Introduction to the Renormalization Group

Hands-on course to the basics of the RG
(based on: “Introduction to the Functional Renormalization Group”
by P. Kopietz, L. Bartosch, and F. Schütz)

Andreas Kreisel
Institut für Theoretische Physik
Goethe Universität Frankfurt
Germany

Outline

1. History of the RG
2. Phase Transitions and scaling
3. Mean-Field Theory
4. Wilsonian RG
5. Functional (exact) RG
6. Applications
Introduction

- What is the renormalization group?
 “All renormalization group studies have in common the idea of re-expressing the parameters which define a problem in terms of some other, perhaps simpler set, while keeping unchanged those physical aspects of a problem which are of interest.” (John Cardy, 1996)

- “Meta-Theory” about theories

- Make the problem as simple as possible, but not simpler.

- Describe general properties qualitatively, but not necessarily quantitatively.
Quantum Field Theory

- Problem: Perturbation theory in quantum electrodynamics gives rise to infinite terms.

- Solution: all infinities can be absorbed in redefinition (=renormalization) of the parameters which have to be fixed by the experiment.

- Renormalizable theories: finite number n of parameters sufficient, n experiments needed to fix them, predict all other experiments.
Renormalization of QED

- 3 divergent diagrams → 3 parameters
- Electron self energy
 \[\Sigma(P) = \frac{e^2}{8\pi^2\epsilon}(4m - P) \]
 \[m = \frac{Z_m m_r}{Z_2^2} \]
 electron mass renormalization

- Photon self energy
 \[\Pi^{\mu\nu}(P) = \frac{e^2}{6\pi^2\epsilon} \left(K^\mu K^\nu - g^{\mu\nu} K^2 \right) \]
 \[Z_3 = 1 - \frac{e_r^2}{6\pi^2\epsilon} \]
 field renormalization

- Vertex correction
 \[\Lambda(P, P + Q, Q)^\mu = \frac{e^2}{8\pi^2\epsilon} \gamma^\mu \]
 \[e_r^2 = \frac{e^2}{1 - \frac{e^2}{6\pi^2} \ln \mu / \mu_0} \]
 charge renormalization
History

• Kenneth Wilson (1971/1972) calculation of critical exponents which are universal for a class of models
 \[C'(t) = |t|^{-\alpha} \] specific heat
 \[m(t) \sim (-t)^{\beta} \] magnetization
 \[t = \frac{T - T_c}{T_c} \]

• new formulation of the RG idea (Wilsonian RG)

• Nobel Prize in Physics 1982:
 "...for his theory of critical phenomena in connection with phase transitions..."
Phase transitions and scaling hypothesis

- Phase transitions: examples
- Paramagnet-Ferromagnet Transition

ordering parameter: magnetization

\[m = - \lim_{h \to 0} \frac{\partial f}{\partial h} \propto (T_c - T)^\beta \]

critical exponent: general for systems characterized by symmetry and dimensionality
Phase transitions and scaling hypothesis

- Liquid-Gas Transition

order parameter: density

\[n - n_c \propto (T - T_c)^\beta \]

same symmetry class as Ising model (classical spins in a magnetic field)

\[H = -J \sum_{ij} s_i s_j - h \sum_i s_i \]

\[s_i = \pm 1 \]
Universality classes

- **Ising model, gas-liquid transition**
 \[H = -J \sum_{ij} s_i s_j \]
 \[Z_2 : s_i \rightarrow -s_i \]

- **XY_3, Bose gas, (magnets in magnetic fields)**
 \[H = -J \sum_{ij} \left[S_i^x S_j^x + S_i^y S_j^y + (1 + \lambda) S_i^z S_j^z \right] \]
 \[O(2) : \vec{S} \rightarrow \vec{S}' = \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{S} \]

- **Heisenberg**
 \[H = -J \sum_{ij} \vec{S}_i \cdot \vec{S}_j \]
 \[O(3) : \vec{S} \rightarrow \vec{S}' \]
Critical exponents

