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Chapter 5: Waves 1n Plasma
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What defines a wave?

Mechanical Example:

— Sound, string, water
Energy transfer
Restoring forces:

— Pressure, tension, gravity
Characteristics:

— Wave speed

— Motion of medium

— Direction of propagation

Dispersion relation — very important
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Simple wave representation

For plane waves propagating with wave vector k = (k,, k,, k,) and
angular frequency w, [where r = (x, y, z) 1s the position vector]

U= Cyexpli(k-r— wt)]
And for propagation in only the x-direction
U = Cy expli(kx — wt)]

Constant phase 1s maintained for a point on the wave when,

d
%(kx—wt):() ’\/\/\/
d(k
(dtx) —w=0
dr W

g p Phase speed




Wave group speed

Phase speed 1s not the rate of information (1.e., energy) transfer

Group speed 1s similarly defined, but for constant phase on a
modulated wave envelope,

U x expli(Akxr — Awt)]
Giving,
d

d:z:_Aw
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Aw—0

Aw dw
lim Ak ) = qr = Ve group speed




Wave dispersion relation

@

* Everything 1s contained in 1
dispersion relation,

w = w(k)

* koften complex, but wave
propagate only for,

R(w(k)) # 0

@ pe

* Daispersion relation indicates
cutoffs and resonances




What makes plasma waves

Plasma properties * Fluid equations
/ * mass continuity
 Gas-like * equation of motion
* energy equation

e charged \ * ideal equation of state

* Magnetic - | |
field > ectromagnetic equations

* Maxwell’s equations
*induction equation
* Ohm’s law




Fluid equation

o dp
Mass continuity: =2 | 7. =0
5 TV (pY)

Using vector 1dentity, it expands as:

0

—p+(’v-V)p+pV-’v:O

ot
Consider gravity force (pg), equation of Motion:

0v

pEwLp(v-V)v:—Vp%—JxB%—pg
Ideal Equation of state: | p — R oT R=ky/m,
u 1s mean atomic weight
D 0 -

Energy (entropy) | D (p\ r Dt Y
equation: Dt \pv) Convective time derivative

L represents all energy losses. Only consider adiabatic case (L=0)



Modified energy equation
Apply change rule
D (p):i@_ v Dp _
Dt \ p¥ oY Dt pytl Dt
Expand D/Dt

0

1op 1 Yp Op  yp
+ (U.V)p_p7+18t_p7+1

Op P | Op _
8t+(v V)p —[E—I—(U-V)p]—O

(v-V)p=0

But — [c?—[t) + (v - V) p] = pV - v from mass continuity equation,

dp VP B
5 +(v-V)p+ F(pv-v) =0
dp

EJF(’U'V)Z?:—’YPV"U




Electromagnetic equation

Ampere’s law: |V x B = ugJ

Solenoidal constraints: V.B=0

Faraday’s law: oB = _-VxE

ot

Gauss’s law: |V - FE = ?
0

Ohm’s law: J=0(E +v x B)

OB

Induction equation: 5 = V X (v X B)

diffusivity term 1S 1gnored



Wave assumptions

Wave amplitudes are small

=> allows for linearization of MHD equations

Basic state 1s a static equilibrium

Equation of motion:

0= —Vpy+ Jog x By + pog

Solenoidal constraints: | V- By = 0 (B)

R

Ideal equation of state: | pyg = — poT (C)
L4

Quantities X, and X,, are the initial equilibrium state

Not necessary to static

(A)



Wave perturbations

e After wave 1nitiation,
B = By+ By(r,t)
v = wvg+vi(r,t)
p = po+pi(r,t)
p = po+pi(rt)
T = Ty+Ti(r,t)
— X and X are perturbed quantities
— X, and X, are applied perturbation (<< X, and X, quantities)

e Static initial condition:

—v,=0, v=v (rt
- .lg ) .. 0X o 0Xo
— Initial quantities are time independent =0 = 0,

Ot " Ot




MHD linearization

Put perturbed quantities into MHD equations and neglect products
of small terms (1.e., X, Y))

Continuity equation:

dp B
a—l—v-(p’v)—o

o, 9,
—50?0+%—|—V° (p0v1)+V-(p1'01) =0

.. Opo .
But with T O and dropping XY, terms,

%,
SV (povi) = 0




MHD linearization (cont.)

