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Anisotropic flow
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v, well understood

Values ofxv2 observed at RHIC
|—> Nearly perfect fluid

Centrality dependence of v,

|—> Not fully thermalized system
Drescher, Dumitru, CG, Ollitrault, Phys. Rev; C76: 024905, 2007

Values observed for v, not explained



Hydrodynamic predictions

Pressure gradient

y

I —» Anisotropic fluid velocity distribution
AP,

m u(g) =U (14 2V3cos2¢ + 2Vicosdg - - - )
w’ .= Anisotropic distribution of particles

el oc e Pu/T — exp (—'m'f“’ﬂ(‘?f’} _ Pt“('ﬁf"j)

’ Nuclear overlap region Pt APt d@ I
Expanding in Fourier series valpe) = L?U (pe — mev)
quadratic in p; IinearTin P,

v,=0.5v,2 at high p,
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PHENIX Results
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PHENIX data for charged pions

my = Py
Au-Au 1.-"#._; = 200GeV

20-60% most central
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Fit formula motivated by hydro

In practice the constant term dominates even at relatively low p;,

Asymptotic value much above the hydro prescription
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Data versus hydro

STAR =
PHENIX =
hydro e .
Au-Au
i i Vs = 200GeV
.............................................................................................. per nucleon
0 50 100 150 200 250 300 350 400

Number of participants

PHENIX: charged hadrons, p, between 1 and 2.4 GeV

STAR:

charged particles, p, between 1 and 2.7 GeV
Data > hydro

Small discrepancy between STAR and PHENIX data

6



Vaivy©

1.5

05}

Experimental errors

STAR ——
PHENIX -0

hydro s ‘
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0

Black errors: statistical errors
from PHENIX

Red errors: Order of magnitude of
the non-flow effects on
the measured v,
(Our estimate)

50 100 150 200 250 300 350 400

Number of participants

Non-Flow effects on v, not included



Initial eccentricity

For each event:
. -The Reaction Plane

eccentricity (or standard
eccentricity) is defined as

-Distribution of participating
nucleons defines the
Participant plane eccentricity
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Data versus eccentricity

fluctuations

no fluctuations ==

50 100 150 200 250 300 350 400

Number of participants

Fluctuations explain
most of the discrepancy
between data and hydro

Can we extract fluctuations from data?
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Fluctuations from v, analyses

Two different ways of extracting fluctuations from data

B. Alver & al, nucl-ex/0608025v2
PHOBOS method B. Alver & al, nucl-ex/0702036v1

Difference between flow analysis methods (our method)

v, available from 2 and 4 particle cumulants

2-particles 122} = ((v2)?)

4-particles (STAR)  v2{4}* = 2((v2)%)? — ((v2)*)

Inverting these relations we obtain

_— = - L . _ e — 2 -
2 =22 2% ey
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Data versus v, fluctuations
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STAR —=—
PHENIX »eo
eccentricity fluct, v i
1.5 fluct. from \'2 ST I ;
no fluctuations e .
o
Z 1 I . .
- ; 9'0 0;.". 0"“.“. B4 . .
(.5 | rossmsssmmssmnsssnsssssmnsssnssssssssssssssssssssssssssssssssssssssssssssssnes
0
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Number of participants

Good agreement with eccentricity fluctuations for the mid-central region

Residual discrepancy between fluctuation models and v, data
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Partial thermalization effects(1)

Hydro implies local thermalization = 1., =>> 1

200GeV Au-Au @ RHIC —> Ty ~3-5
What is the effect on v,/v,2?
i . V2 = Neoll U4 1
Qualitatively n..; << 1 =9 —_
Vg = Neall U5 Tteoll

R. S. Bhalerao & al Phys. Lett. B627:49-54 (2005)

Quantitatively: We use a numerical solution of the relativistic
2+1 d Boltzmann equation to extract the behavior
of v, /v,2.

» degree of
thermalization

System of massless particles \
with arbitrary mean free path (\) | £ =5 =~ -
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Partial thermalization effects (2)

Implementation and initial conditions

*Initial conditions based on a Monte-Carlo sampling

eGaussian density profile (~ Glauber)

v'Aspect ratio oy _ %

g -l"kl.-

Dilute gas —» 2-2 processes dominate

*Thermal Boltzmann momentum distribution (with T=n1/2)

\_p Allow comparison between transport and hydro simulations

eldeal gas EOS
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Partial thermalization effects (3)

Transverse momentum dependence of v,/v,?

: K=0.58 e
K=0.05
\i hydro —— _
15\ For a given value of K
..‘._;\.t‘ : 3 Ui ’ # ’ #
3ot SS2IERS NSRRI SRR v2(ps) Pt
05 | EREREE ST T
0 Fit formula motivated by hydro
0 0.5 1 15 2 25 3
P. [GC\"J"C]

Small effect of the deviation from local equilibrium
*Transport with small K agrees with hydro
As expected, increasing K leads to an increase of v,/v,?
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Partial thermalization effects (4)

K dependence of v,/v,?