- specific heat \(C(t) \propto |t|^{-\alpha} \)
- spontaneous magnetization \(m(t) \propto (-t)^{\beta} \)
- magnetic susceptibility \(\chi(t) \propto |t|^{-\gamma} \)
- critical isotherm \(m(h) \propto |h|^{1/\delta} \text{sgn}(h) \)
- correlation length \(G(\vec{r}) \propto \frac{e^{-|\vec{r}|/\xi}}{\sqrt{\xi^{D-3}|r|^{D-1}}} \)
- anomalous dimension \(G(\vec{k}) \sim |\vec{k}|^{-2+\eta} \quad T = T_c \)
Scaling Hypothesis

- only two of six exponents are independent
- consider free energy density
 \[f(t, h) = f_{\text{sing}}(t, h) + f_{\text{reg}}(t, h) \]
- singular part satisfies homogeneity relation
 \[f_{\text{sing}} = \left| t \right|^D/y_t \Phi_\pm \left(\frac{h}{\left| t \right| y_n/y_t} \right) \quad \Phi_\pm(x) = f_{\text{sing}}(\pm 1, x) \]
- critical exponents from derivatives
 \[C = \left. \frac{1}{T_c} \frac{\partial^2 f}{\partial t^2} \right|_{h=0} \propto \left| t \right|^{-\alpha} \]
 \[m = -\left. \frac{\partial f}{\partial h} \right|_{h=0} \propto (-t)^\beta \]
Scaling Hypothesis

- relations between exponents
 \[2 - \alpha = 2\beta + \gamma = \beta(\delta + 1)\]

- scaling hypothesis for correlation function delivers two additional relations
 \[2 - \alpha = D\nu \quad \gamma = (2 - \eta)\nu\]

- relation between thermodynamic exponents and correlation function exponents
 \[
 \begin{align*}
 \alpha & = 2 - D\nu \\
 \beta & = \frac{\nu}{2}(D - 2 + \eta) \\
 \gamma & = \nu(2 - \eta) \\
 \delta & = \frac{D + 2 - \eta}{D - 2 + \eta}
 \end{align*}
 \]
Exercise 1: van der Waals Gas

- equation of state
 \[
 \left(p + a \left(\frac{N}{V} \right)^2 \right) (V - Nb) = NT
 \]

- sketch of isotherms
Exercise 1: Critical properties

- Thermodynamics: calculate free energy from pressure

\[F(T, V) = - \int_{V_0}^V p(V') dV' + \text{const.}(T) \]

\[F(T, V)_{\text{ideal}} = N k_B T \ln \left(\frac{h^3}{(2\pi m k_B T)^{3/2} V} \right) + N k_B T \]

- obtain quantities from derivatives of the free energy

\[C_v = -T \left(\frac{\partial^2 F}{\partial T^2} \right)_V \propto |t|^{-\alpha} \quad \text{specific heat} \]
Exercise 1: Critical exponents (continued)

- use equation of state

\[p(V) = \frac{N k_B T}{V - V_c/3} - 3p_c \frac{V_c^2}{V^2} \]

susceptibility \(\rightarrow \) compressibility

\[\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = -\frac{1}{V} \left(\frac{\partial p}{\partial V} \right)_T,V=V_c^{-1} \propto t^{-\gamma} \]

- rewrite at the critical temperature

\[n = n_c + \Delta n \]

\[p(\Delta n) = p_c + \text{const.} \Delta n^\delta \quad \Rightarrow (n - n_c) \propto (p - p_c)^{1/\delta} \]
Mean Field Theory

- Example: Ising model

\[H = -J \sum_{ij} s_i s_j - h \sum_i s_i \]

- partition function

\[Z(T, h) = \sum_{\{s_i\}} e^{-\beta H} \]

- magnetization

\[m = \langle s_i \rangle = \frac{\sum_{\{s_i\}} s_i e^{-\beta H}}{Z} \]

- simplify term in Hamiltonian

\[s_i s_j = (m + \delta s_i)(m + \delta s_j) = -m^2 + m(s_i + s_j) + \delta s_i + \delta s_j \]

- free spins in field

\[H_{\text{MF}} = N \frac{zJ}{2} m^2 - \sum_i (h + zJm) s_i \]
Mean Field Theory

- calculate partition function and free energy
 \[Z_{\text{MF}}(t, h) = e^{-\beta N Z J m^2/2} \left[2 \cosh[\beta(h + z J m)] \right]^N \]
 magnetization \(m(t, h) \)

- self consistency equation for magnetization
 \[Z_{\text{MF}}(t, h) = e^{-\beta N \mathcal{L}} \]
 \[\frac{\partial \mathcal{L}}{\partial m} = 0 \]
 \[m_0 = \tanh[\beta(h + z J m_0)] \]