* Equation of motion: 5,

p§+p(v-V)fv:—Vp+J><B+pg

8’01

0
P ,0)% + po(V1=N)TL + p1 (VL N)TT =

—Vpo — Vp1 +Jog X Bog+ Jog X By +J1 X By + Jir 4871 + pog + p19

* Neglecting XY, terms and substituting for J,
8'01 V X B() V X Bl

po— = —Vpi+ x B1+ x Bo+p19+(—VpotJoxBo+pg)
ot o 1o
* But,—Vpo + Jo X Bg+ pog =0
ov V x B V x B
L= —Vp + > % B + L x Bo + p1g

PO,
ot Mo 1o




MHD linearization (cont.)

Adiabatic energy equation: op +(v-V)p=—ypV - v

ot
opé | Op1 \
2 T T Vpo + (vieMIpL = —peV e vn — yplVeoy

But % — 0 and dropping X, Y, terms,

0
% + (v1-V)po = —ypoV - v1

Induction equation: 9B
E =V X (’U X B)

0B 0B _
0 1:V><(v1><Bo)—|—V><(fle51)

9 T o

But 0Bo _ 0 and dropping X, Y, terms,

ot B
(’9—151 =V X (’01 X Bo)




MHD linearization (cont.)
R

Ideal equation of state: p = —pT
7
R R R R
po +p1 = —polo + —pilo + —polt + —pily
Z T T Iz

R
But po = ﬁpoTo and dropping X, Y, terms,

R R
p1 = —p1lo + —poli
w w

Solenoidal constraints: V. B =0
\N-By+V-B;=0
ButwithV:-Bg =0

V-B1=0




Summary of linearized MHD equations

8’01 V X BQ V X Bl
po— = —Vp1 + X B+ X Bg + 5.2
o 1 o 1 0 o tTpP1g (52
Op
0_751 + (v1-V)po = —ypoV - v1  (5.3)
0B
a—tl =V X (’Ul X BQ) (5.4)

R R
p1 = —p1do + —poly (5.5)
p p

V-By =0 (5.6)



Simple wave solutions

Looking for plane waves of form,
U=Cpyexpli(k-r—wt)]

with angular frequency w, wave vector k = (k,, k,, k,), with
position vector r = (X, y, z). Note, k=2 /A.

k-k=Fk =kl+k +k
Useful solutions for Fourier analysis since,
0 , 0? 5 0 0?

. 2
- — —WW, w — —W , % — —ka, - _kx

ot Ox?
V -1k, V-—1i1k, Vx —ikx



Acoustic (pressure) wave equations

* Ignore magnetic field and gravity (i.e., B =g = 0)

* Assume homogeneous medium

* From equilibrium (A), Vpg =0 and po = const.
* From simplicity, po = const.

* Linearized equations reduce to:

0p1

CH R +poV-v1=0 — —iwp;+ipgk-v1)=0 (.7
ov . .
(5.2) p()@_tl =—-Vp1 — —iwpovy = —tkp (5.8)
%) . .
(53) L= _pVevy —  —iwpy = —iypo(k-v1) (5.9



Acoustic wave properties

From (5.8) ” <10
= () e e

— v, parallel to k&
— particle motion along propagation direction (longitudinal)

Also k- o)
- U
From (5.7) AL 1 (5.11)
L0 W
k-v
From (5.9) D1 = 1o tE ) _ 2Pop
L0
. 0
Defining the sound speed C? = %

P1=Cop1 (5.12)
— for k-wvy #0, then p; and p; # 0 (compressive)



