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Introduction

e functional renormalization group:

e Wegner, Houghton, 1973: infinite hierarchy of coupled
Integro-differential equations for momentum-dependent vertex
functions

e (functional) RG for Grassmannian functional integral (Shankar '94;
Zanchi & Schulz '96; Halboth & Metzner '00; Honerkamp,
Salmhofer, Furukawa, Rice '01; Kopietz & Busche '01;...).

e functional integro-differential equations: a mathematical nightmare!
severe truncations and hard numerical work necessary to make
progress.

e honest two-loop calculation in 2D still to be done!




e are there non-trivial examples where infinite hierachy of coupled
Integro-differential equations can be solved exactly?

e YES: interacting electrons with dominant forward scattering!

e solutions of infinite hierarchy of flow equations are given by infinite
hierarchy of Ward identities

e flow equation for two-point vertex can be closed and solved exactly
e agreement with bosonization result (of course!)

e possibility to study non-universal effects
(band curvature, crossover scales etc...)

e general problem: how to calculate spectral functions of
strongly correlated systems using RG methods?




Fermions in 1d

e Interaction can be parameterized
In terms of four marginal couplings

® (Jo. forward scattering, opposite Fermi points

® (Jy4. forward scattering, same Fermi point

® (1. backward scattering

® (3. Umklapp scattering (commensurate fi llings)

e RG flow in coupling space has been discussed for many years
(Solyom, 1979; field theory RG).

e No RG calculations of single-particle spectral function

e Tomonaga-Luttinger model: only forward scattering: go,gs;, linear dispersion

exactly solvable via bosonization (Luther and Peschel, 1974)




Spectral function of the TLM
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vanishing density of states at Fermi energy

no jump in momentum distribution at Fermi surface (no quasiparticles)
anomalous scaling

spin-charge separation




e Question: Is it possible to obtain the spectral properties of the TLM
entirely within the framework of the RG?

e strategy:

o decouple electron-electron interaction in the zero-sound channel via
Hubbard-Stratonovich transformation.

e derive exact infinite hierarchy of RG flow equations for coupled
Fermi-Bose field theory

e try so solve hierarchy exactly, guided by Ward identities

e strategy can be generalized to include other scattering channels:
both zero-sound channels, particle-particle on the same footing




HS-Transformation

e aim: functional RG with collective fields (Correia, Polonyi, Richert '01)

e start from action with only density-density e density operators:
Interaction:
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Efficient notation

e collect fields in vector:
O = (P, P, 0)

e symmetrized quadratic part of action:

0 TG O { 0
Gol=| Gt 0 0 , Gp=2ZGp, Z=] 0
0 0 Rt 00
e With bare Green function and bare interaction:
[GO]KG,K’O’ — 6K,K’6c5cr’ GO,G(K) GO,G(K) — [i(*)_ Ekﬁ]_la

[FO]KG,K/O/ — 5;5,_,{, Fo,oa/(K) Fo,oa/(K):ff"'

—, O O




Generating functionals

e generating functional for Green functions:

e With:

(3,9) = (j, ) + (P, ) + (3", ).

e Legendre transformation:

e, Li0]=([0).0)- 6P = I=Zor,

P =
ob

o effective action generates one-line-irreducible (1LI) vertices:

[[D] .= L|DP] —Sp|D].




e relation between connected and 1LI vertices:
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e higher derivatives:
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e band cutoff:

Go(K) — 6(/\<DK </\0)Go(K)
Dk = |&k—&|/Vo

R(K) — B(A < Dg < NAo)R(K)
Dg = |k

e or: only one of these

= new RG schemes due to interaction cutoff <
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e functional RG equation:

0T = —3Tr|ZGTUT{1-GTUT} |

~3Tr|Z6]5T{1-GT=T} .

e With
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e and single scale propagator:

G = —GoA[G;1]G.
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e expand I" in powers of ®
e diagrammatics:
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RG egs. for physical correlation functions

e flow equation for irreducible

polarization:
e USe unsymmetrized vertices and

usual propagators . NN
e pictorial dictionary: % g S48
' _ 0,3 0,3
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RG egs. for phys. corr. func. (cont.)

e vertex corrections:
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Rescaling, classification of vertices

e dimensionless bosonic momenta and frequencies:
g=k/A , E=®/Qr, QN ON> .
e for fermionic momenta use patching construction:

q:(k_kF,O')//\ , €E=W/Qp , Qa A% .

e rescaling of fields, including anomalous rescaling:

1/2 5 1/2
ko= () Boo. Oko= (o) @c
Ko — /\DQ/Z\ Qo > Ko — /\DQ/\VO Qo -

e anomalous dimensions, A = A\ge '

ni=-o0lInzZ . I’_]| — —0, InZ.
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e rescaled vertices with flow equations:

=enm) _ |penm o Mo 9 <59 |fenm
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e scaling dimension of vertices:

D@nm _ (1=n)D+Zmin—(D+29)m/2 forn>1
| (D+2z4)(1-m/2) forn=0

e for Tomonaga-Luttinger model:
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Schwinger Dyson equation,skeleton expansion

e Infinitesimal shifts in the integration variables @,
Schwinger-Dyson equation:

(twl— g |55 |) G101 =0

e translate to equation for I and expand in powers of fields:

ol
N T
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e keep only leading skeleton elements:
R - Y

e numerical solution?

