

Elliptic Flow Results From a Hybrid Model

Workshop on "Flow and Dissipation in Ultrarelativistic Heavy Ion Collisions" 17.09.09, Trento, Italy Hannah Petersen, Universität Frankfurt

Thanks to: Jan Steinheimer, Marcus Bleicher Dirk Rischke (for providing the hydrodynamics code)

Outline

- Model Description
 - Initial Conditions
 - Equations of State (EoS)
 - Freeze-out Scenarios
- Elliptic Flow
 - Comparison of Initial States
 - Time Evolution
 - Dependence on the EoS
 - Influence of the Transition Criterion
- Conclusions and Outlook

(H.P. et al., PRC 78:044901, 2008, arXiv: 0806.1695)

Hybrid Approaches

- Hadronic freezeout following a first order hadronization phase transition in ultrarelativistic heavy ion collisions.
 S.A. Bass, A. Dumitru, M. Bleicher, L. Bravina, E. Zabrodin, H. Stoecker, W. Greiner, Phys.Rev.C60:021902,1999
- Dynamics of hot bulk QCD matter: From the quark gluon plasma to hadronic freezeout.
 S.A. Bass, A. Dumitru, Phys.Rev.C61:064909,2000
- Flow at the SPS and RHIC as a quark gluon plasma signature.
 D. Teaney, J. Lauret, Edward V. Shuryak, Phys.Rev.Lett.86:4783-4786,2001
- A Hydrodynamic description of heavy ion collisions at the SPS and RHIC.
 D. Teaney, J. Lauret, E.V. Shuryak, e-Print: nucl-th/0110037
- Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions.
 T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys.Lett.B636:299-304,2006
- 3-D hydro + cascade model at RHIC.
 C. Nonaka, S.A. Bass, Nucl.Phys.A774:873-876,2006
- Results On Transverse Mass Spectra Obtained With Nexspherio F. Grassi, T. Kodama, Y. Hama, J.Phys.G31:S1041-S1044,2005
- On the Role of Initial Conditions and Final State Interactions in Ultrarelativistic Heavy Ion Collisions
 K. Werner, T. Hirano, I. Karpenko, T. Pierog, S. Porteboeuf, M. Bleicher, S. Haussler J.Phys.G36:064030, 2009

Motivation

- Exploring the differences between transport and hydrodynamics within the same initial conditions and freeze-out
- Calculation with different EoS without adjusting anything else
- Investigate effects of ingredients in a systematic way
- Many observables within the same dynamical approach
- → Here: Concentrate on elliptic flow

Principle Set-Up

- Fix the initial state and freeze-out
 - \rightarrow learn something about the EoS and the effect of viscous dynamics

UrQMD-2.3p1 is available at www.th.physik.uni-frankfurt.de/~urqmd

Initial State

Trento, 17.09.09

 Contracted nuclei have passed through each other

$$t_{start} = \frac{2R}{\gamma v}$$

- Energy is deposited
- Baryon currents have separated
- Energy-, momentum- and baryon number densities are mapped onto the hydro grid
- Event-by-event fluctuations are taken into account
- Spectators are propagated separately in the cascade

(3+1)d Hydrodynamic Evolution

Ideal relativistic one fluid dynamics employing:

- HG: Hadron gas including the same degrees of freedom as in UrQMD (all hadrons with masses up to 2.2 GeV)
- CH: Chiral EoS from SU(3) hadronic Lagrangian with first order transition and critical endpoint
- BM: **Bag Model EoS** with a strong first order phase transition between QGP and hadronic phase

Freeze-out

• Particle distributions are generated according to the **Cooper-Frye** formula $E\frac{dN}{d^3p} = \int_{-\pi}^{\pi} f(x,p)p^{\mu}d\sigma_{\mu}$

with boosted Fermi or Bose distributions f(x,p) including μ_B and μ_S

 Rescatterings and final decays calculated via hadronic cascade (UrQMD)

Hannah Petersen

Final State Interactions

Hannah Petersen

Time Evolution

Central Pb+Pb collisions at 40A GeV:

- •Number of particles decreases in the beginning due to resonance creation
- •Qualitative behaviour very similar in both calculations
- → UrQMD equilibrates to a rather large degree

Multiplicities vs. Energy

- Both models are purely hadronic without phase transition, but different underlying dynamics
- → Results for particle multiplicities from AGS to SPS are similar
- Strangeness is enhanced in the hybrid approach due to local equilibration
- Central (b<3.4 fm) Pb+Pb/Au+Au collisions