Acoustic dispersion relation

Taking scalar product with & to eq(5.10),

kv = (p1 )k k= (p—l)kQ
wWpo wWpo
Rearranging eq(5.11) and (5.12),

(k vl) Wpl

Po
p1
s

Substitute, (k-v1) =
Equating k - vy,

( P1 ) 12 — wp1
wWpPo C00

w? = k*c2 | (5.13) Dispersion relation

P1 =
wp1
c3P0




Acoustic phase and group speeds

* Phase speed. W
— Fromeq (5.13): % — 6
vy = vpk’ = +c k'

* Group velocity: Ow ow OJw Ow
Y9 0k~ \ Ok, Ok, Ok
x Y z

— From eq (5.13): 2 :cz(k§+k§+kg)
— Difh tiati
1fferentiating, Zwa—w _ c§(2k$,2ky,2kz)

ok
ow ¢
— == kka 7kz




Acoustic wave complications

Consider hydrostatic equilibrium, Vpg = —pog
po(z) = po(0) exp (—z/H)
po(z) = po(0) exp (—z/H)

Where H is the pressure scale height,

RT
7 — Pbo.
Pog g
Pressure variations follow
0*Q 9*Q

W—C()azg +Q2(2)Q =0
w? = k2c + Q2

Real solutions (propagation) for k, > 0
Cs

W>Qs:wac:ﬁ



Acoustic wave summary
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* Restoring force: pressure
* Directionality: 1sotropic

w

e

* Phase speed: c,
* QGroup speed: ¢,

—C

k

S



Waves 1in magnetic field

—  k

AVAVAVAVAVAV

There are two type of propagating waves in magnetic field

Because magnetic field has two forces, magnetic tension and
magnetic pressure.

Both forces are coming J x B force



Alfven wave equations

* Ignore pressure and gravity (1.e., p, = g = 0)
— From equilibrium (A), 0 = po(Jp x Bp) = (V x By) x By
— Assume no pressure variations, p; = p; =0
— Assume uniform equilibrium field distribution, By = Bpz

* Linearized equations reduce to:

(5.1) V-vy=0 — i(k-v1)=0 (5.14)
0 V x B , k x B

(5.2) p()ﬂ = ( 1) X B() — WPV = (Z 1) X B() (5.15)
ot % O
0B . .

54 —— =V Xx(vy1 X Bg) — —iwB] =ik x (v1 X By) (5.16)

ot
(5.6) V-By - 1k-B; =0 (5.17)



(shear) Alfven wave properties

Fromeq (5.1), V-v; =0
no divergent/convergent motions (incompressible)
From eq (5.14), k - v1 = kvy cos O, =0
Orp, = 90°
v, at right angles to k (transverse)

Taking scalar product with B,

From eq (5.15),
(k X Bl)

Ho
V1 - Bo = UlBQ COS@UlB =0

(V.-Bg=0)

—wp()’vl-B(): XBO-B():O

v, B = 90° (5.18)

v, at right angles to B, (perpendicular)



(Shear) Alfven wave properties (cont.)

Expand eq (5.16) using standard vector 1dentity,

—CUBl = kX (’01 X Bo)

= (k . Bo)v1 — (k . ’U1)B0

But (k - v1) = 0 from eq (5.14),

—wBq = (k . Bo)’v1 (5.19)
Taking scalar product with B,,

—w31 . B() = (k . B())(’Ul . BO)
But (v] - Bp) = 0 from eq (5.18),

B - By = ByBj cos (93031 =0 (5.20)
cosp,B, = 90°

B, at right angles to B, (perpendicular)