- free energy
 \[f(T, h) = \mathcal{L}(T, h, m_0) \]
Mean Field Theory: critical exponents (only correct at D>4)

- minimum condition \[\frac{\partial \mathcal{L}}{\partial m} = (T - T_c)m_0 + \frac{T_c}{3}m_0^3 - h = 0 \]

- magnetization \[m_0 = \sqrt{\frac{T_c - T}{2T_c}} \propto (-t)^{1/2} \quad \beta = 1/2 \]

- susceptibility \[\chi = \frac{\partial m_0}{\partial h} \bigg|_{h=0} \propto \frac{1}{T - T_c} \quad \gamma = 1 \]

- critical isotherm \[m_0(h) \propto h^{1/3} \quad \delta = 3 \]

- specific heat \[C = -T \frac{\partial^2 f(T, h)}{\partial T^2} \]
 \[C \approx T_c \frac{\partial^2 (T \ln 2)}{\partial T^2} \quad T > T_c \]
 \[C \approx T_c \left[\frac{\partial^2 (T \ln 2)}{\partial T^2} - \frac{3(T - T_c)^2}{4T_c} \right] \quad T > T_c \]
 \[\alpha = 0 \]
Wilsonian RG

- Basic idea: take into account interactions iteratively in small steps
- Formulation in terms of functional integrals: example Ising model (\(\varphi^4\) theory)
 \[
 S_{\Lambda_0}[\varphi] = \frac{1}{2} \int \left[r_0 + c_0 \vec{k}^2 \right] \varphi(-\vec{k}) \varphi(\vec{k})
 \]
 free action: particle is characterized by the the values of two parameters
 \[
 S_1 = \frac{n_0}{4!} \int \cdots \int \delta(\vec{k}_1 + \ldots + \vec{k}_4) \varphi(\vec{k}_1) \varphi(\vec{k}_2) \varphi(\vec{k}_3) \varphi(\vec{k}_4)
 \]
 - cutoff \(|\vec{k}| < \Lambda_0 \)
 interaction between (scalar) particles: characterized by the coupling constant
 only particles allowed up to a momentum for example due to a lattice in a condensed matter system
- partition function \[\mathcal{Z} = \int \mathcal{D}[\varphi] e^{S_{\Lambda_0} + S_1} \]
Step 1: Mode elimination

- Integrate out degrees of freedom associated with fluctuations at high energies

\[
\mathcal{Z} = \int \mathcal{D}[\varphi] e^{-S_{\Lambda_0} - S_1} = \int \mathcal{D}[\varphi^<] \int \mathcal{D}[\varphi^>] e^{-S_{\Lambda_0} - S_1}
\]

\[
e^{-S'_\Lambda + S'_1} = \int \mathcal{D}[\varphi^>] e^{-S_{\Lambda_0} - S_1}
\]

End up: theory with modified couplings due to interactions

\[
S'_\Lambda[\varphi] = \frac{1}{2} \int_{\vec{k}} \left[r^< + c^< k^2 \right] \varphi(-\vec{k}) \varphi(\vec{k})
\]

\[
S'_1 = \frac{n^<}{4!} \int_{\vec{k}_1} \cdots \int_{\vec{k}_4} \delta(\vec{k}_1 + \cdots + \vec{k}_4) \varphi(\vec{k}_1) \varphi(\vec{k}_2) \varphi(\vec{k}_3) \varphi(\vec{k}_4)
\]
Step 2: Rescaling

- Fields: defined on reduced space
- Blow up again the momentum space
- Rescale wave vectors to get action with the same form as before (free and interaction part)

\[
\begin{align*}
\vec{k}' &= \Lambda_0 / \Lambda \vec{k} \\
\varphi' &= \zeta_b^{-1} \varphi < \\
\zeta_b &= b^{1+D/2} \sqrt{c_0/c} < \\
b &= \Lambda_0 / \Lambda
\end{align*}
\]
Step 3: Iterative Procedure