Strangeness Centrality Dependence

- Thermal production of the particles at transition from hydro to transport
- Centrality dependence of multistrange hyperons is improved

Initial State for Non-Central Collisions

Pb+Pb at E_{lab} =40 AGeV with b= 7fm at t_{start} =2.83 fm

→ Event-by-event fluctuations are taken into account (H.P. et.al., PRC 79, 054904, 2009)

Comparison of Initial Conditions

 UrQMD initial conditions have a different shape than the ones from a Glauber model (parameters taken from Teaney et al. nucl-th/0110037)

 $\epsilon [GeV/fm^3]$ 14 12 16 14 12 10 8 10 8 6 42 420 y [fm] x [fm Glauber (N_{part}) prop. E 3.5 3 2.5 2 1.5 3.5 3 2.5 2 1.5 1 0.5 1 0.5 y [fm] x [fm]

Averaged (over 100 events)

Initial Transverse Velocity Profile

• The initial velocity is finite in transverse direction

Mid-central (b=5-9 fm) Pb+Pb collisions

Rapidity Spectra

→ Rapidity spectra for pions and kaons are steeper for averaged initial conditions and independent of the initial transverse velocity profiles

Central (b<3.4 fm) Pb+Pb/Au+Au collisions

- The **transverse mass** distributions for pions, kaons and protons do not dependent on the initial conditions
- Difference in the dynamics between hydro and transport becomes visible at 160A GeV

Central (b<3.4 fm) Pb+Pb collisions

Elliptic Flow-Initial Conditions

V₂ is largely insensitive to the initial conditions from UrQMD with respect to fluctuations and inital velocity profile

0.2

0.0

0.4

0.6

0.8 1.0 1.2 1.4 1.6 1.8 2.0

p_t [GeV]

Flow from Different Stages

larger with different transition criterion

Time Evolution of Elliptic Flow

- Elliptic flow develops after t_{start} in the hadronic transport approach
- Different EoS lead to very different behaviour

v₂ Excitation Function for Different EoS

- Final observable value does not depend on EoS
- Influence of transition criterion

Transverse Momentum Dependence

Hydro phase leads to higher flow values, but weak EoS dependence

Dependence on Transition Criterion

- Smaller mean free
 path in the hot and
 dense phase leads to
 higher elliptic flow
- At lower energies: hybrid approach reproduces the pure UrQMD result
- Gradual transition
 leads to a better
 description of the data

(H.P. et.al., PRC 79, 054904, 2009)

Data from E895, E877, NA49, Ceres, Phenix, Phobos, Star

Conclusions and Outlook

- Integrated approach with the same initial conditions and freeze-out for different EoS
- v₂ is largely insensitive to the initial conditions from UrQMD with respect to fluctuations and initial velocity profile
- Averaged UrQMD initial conditions are still different than those from a Glauber model
- Final observable flow is rather insensitive to the EoS
- Elliptic flow is sensitive to the dynamics (transport vs hydro with the same initial conditions) and therefore to **viscosity**
- Choice of transition criterion results in a systematic uncertainity on the order of 20 %
- Compare calculations with different initial conditions like e.g. Glauber, CGC, Gaussian ...
- Implement different transition hypersurfaces (iso-T, iso- $\rho,...$)

Backup

R_o/R_s Ratio

• Hydro phase leads to smaller ratios

- Hydro to transport transition does not matter, if final rescattering is taken into account
- EoS dependence is visible, but not as strong as previuosly predicted (factor of 5)

(Q. Li et al., PLB 674, 111, 2009)

HBT radii

Hydro evolution leads to larger radii, esp. with phase transition

Freeze-out line

Temperature Distributions

Rapidity distribution of the freeze-out temperatures in central Au+Au/Pb+Pb collisions with hadron gas EoS

v_2/ϵ Scaling

•More realistic initial conditions and freeze-out

Qualitative behaviour nicely reproduced

 Uncertainty due to eccentricity calculation

$$\epsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle} \qquad S = \pi \sqrt{\langle x^2 \rangle \langle y^2 \rangle}$$

$$\epsilon_2 = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

Avaraged over particles and events at the same time

Averaged first over particles and then over events

Dependence on Freeze-out

• Variation of the freeze-out criterium does not affect the meson multiplicities and mean transerve masses

Full symbols: 40 AGeV

Open symbols: 11 AGeV

Dependence on t_{start}

Variation of starting time by a factor 4 changes results only by 10 %

Full symbols: 40 AGeV

Open symbols: 11 AGeV

Hannah Petersen

Time scales