(Shear) Alfven dispersion relation

* Multiply eq (5.16) by w and substitute for v, from eq (5.15),
1

w*B1 = ——k x {[(k x B1) x By] x By} (521
0 L0
* Expanding mner triple vector product,
(AxB)xC=(C-A)B—-(C-B)A
(kx B1) x Bp=(Bg-k)B1 — (Bg- B1)k
* But (Bg- B;) =0 from eq (5.20),
k x{[(k x B1) X Bg] x Bg} = kx{|(Bo-k)B1] x By}
= (k- Bo)[(Bo-k)B1] — (k- [(Bo - k)B1|)Bo
= (k-By)*B; — (k- B1)(By - k)By

« And (k- B1) =0 fromeq(5.17),
k x {[(k X Bl) X Bo] X B()} — (k y Bo)2Bl



(Shear) Alfven dispersion relation (cont.)

k- By)?
 Fromeq (5.21), w’B; = ( 0) B
H0 L0
k- Bg)?
o2 — (k- Bo) (5.22)
H0 L0

* Recallthat By = Byz and (k- 2) = k, = kcosbip, ,

) (k- z)2B2 (k cos OB, ) B3
w- =
10 L0 0 L0

* Defining the Alfven speed,
By
100
* Dispersion relation is | w* = (k cos 0 30)2?)124 (5.23)

vy =




(Shear) Alfven phase and group speeds

Shear Alfven waves are anisotropic
— (k- Bg) term in eq (5.22), the generalized dispersion relation

Phase speed:

From eq (5.23) % = Fva Cos ekBO —Up
Group velocity: Ow Ow Ow Ow
T (8/%’ Ok, ak)
Fromeq(5.23)  , _ +vak cos Oy,
= dvak,
Differentiating: O )
P TUAZ = Vg




(shear) Alfven wave summary

w
BO

V,=V5C080p

‘ ekBO k

V=V A

* Restoring force: B-field tension * Phase speed: v,c0s6,p,
* Directionality: anisotropic «  Group speed: v,



Torsional Alfven wave

* In cylindrically symmetric geometry T,
with an axial field (B,), there exist
waves which posses only azimuthal
component

 Such wave as known as torsional
Alfven wave

* Torsional Alfven wave propagates with ||} +-

v,= v, along axial magnetic field LD




Compressional Alfven wave

In shear Alfven wave, we assume incompressible (V - v = 0).

If we consider compression (by magnetic pressure), we obtain
another solution of Alfven wave. This 1s called compressional
Alfven wave

Dispersion relation 1s

w = kvg

The phase velocity and group velocity 1s v, =v,=v,

g
Compressional Alfven wave 1s 1sotropic

If 05, = 7/2 (perpendicular direction against B,) , v, || k. So it is
compression wave

If 05, = 0 (parallel direction to B,)), compressional wave 1s
matched with shear Alfven wave (not compressional)



Compressional Alfven wave summary

compressional

* Restoring force: B-field tension & magnetic pressure
* Directionality: 1sotropic



Alfven wave example

Alfven wave 1n solar corona (Hinode, Ca

II H spectral line)
Double helix nebula in the
galaxy (IR)
Movie here
g e '/J'_\



Magnetoacoustic wave equation

Ignore gravity (1.e., g = 0), consider compressible (gas pressure &
magnetic pressure)

— assume uniform equilibrium field distribution, B, = B,2

Linearized equations reduce to, By = By /By
w2’01 9 9 ~
> = k“cos”(Oxp,)v1 — (k - v1)k cos(0xB,)Bo
A

2

+ [(1 + S—;) (k-v1) —kcos(bip,)(Bo-v1)| k (524)
A

with resulting dispersion relation,

wt — kA (2 +vq) + Avik? cos? Op, = 0




Derivation of dispersion relation for
magnetoacoustic wave
* First Eq(5.24) * k & Eq (5.24) * B, (dot product)

* From these two equations, deleted (v - k) & (v - By)



Magnetoacoustic wave properties

e Phase velocities:

W2, (EH0R) /(24 03)? — 42} cos?(Oh, )
2T 2
(2 +03) =\ /(& +03) — 46203 cos? (O,
v, = 5
Alfven Along B, Magnetic tension
Fast 1sotropic Magnetic pressure Gas pressure
Slow Roughly along B, Gas pressure Magnetic
tension