- get relations for mode elimination and rescaling (semi-group)
 \[r'(r_0, n_0) = b^2 Z_b \left[r_0 + \frac{n_0}{2} \int_{\Lambda}^{\Lambda_0} \frac{d^D k}{(2\pi)^D} \frac{1}{r_0 + c_0 k^2} \right] \]
 \[n'(r_0, n_0) = b^{4-D} Z_b^2 \left[n_0 - \frac{3n_0^2}{2} \int_{\Lambda}^{\Lambda_0} \frac{d^D k}{(2\pi)^D} \frac{1}{(r_0 + c_0 k^2)^2} \right] \]

- iteration in infinitesimal steps (differential equations: flow equations)
 \[\Lambda = \Lambda_0 e^{-\delta l} \approx \Lambda_0 (1 + \delta l) \]

 \[\partial_l r(l) = 2r(l) + \frac{1}{2} \frac{n(l)}{1 + r(l)} \]

 \[\partial_l n(l) = (4 - D)n(l) + \frac{3}{2} \frac{n(l)^2}{(1 + r(l))^2} \]
Flow diagrams

- solve coupled differential equations for different initial conditions (parameters of real system)
- critical surface: critical systems determined by the values of the coupling constants

one fixed point: Gaussian fixed point (mean field)

two fixed points: Gaussian, Wilson-Fisher
RG fixed points and critical exponents

- RG fixed points: describe scale invariant system
- Critical fixed points
 - relevant / irrelevant directions
 - correlation length: infinite
 - critical manifold
 (surface describes system at critical point)
- Critical exponents
 - eigenvalues of linearised flow equations near to fixed point
Functional renormalization group

- basic idea: Express Wilsonian mode elimination in terms of formally exact functional differential equations
- generating functional of Green functions

\[G^{(n)}_{\alpha_1 \ldots \alpha_n} = \frac{\int \mathcal{D}[\Phi] e^{-S[\Phi]} \Phi_{\alpha_1} \cdots \Phi_{\alpha_n}}{\int \mathcal{D}[\Phi] e^{-S[\Phi]}} \]

\[G[J] = \frac{\int \mathcal{D}[\Phi] e^{-S[\Phi]+(J,\Phi)} \Phi_{\alpha_1} \cdots \Phi_{\alpha_n}}{\int \mathcal{D}[\Phi] e^{-S[\Phi]}} \]

\[G^{(n)}_{\alpha_1 \ldots \alpha_n} = \frac{\delta^n G[J]}{\delta J_{\alpha_1} \cdots \delta J_{\alpha_n}} \]

example: two point function of Ising model

\[G^{(2)}(\mathbf{k}) \propto \frac{1}{|\mathbf{k}|^{2-n}} \]
Exact renormalization group

- introduce cutoff: modify Gaussian propagator:
 allow only propagation of modes up to a certain momentum
 \[S_0 = \frac{1}{2} \int (r_0 + c_0 \vec{k}^2) \varphi(-\vec{k})\varphi(\vec{k}) = \frac{1}{2} \int G_0^{-1}(\vec{k}) \varphi(-\vec{k})\varphi(\vec{k}) \]

 \[G_0(\vec{k}) = \frac{1}{r_0 + c_0 \vec{k}^2} \rightarrow \frac{1 - \Theta_c(\|\vec{k}\| - \Lambda)}{r_0 + c_0 \vec{k}^2} \]

- take derivative of generating functional with respect to cutoff
 \[\rightarrow \text{FRG flow equation} \]
Exact FRG flow equation

- Wetterich equation

\[
\partial_\Lambda \Gamma_\Lambda[\Phi] = \frac{1}{2} \text{Tr} \left[\frac{\partial_\Lambda R_\Lambda}{\partial^2 \Gamma_\Lambda[\Phi]} + R_\Lambda \right]
\]

- flow equations for vertex functions (coupling constants)
Applications

- BCS-BEC crossover (electron gas with attractive interactions)
 - mean field theory (BCS-theory)

\[H = \sum_{\vec{k}\sigma} \epsilon_{\vec{k}\sigma} c_{\vec{k}\sigma}^\dagger c_{\vec{k}\sigma} - \frac{g_0}{V} \sum_{\vec{k},\vec{k}',\vec{p}} c_{\vec{k}+\vec{p}}^\dagger c_{\vec{k}-\vec{k}'}^\dagger c_{\vec{k}'} c_{\vec{k}'} + \Sigma \]

- flow equations of order parameter
- FRG needs additionally Ward identities (relations between vertex functions
Applications

