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Lecture I, Exercise 1.

Prove the Newtonian H-theorem, that is,
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where fj is the equilibrium distribution function. Condition (1) is fully equivalent to

the condition
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where f1 9 := f(t, %, U12), fi 2= f(t, T, 11'/172) are the distribution functions before
and after the collision at time ¢ and position &.

Here we introduce Boltzmann’s H function as
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Taking a time derivative gives
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Ifof/ot =0,dH/dt = 0. So dH/dt = 0 is necessary condition for 0 f /0t = 0.
Next, we consider binary collisions, which gives
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By adding Eq. (5) in Eq. (4) we obtain

dH(t)
dt

/d3U1 /d3u2/dQJ(Q)|ﬂ1 — ﬁ2|(féf{ - fzfl)[]. + In fl] = 0, (6)

which is equivalent to
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because the cross section o (£2) is invariant under the swapping of u; with uy. Thus we
can add the two equations to obtain
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Since for each collision there is an inverse collision with the same cross section, the
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integral (8) is invariant under change of @, @y with 47, @,. Similarly fo, f; and f3,
;.
fi,1e.
1>

dH(t)
dt

1 —) —)
5 [ [ [aoo @, - @ - AR+ R = o
(€))
By adding together Eq. (8) and Eq. (9) using d®u}d?u}y = d*uyd>us, |y — @] =
iy — i)|, and o () = /() we obtain
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Using 2 = (f1f2)/(f1f5), this is changed to
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The integrand of Eq. (11) is never positive for x > 0, which implies that
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As aresult, dH /dt = 0 only when

(faft = faf1) = 0. (13)

Lecture I, Exercise 2.

From the properties of H, we can understand the Boltzmann’s H function corresponds
to the entropy of thermodynamics. Time derivative of H shows the H-theorem is
fundamentally irreversible processes from microscopic mechanism. H value is never
changed sign (H is never positive).