Magnetoacoustic wave phase and
group speeds

For low-beta case (¢, <v,)

Phase speed

Group speed




Magnetoacoustic low beta high beta

(Cs < VA) (a) Phase diagrams (Cs > VA)

wave phase and g et
group speeds

v

I

0.0

(cont.) o [ -

Vi
Va |
* Low beta case: _%y ol

* Fast mode propagates

N2
Tron
IR0,

at Alfven Speed e -11.0 0;0 1.0 e -:.0 0;0 1.0 e -110 070
e Slow mode ~ 1D sound : :
. (b) Group diagrams
wave gu1ded by ﬁeld c/b=0.8 cb=1.0 clb=12
2.0 2.0 2.0

* High beta case: ol
 Fast mode behaves like
N

0.0 0.0

sound wave (restoring
force 1s magnetic

Vs
W)
SN

pressure) 1o
* Slow mode propagates
at AlfVen Speed 0 1.0 0.0 1.0 =0 0 1.0 =0 1.0 0.0




Summary 1

Acoustic waves
— particle motion along k& direction (longitudinal)
— phase and group speeds are c, in all directions (isotropic)

(Shear) Alfven waves
— particle motion at right angles to k£ direction (transverse)
— B perturbation at right angles to k£ direction (perpendicular)
— phase speed varies as v,cos 0,5, (anisotropic)

— group speed is v, along B direction (anisotropic)

Magnetoacoustic waves
Alfven — as above
Fast — gas and B pressure in phase, also isotropic

Slow — gas and B pressure out of phase, also anisotropic



Sound speed and Alfven speed

* Typical velocity of Sound wave and Alfven wave 1n the universe

Sound wave
* When y=5/3, m=0.5m,, u=0.5 (fully ionized hydrogen gas),

cs ~ 1.66 X 1()4T01/2 (cm/s) p=nkpT = P
KTy
e T,~10% (stellar atmosphere) => ¢, ~ 16 km/s
« T,~108 (cluster of galaxies) => ¢, ~ 1.6 x 103 km/s

Alfven wave

B n 1/2
5 0




Waves 1n gravitational field

Next, we consider the wave propagating in the gravitational
field.

Such waves, we called gravity wave (not gravitational wave)

Internal gravity wave

Acoustic gravity wave



Internal gravity wave

Consider a blob of plasma, which displaced
vertically a distance oz from equilibrium z+dz =1 | PoTOP

Assumption:

(1) Remains in pressure equilibrium with
its surrounding z - Po

(2) Density changes inside the blob are adiabatic
At original height z, the blob are 1n equilibrium balance between
pressure gradient and gravity
dpo

— 5.25
7 P09 (5.25)



Internal gravity wave (cont.)

* Qutside the blob the pressure and density at height z+0z are
PoT0py, & Py1+0p,, by €q (5.25),

d
opo = —pogdz, 0pg = %52 (5.26)
2

* Inside the blob the pressure and density at height z+09z are p,+op
& p,+0p, by assumption (1),

Op = 0po = —pPogoz  (5.27)
* Assumption (2) means that, as the blob rises, its pressure and
density obey p/p'= const, So that dp=c.>dp, from eq (5.27) internal
density change as

0
6p = —'0052 - (5.28)

S




Internal gravity wave (cont.)

Since the new density inside the blob differs from the ambient
density at 1ts new height, the blob experiences a buoyancy force

From eq (5.26) & (5.28),
9(6po — 6p) = —N2ppsz (529

Brunt-Vaisala frequency

An alternative expression 1s obtained by eq(5.25) & adiabatic EoS
(Po=pPoRT,y/ 1, py/ py/=const):

g dT() d1’
N? = — —
e (i),

T T
where (d_> _ (y—1) 09
ad




Internal gravity wave (cont.)