Assuming X —A+B I‘:p’i} extract the dependence of A and B on K

va(pe)? Dt
i Transport confirms hydro
|deal Hydro
simulation results 0.8 ' o - ;
R 3 T 7 =052+ 018K
\&EL(T}‘q: N 15 4
04 7
02 , Scaling in 1/ng,
g A as expected from
0 low density limit
0O 02 04 06 08 1 1.2 N <<1
K

Effects of thermalization are small
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Partial thermalization effects(5)

Relating K with measured quantities

0.35 ‘ ‘ ‘
Au-Au, Gl. ---—+-- hydro
Cu-Cu, Gl. vy fEg,
0.3 7 Au-Au, CGC (/2) E————
Cu-Cu, CGC (2) +- & - T
EE l 0.25 -
— =A i
£ 1+ Ko w 02
W
(@
Z 015
1 1 dN
— X (— 0.1
K S dy
0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(1/S) (dN/dy) [mb™']
Drescher, Dumitru, CG, Ollitrault, Phys. Rev; C76: 024905, 2007

o extracted from the centrality dependence of v,
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Comparison with data

2 .
STAR —=—
PHENIX "o
eccentricity fluct, v ;
1.5 Knudsen+fluct. :
fluct. from Vy e
no fluctuations === '5
‘{. 1 I . y
l o R I ;
0.5 b sesssssnnnnnsnnsnnnnnnnnnsnssssnssnisssss
0

0 50 100 150 200 250 300 350 400
Number of participants
Hydro + fluctuations + partial thermalization
explains data except for the most central collisions

CG and Ollitrault, arXiv:0907.4664v1
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Valvy'

Problem of fluctuations model

2
STAR —=—
PHENIX e . :
eccentricity fluct, women H Eccentricity fluctuation model
1.5 no fluctuations s
5 . g
‘ / Central collisions — =1
1 I T ' e e I'E
0 b S L’ 2 dimensional gaussian
statistics

0.5 | rossesssssnnss
O Il
0O 50 100 150 200 250 300 350 400
Number of participants
Uy , : :
Data show 0z = 1.5 requires a different model for fluctuations
2
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Toy model for fluctuations

Gaussian distribution of v, at fixed impact parameter

nT e e 2 L
dN _ 1 B (12 — Keg(b)) with g, :
ﬂ:i-‘g T, 1.,'_.*'“21.1' Eﬂ"g N part

Parameters adjusted to match v2{2} — va{4}

I—p Agreement with previous results for mid-central region

'::.""-'.- ! . .
—p — =43 forcentral collisions

1 dimensional gaussian statistics
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Comparison with data
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05+

Good match for the central and mid-central collisions

STAR —=—
PHENIX » o
Knudsen+fluct. ;
gaussian flow fluct, :
) fluct. from Vy me
i"’f ! o g
2 Y . P oo e
é"“'".?. oo“:., .,Q. ) 3
0 50 100 150 200 250 300 350 400

Number of participants
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Limitations of the Toy Model

No underlying microscopic physical processes

More information needed

To compute the correct statistics for flow fluctuations

Measure of v,{4} for most central bins (not yet available for N, > 300)

'2?2{4}4 — E'J:I:'E.TE)E::-E — n:f:{-t:gj‘l}

|—> May be negative if fluctuations are
large enough

Other observables sensitive to the fluctuation

statistics for central collisions
24



Conclusion

* v, IS mainly induced from v,

» Partial thermalization has a small effect on
V,4/V,2

* Fluctuations+partial thermalization explain
the observations except for the most

central collisions
* Need of a new model for flow fluctuations?
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Flow fluctuations

'K (ol 24 ]_ EE 4 . '{,51::" =0
—3 — ll'l,. 4[ EE::,EI = \'I: 2:;:2 with Vg = -:f'L‘gl:' —+ {TL. . .
vy ((v2)?) 2 ((v2)?) (62) = o2
Azimuthal correlations method Event Plane method
{3 1 2 i {EP 1 a:r2
val3t L 0 4 }2_ (1+u 2)
vp{2}2 2 (v2)? v2{EP} (v2)
4
3.5
3
2.5
i o 2
In practice 15|
resolution £ 0.74 1
0.5

L, % o
v~ 4 0 02 04 06 08 1

reaction plane resolution
a. depends on the reaction plane resolution



Gaussian model of
eccentricity fluctuations

N _ dN 1 et +e?
€= |es(b)Ey + & with derder = —sexp| — >

T, T

Voloshin & al Phys. Lett. B659, 537-541 (2008)

P AN
. . €7 -
Fluctuations satisfy 2 2 for central collisions




Gaussian fit on MC glauber

figure is from Hiroshi Masui
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Dimensionless quantities

characteristic size of the system R
< >

We define 2 dimensionless
guantities
Dilution D=d/A
Knudsen K=A/R~1/n

coll

Boltzmann requires D<<1
|ldeal hydro requires K<<1

Previous study of v, for Au-Au
Average distance Mean free path . At RHIC gives

between particles d Central collisions < K=0.3

Drescher & al, Phys. Rev. C76, 024905 (2007)



Elliptic flow versus Kn
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V,=V,"Yd0/(1+1.4 Kn)

Smooth convergence to ideal hydro as Kn—0



Viscosity and partial
thermalization

 Non relativistic case

ﬂ~)w
0

therm

* |srael-Stewart corresponds to an
expansion in power of Knudsen number



