Manifestations of Viscosity and Early Flow Scott Pratt. Michigan State University

> I. Dynamics and Flow II. Pre-Equilibrium Flow III. Experimental Observables IV. Extracting Viscosity from Experiment

Two Sources of Anisotropy of T _{ij}		1. Shear Viscosity 2. Initial conditions		
MODEL	T _{zz}	T⊥	dE/dŋ	Tr Τ _{αβ}
Fat Flux Tube	-8	٤	∝T	0
Skinny Flux Tube	0	ε/2	constant	0
Ideal Hydro	ε/3	٤/3	∝ τ ^{-1/3}	0
Free-Streaming	0	٤/2	constant	0
CGC (Krasnitz.Nara.Venugopolan)	-ɛ <tzz<0< td=""><td>ε<mark>/2<t< mark="">xx< ε</t<></mark></td><td>≈constant</td><td>0</td></tzz<0<>	ε <mark>/2<t< mark="">xx< ε</t<></mark>	≈constant	0
???????	0	0		

Uncerta	ainti	es and Parameters	
Initial State	6	Energy density, profile shape, rapidity width, pressure, anisotropy of T _{ij} , quark/gluon content	
Hadronic Boltzmann	2-4	Mass changes	
Eq. of State / Viscosity	3-8	Might be constrained by lattice, hadron gas	
Chemical	3-6	Quark density, relaxation rates, hadronic scattering reduction	
Jet Quenching	2-4	Dissipation rates	
Systematic Experimental	?	Efficiencies, calibrations	
Some con	≈ 30 ome ar nbinat	parameters re unimportant tions are unimportant	

Can this work for RHIC?

- * Must be amenable to parameterization
 - * Model must contain basic truth
 - * Not too many competing theories
 - * First apply to soft observables (spectra, flow, HBT...)
 - * Provide validated base for other calculations
- * Must have well stated errors
 - * Statistical & systematic for both theory and experiment
 - * Cross correlated errors
 - * May require re-expression of experimental results
 - * Intimate theory/experimental discussions