In general, N varies with height z but, 1n particular case when the
equilibrium temperature (7;) 1s uniform (no dependence on height),

2 (’Y—1)92
N* = c§

In the presence of a horizontal magnetic field, Brunt-Vaisala
frequency is increased to

Or in case of uniform temperature

2 2

g &
N2:_2(7_ 2 .92)

Cq Cs + V%




Internal gravity wave (cont.)

If the only resultant force acting on the plasma blob is due to
buoyancy, (eq. 5.29), the equation of motion becomes

d*(62)
0 12

When N?> 0, this is simple harmonic motion with frequency w=N

= —N°ppdz  (5.30)

So that the temperature decreases with height more slowly than
adiabatic (= 1sothermal)

_@ < — d_T Schwarzschild criterion for
dz dz ) 4| convective stability

If temperature decreases with height faster than adiabatic, the
condition N2> 0 is violated => solution of €q(5.30) is exponentially
growing (convective instability)

The region of the solar interior where this 1s so 1s convection zone

(Using entropy, we can also discuss this criterion)



Internal gravity wave (cont.)

The simple harmonic motion leads to expect the existence of gravity
waves when N> 0 due to the tendency for plasma to oscillate slowly

with frequency N
Linearize equation:

v = h(k - v1) +i(y — Dk - v1)2 + ighvi.
Taking scalar product with k and \hat{z} in turn and gathering
together terms in v,, and k*v,,

igh*vi. = (k-v){w’ — Gk® —i(y — 1)gk.}
(W —igho)vi. = (k-vi){csk: +i(y —1)g}
Then an elimination of (k*v,)/v,,

(w? —igh,){w? — 3k* —i(y — 1)gk.} = igh*{cZk, +i(y — 1)g}
(5.31)



Internal gravity wave (cont.)

The object 1s to seek waves with a frequency of the order of Brunt-
Vaisala frequency (N) and much slower than that of sound waves,

SO

wrg/es K ke

The wavelength 1s much smaller than a scale-height,. Eq (5.31)

reduces to

W m (y = 1)gA(1 — K2/K?)
0, = cos” (k. /k) : the inclination between the propagation

direction and z-axis

The dispersion relation (temperature 1s uniform) 1s

w = Nsinb,

Internal gravity wave

where

N? =

(v —1)g?

2
Cs

Typical value for N-! is 50s. So the gravity mode tends to be rather
slow by comparison with other wave




Properties of internal gravity wave

N
Phase speed: v, = % =7 sin 6, Z

They propagate along two cones with angle 6,
(not propagate in vertical direction)

7

z-component of group velocity:

- Ow  wk, g

T Ok, K2

A group of upwind propagating wave carries
energy downward (negative direction)

group velocity is in a direction perpendicular to
the surface of the cone with angle 6,



Acoustic-gravity wave

Consider propagation of sound (acoustic) wave 1n gravitational field
(consider compressibility and buoyancy forces are present together)

Using linearize equation 1s the same as internal gravity wave:

v = h(k-v1) +i(y — Dk - v1)2 + ighvi.

We consider k=(k
After some calculation, we get dispersion relation

2.2
—{k§+</~c -|-Z;Cg> +746‘Z}c2w2+(7 1)g2k2 = 0

S

k) and v,=(v,, v,)

X2 'z




Acoustic-gravity wave (cont.)

v -1y’ v’g°

We define NZZ( 02) . NI = 102
Ns k,/2 k.2
E=k+i—2, sm@—l——— -

Cs K2 k2
The dispersion relation 1s rewritten as

C

N2
— (/@'Q—F—;)cw 1+ N? 2]{/28111 9’ =0

S

When y=2, N=N. But this 1s not realistic. When y=5/3, N, ~ 1.02N
So usually N, > N

When w? < k22 ¢, w~ N sin2 9; . This is internal gravity mode (g-
mode).

When w? > N, w~ k'c, . This is acoustic wave mode (p-mode).



