Hybrid Model with the QCD Critical Point

Nagoya University Chiho NONAKA

In collaboration with Asakawa, Bass, and Mueller

September 17, 2009@ECT*

Towards Quantitative Analyses

- Realistic dynamical model
 - 3D Hydro + UrQMD (hadron base event generator)
- Equation of state with QCD critical point
- Physical observables
 - Signals of QCP should survive after freezeout process.
 - Fluctuations
 - Hadron ratios

EOS with QCD Critical Point

- *C.N. and Asakawa, PRC71,044904(2005)* Singular part near QCD critical point + Non-singular part
 - Singular part

EOS of 3-d Ising Model

Parametric Representation of EOS

$$\begin{cases} M = M_0 R^{\beta} \theta \\ h = h_0 R^{\beta} \tilde{h}(\theta) = h R_0^{\beta\delta} (\theta - 0.76201\theta^3 + 0.00804\theta^5) \\ r = R(1 - \theta^2) \qquad (R \ge 0, -1.154 \le \theta \le 1.154) \end{cases}$$

$$r = \frac{T - T_C}{T_C}$$

h : external magnetic field

Guida and Zinn-Justin NPB486(97)626

Mapping : 3D Ising Model QCD

No Universality

- h axis ? 3d Ising model QCD T f h? h? h? μ_B
- Critical Region?
 - Lattice QCD
 - Effective theory
 - Experiments

inputs in our model

Signal of QCP

• Signal of QCD critical point should survive even after freezeout process.

- Fluctuations: conserved values ex. charge, baryon number
- Hadron ratios: fixed at chemical freezeout temperature T_{ch}

Correlation Length

Fluctuation in 1d Hydro.

fluctuation : clear signal?

Signal of QCP

• Signal of QCD critical point should survive even after freezeout process.

- Fluctuations: conserved values ex. charge, baryon number
- Hadron ratios: fixed at chemical freezeout temperature T_{ch} Key: T_{ch} depends on transverse momentum

Demonstration

Equation of State QCD critical point (µ_B,T)=(550,159)

entropy density $s_{10}^{(m^3)}$

trajectories

Isentropic Trajectories

steeper \overline{p} spectra at high $P_{\rm T}$

NA49, PRC73,044910(2006)

3D Hydro+UrQMD with QCP

- Initial Conditions
 - Energy density $\varepsilon(x,y,\eta) = \varepsilon_{\max} W(x,y;b)H(\eta)$
 - Baryon number density $n_B(x,y,\eta) = n_{Bmax}W(x,y;b)H(\eta)$
 - Parameters

$$\tau_{\rm o} = 0.6 \text{ fm/c}$$

 $\eta_{\rm o} = 0.5 \sigma_{\eta} = 1.5$

• Flow

 $v_L = \eta$ (Bjorken's solution); $v_T = o$

- EOS: QCP, Bag Model
- Switching temperature *T*_{sw}=150 [MeV]

Chiho Nonaka

QCP: $T_E = 159$ MeV, $\mu_E = 550$ MeV

 $T_{c}=170$ MeV at $\mu_{B}=0$ MeV •longitudinal direction: $H(\eta)$

3D Hydro + UrQMD

Switching temperature: 150 MeV

Summary

Signal of QCD critical point: p/p ratio as a function of transverse momentum

200

160

120

80

100

Focusing

μ [MeV]

500

700

300

T [MeV]

- Towards quantitative analyses
 - EoS with QCP
 - Focusing effects in isentropic trajectories
- 3D Hydro + UrQMD model
 - *P*_T spectra, hadron ratios