- **interacting fermions**

\[H = \sum_{\vec{k},\vec{k}'\sigma} \epsilon_{\vec{k}\sigma} c_{\vec{k}\sigma}^\dagger c_{\vec{k}\sigma} + \frac{1}{2V} \sum_{\vec{k},\vec{k}',\vec{p},\vec{k}'} V_{\vec{k},\vec{k}',\vec{p}} c_{\vec{k}+\vec{p}}^\dagger c_{\vec{k}\sigma}^\dagger c_{-\vec{k}'} c_{\vec{k}'+\vec{p}} \]

\[Z = \int \mathcal{D}[\psi, \bar{\psi}] e^{-S[\psi, \bar{\psi}]} S_1[\psi, \bar{\psi}] \]

\[S_1[\psi, \bar{\psi}] = \frac{1}{2} \int_{k, k', q} V \bar{\psi} \psi \psi \psi \]

- **Hubbard-Stratonovich transformation**

\[e^{-S_1[\psi, \bar{\psi}]} = \int \mathcal{D}[\phi, \phi^*] e^{-S_0[\phi, \phi^*] - S'[\psi, \bar{\psi}, \phi, \phi^*]} \]

\[S_0[\phi, \phi^*] = \frac{1}{2} \int_k V^{-1} \phi_k^* \phi_k \]

\[e^{-\frac{\chi^2}{2!}} = \int_{-\infty}^{\infty} dx \ e^{-\frac{x^2}{2} - ixy} \]
Hubbard Stratonovich transformation

- interacting fermions \rightarrow bosons and fermions with Yukawa type interaction

$$S_1[\psi, \bar{\psi}] = \frac{1}{2} \int_{k,k',q} V \bar{\psi} \psi \bar{\psi} \psi$$

$$S'[\psi, \bar{\psi}, \phi, \phi^*] = i \int_k \int_q \psi_{k+q} \psi_k \phi_q$$

- FRG of coupled bosons and fermions
Summary

- phase transitions → critical exponents
 \[m = - \lim_{h \to 0} \frac{\partial f}{\partial h} \propto (T_c - T)^\beta \]
- universality classes (same symmetry → same properties at critical point)
- mean field theory
- Wilsonian Renormalisation Group

- functional Renormalization group
Exercise 2: Real-space RG of the 1D Ising model

- model
 \[H = -J \sum_{i=1}^{N} s_i s_{i+1} \]

- transfer matrix method to calculate partition function
 \[Z = \text{Tr}[T^N] \quad T = \begin{pmatrix} e^g & e^{-g} \\ e^{-g} & e^g \end{pmatrix} \quad g = \beta J \]

- calculate trace in diagonal basis
 \[T = U^\dagger \tilde{T} U \quad U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \]
Exercise 2: Real-space RG

- keep only every b’s spin and derive effective model with new coupling

\[Z = \text{Tr}[T^N] = \text{Tr}[T^b] \frac{N}{b} \]

\[T^b = T' = \begin{pmatrix} e^{g'} & e^{-g'} \\ e^{-g'} & e^{g'} \end{pmatrix} \]

- derive recursion relation (RG transformation)

\[g'(g) = \text{Artanh}(\tanh^b(g)) \]
Exercise 2: Real-space RG

- variable transformation
 \[y = e^{-2g} \quad y' = e^{-2g} \quad y'(y) = \frac{(1 + y)^b - (1 - y)^b}{(1 + y)^b + (1 - y)^b} \]

- infinitesimal transformation (differential equation)
 \[b = e^{\delta l} \approx 1 + \delta l \quad \frac{dy}{dl} = \frac{1 - y^2}{2} \ln\left(\frac{1 + y}{1 - y}\right) \]

- fixed points and flow
 \[\frac{dy}{dl} = 0 \]
S.K. Ma:
Modern Theory of Critical Phenomena
(Benjamin/Cummings, Reading, 1976)

N. Goldenfeld:
Lectures on Phase Transitions and the Renormalization Group
(Addison-Weseley, Reading, 1992)

J. Cardy:
Scaling and Renormalization in Statistical Physics

J. Zinn-Justin:
Quantum Field Theory and Critical Phenomena

P. Kopietz, L. Bartosch, F. Schütz:
Introduction to the Functional Renormalization Group
(Springer, Heidelberg, 2010)