Acoustic-gravity wave (cont.)

When this wave propagates perpendicular direction ((9; —0),
w? =N 32 + k' 263

Therefore, p-mode only exists when w > N

If acoustic-gravity wave propagates not perpendicular direction,
there are two solution (£’2 > 0, w* > 0)

Dispersion relation 1s

1
w? = 5 (k’ch + N2 + \/(k’ch + N2)2 — 4N2c2k"2 sin? qu)

From this, the solutions are w < Nsinf, or w > N;




Acoustic-gravity wave (cont.)

higher frequency mode ( w > N,) 1s usually p-mode
but group velocity 1s v, < ¢, even though phase velocity 1s v, > ¢

In the limit of w — Ng, vp, — 00 and vy — 0

Lower frequency mode (w < N sin (9’9 ) 1s usually g-mode
and phase velocity 1s v, < ¢;

In the limit of w — N'siné, , vp — 0

The wave with the frequency between N, and N sin6’, does not
propagate (decays 1n short distance), called evanescent

If £ 1s purely imaginary, the standing wave can exist in this frequency.
But no energy can be propagated.



Acoustic-gravity wave (cont.)

Next, we investigate the wave which propagates perpendicular
direction against k, and o (6°, = 7t/2)

The dispersion relation 1s

N2

4 2 /12
W — (kx+kz + C§
2

) w? + N2k =0
— w¥(w? = N?) — (w?* — N3 k2 = K cPw?

From this, the two solution is £ 2 > 0, @*>0
Therefore the condition for £, > 0 1s

w?(w? = N?) > (w* — N?)c2k?



Acoustic-gravity wave (cont.)

* This condition divides the w - &, plane. This figure sometimes

referred as a diagnostic diagram



Acoustic gravity wave example
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Summary 2

* We have two type of waves propagating in the gravitational
field.

— g-mode (internal gravity wave) restoring by buoyancy force
— p-mode (acoustic wave) restoring by pressure

* Between these two modes, evanescent region exists.






Exercise 2-3

Derivation of dispersion relation of magneto-acoustic waves

From linearized equation:

w2v1
2

= k%cos?(Orp,)v1 — (k- v1)kcos(0yp,) By
YA

+ Kl + %) (k- v1) — kcos(Orp, ) (Bo - v1)| k



Exercise 2-3 (cont.)

* Dot product of k k-Bo=k cos(0xB,)
w?vy 2 2 3
_ 0 -k = k“cos”(Opp,)v1 -k — kcos(Oyp,)(k-v1)(k- By)
2
+ Kl + S—S) (k- v1) — kcos(Okp,)(Bo - ’01)] k?
A
2
= = [kz cos®(OkB,) + k° (1 + —§> — K’ COSQ(QkBo)] (k- v1)
VA
—k? cos(0p, ) (v - By)
c? 5
— 2 (1 + E) (k : ful) — k° COS(HkBO)(’Ul ' BO)
w2 2 Cg 3 >
— —k* 1+ = )| (k-v1) =k’ cos(kp,)(v1 - Bo)  (4)
/UA /UA



Exercise 2-3 (cont.)

* Dot product of By = k- By = kcos(bkp,)

w2v1

- BO — k2 COSZ(HkBO)’Ul ' BO — (k- vl)kCOS(ekBo)

V4

4 [(1 1 %) (k- v1) — kcos(0yp, ) (v1 - Bo)] k- By

— (1 + %) k cos(Okp,)(k - v1) — kcos(Oxp,)(k - v1)

_ (ﬁ) kcos(Orp, ) (k- 01) (5



Exercise 2-3 (cont.)

e From eq(4) & (5), vanish (k- v1)and (v, - By)
2 2 2

w C ?}2 (V)
=k (14+ = 4 = k? cos(0ip, ) —2
7 (1) et~ ot

= W — k*(c? + v})w? — Avik* cos?(Op,) = 0



