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Lecture VI, Exercise 1.

The sound speed c; is given by

We consider the first law of thermodynamics with following forms,

dp = pdh— pTds, 2)
de hdp + pT'ds 3)

Divide both equations and we get
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Therefore eq (1) can be written as
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because pdh = dp if ds = 0.

We consider the pressure p is a function of density and of the specific internal
energy, p = p(p, €). Taking derivative, we obtain

dp = 8—pdp + Ede, 6)

which can be divided by dp to yield
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From the first law of thermodynamics if ds = 0,

de = hdp. 3



Using following relations e = p + pe and h = (e + p)/p = 1 + € + p/p, we obtain
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dp + pde + edp = ?dp (10)
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Adding Egs. (6) and (13) to Eq. (5), the sound speed is written as
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First we consider the ideal-fluid equation of state, p = pe(y — 1). We take a
differential

dp = (v — 1)(pde + edp), (15)
and divide by dp,

dp de
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From the definition of energy density e = p + pe, we take a derivative and using the
first law of thermodynamics,

de = dp+ pde+ edp a7
(1+ e)dp + pde = hdp, (18)
we rewrite it as
d
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Adding Eq. (20) to Eq. (16) we obtain
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Therefore the square of the sound speed using ideal-fluid equation of state is written as
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Second we consider the polytropic equation of state, p = K p'". Taking a differen-

tial we obtain r
dp = (pp) dp 23)

The energy density for polytropic equation of state is written as

1
e=p+ﬁp=p+pe. 24)

Using Egs. (23) and (24), the square of sound speed using the polytropic equation of
state is obtained as
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Lecture VI, Exercise 2.
The pressure has the following relation,
p=pe(y—1) =nme(y—1) = nkpT 27
Therefore the temperature is given by
T="(y-1e (28)
kg
From the first law of thermodynamics,
de = Tds + L.dp. (29)
p
Using Eq. (28), it can be rewritten as
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Using Eq. (27), Eq (31) is also written as
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We can now integrate Eq. (35) to obtain
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Here we consider the polytropic equation of state (p = K p'). The specific internal
energy is given by
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As aresult, Eq. (36) can be written as
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Lecture VI, Exercise 3.
Let’s start from the first law of thermodynamics
dp = pdh — pTds. (40)

Here we consider polytropic equation of state which pressure is a function of density
only (p = p(p)). Therefore
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The specific enthalpy h = e + p/p = 1 + € + p/p. Taking the differential we obtain

dp dp = P,dp. 41)

dh = de +d <i> . 42)

From the polytropic equation of state, we know that the pressure is a function of density
only, so that the internal energy is a function of density only (e = €(p)). Thus,

Oe
de = a—pdp = ¢,dp. (43)

Using Eq (41), the second term of RHS in Eq (42) can be expressed as

1 P, d
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Therefore Eq. (40) is given by
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This equation shows that if 9¢/0p = p/p?, the polytropic equation of state is isentropic

(ds = 0).



