therefore float upwards, removing themselves from the active 

dynamo region. 



Stellar dynamo saturation mechanisms 
(cont.)	  

(3) Alpha-quenching: 
–  the magnetic field will stop the helical small-scale motions (turbulence) that 

create the mean field.  
–  Therefore we expect the helicity to drop when the field strength is large, and 

thus dynamo action to cease.  
–  This may be primarily mechanism for a mean field dynamo.  
–  Many models suggest that the alpha-effect should be quenched at relatively 

low field strengths, but nevertheless the Sun appears to achieve strong fields. 



Stellar dynamo saturation mechanisms 
(cont.)	  

•  In convection driven dynamos, the field can affect the stretching 
properties of the flow.  

•  Unfortunately, subtle changes in the flow pattern can radically alter 
stretching properties.  

•  The rate of creation of magnetic energy is through 
•  At large Rm, v and B are often nearly parallel. 
•  This means that small changes in the angle between v and j x B can 

strongly affect field generation. 

v · j �B



Summary 
•  Astrophysical dynamo is a important mechanism to make 

magnetic field via electric current (field) and kinetic motion. 
•  From anti-dynamo theorem, a steady axisymmetric magnetic field 

cannot be maintained = need to remove axisymmetry for dynamo. 
•  In mean-field dynamo theory, small scale turbulent fluctuation 

contributes to produce poloidal magnetic field via electromotive 
force (α-effect). 

•  Omega-effect (stretching) via differential rotation produces 
toroidal magnetic field 

•  αω dynamo predicts dynamo-wave which can explain observed 
equatorward drift of sunspot emergences in the solar cycle.  

•  Turbulent motion is also derived stretch-twist-fold process to make 
magnetic field amplification.  

•  This kind of amplification mechanism is so-called turbulent 
dynamo or small-scale dynamo. 