-
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Interaction cutoff scheme

e from now on: only interaction cutoff, exact flow equations:

1 g 1
2,0 -5 2,2 2,1 = 35 2,3

A Perers

e hierarchy with respect to no. of Fermi lines
# on r.h.s of flow equation < # on |.h.s.
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Initial condition

e Fermiloops
P(1)

P(m) P(2)

s

B Y

e linear dispersion: closed-loop theorem

ﬂ“ﬂ —0,
N=/N\g

= pure boson vertices don’t flow

ArOm — 0.

e bare vertex:

2,1 ~ |

%

e all other vertices vanish

m> 2.
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Flow without higher boson vertices

attach an additional Boson
leg in all possible ways

0 = % 45 + /@\‘72,“ N AN AN
% W
+ //2,}\ 2,1 2,1

e sSimple structure, solve complete hierarchy?
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Ward identities

e Action in real space and imaginary time (X = (1,r)):

SEW0 = .Y+ Sld]+ Sy o)
S = 3 [ Bo(¥0re(X)+ Y [dt [d®rd® Fo(r.r)Ea(r —1o(r.r)
SBG0 = i3 [ BolX)o(X)0a(X)

e local gauge transformation: Yg(X) = e %X
e expand generating functional to first order in a:

- 52 - 5 _ 5
0—/{[|w—€.k+k,o‘|‘€.ko] : g — ‘|'JK+K_06-—G_JK0 i g_ }
K JKo

OJKaOJk 1Ko OJK+Ko

e Linearize dispersion: &, i s —¢ko — VFo K,
use Dyson-Schwinger equation, master Ward identity:

LIJKO'

0= (ioT)—vF,o-E) {6¢K / qJK+K0L|JK0:| +I/ T, — Uk Ko x=— Sk

5r 5 ]
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WIs as solution of flow equations

e Ward identity for vertex correction:

G(K+K)I D (K +K;K;K)G(K) = ———[G(K +K) — G(K)
IW—VEg-K
e diagrammatically: consistent with flow
— equations:
Azék":iw—v;ak _‘*} i \ ) e ids trivially fulfilled initially
) B e insert into flow for (2m+1)
— e Intermediate 'breaks’
i — "ok | A - \rZR cancel out
1 | = s e difference of flow
! B of F?M remains

e Ids are conserved

= WIs are valid at every stage of RG flow
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Exact solution of TL model

e Ward ids in flow = closed flow equation for self-energy:

a/\zo(K):GOZ(K)/ Foo(K) (Go(K) —Gg(K+K)]

K (I(I)— VEo - k)Z

e linear integro-differential equation for Green function:

B Foo(K) _
OnGo(K) = /K\(ia) e k)ZJ[GC,(K) G (K +K)|
—HA(K)

e solve by Fourier transformation:

Gy (iw, k) :/dx/dTGo(T,x)ei‘*’T‘ikX
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flow equation in real space:

[9n+HA(X) — HA(0)] Go(X) =0,

solution as in bosonization:

GO'(X) — GG,O (X) eQG(X)

with Debye-Waller factor

Qo (X) = —Sq(X) +Ss(0)

No

So(X) = — . dA'Ha (X) = /K e<il|((|1)<_/\>leG|:)(2K)

cos(wt — k- x)
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Truncation schemes

e for TL-model r]ﬂ’ =0

e simplest approximation: keep only relevant and marginal terms on
r.h.s. of rescaled flow equation

e coupling constants:

~

i=G"gy, V=0sG"o,, A=T?Y(0).

e [i has to be fine tuned, Vv and A don’t flow.
e anomalous dimension as in exact solution:

e Integrate to obtain physical self-energy:

. (K)__/+°°d_a) = dk Foa (100,K) (kc>”
T e 21k 2T (w4 @) — ave (K4 K) 4 five k] \ (K]
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Conclusions

Summary:

e Introduce collective variables in fRG from the very beginning

e new RG schemes due to:
» 1Ll vertices

» momentum transfer cutoff in the interaction

e exact solution of TL model is recovered, ingredients:
» closed loop theorem as initial condition

» Ward identities to close fow equations

Outlook

truncation schemes when Ward ids are not valid
® decoupling in other channels (work in progress)

® Dbroken symmetry

® renormalization of the Fermi surface (S.Ledowski, A. Ferraz, PK, cond-mat/0412620)
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