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Cornelius is a subroutine to find the normal vector and size of a 2- or
3-dimensional isosurface element in a 3- or 4-dimensional discrete grid. This
user’s guide applies to the following versions of cornelius:

cornelius.f90 Fortran90 subroutine to find a 3-dimensional (hyper)surface
element in a 4-dimensional (hyper)volume element.

cornelius2.f90 Fortran90 subroutine to find a 2-dimensional (hyper)surface
element in a 3-dimensional (hyper)volume element.

cornelius.cpp C++ subroutine to find either 1-, 2- or 3-dimensional sur-
face in a 2-, 3- or 4-dimensional volume element, respectively.

License

Cornelius is aimed to be used as a part of the fluid dynamical models of
the heavy-ion physics community. Permission to use it for any purpose,
except for any commercial purpose, is granted, provided that any publication
cites the paper describing the algorithm: P. Huovinen and H. Petersen,
arXiv:1206.3371 [nucl-th].

Permission to distribute this subroutine is granted, provided that no
fee is charged, and that this copyright and permission notice appear in
all the copies. Permission to modify this subroutine is granted provided
that the modified subroutine is made publicly available latest when any
results obtained using the modified subroutine are published, the modified
subroutine is distributed under terms similar to this notice, and the modified
code carries both the original copyright notice and notices stating that you
modified it, and a relevant date/year.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of FITNESS
FOR A PARTICULAR PURPOSE.
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General Information

Cornelius is based on an modified version of the algorithm proposed in
Ref. [1]. This “disordered lines” algorithm is explained in detail in Ref. [2].
Cornelius is made for the purpose of evaluating the normal vector, size and
the location of the centroid of the surface elements i.e. the terms ∆σµ in the
discretised Cooper-Frye procedure:

E
dN

dp3
=

∫

σ

dσµp
µf(x, p) ≈

∑

σ

∆σµp
µf(x, p). (1)

Thus it is not suitable for purposes where one wants to find a mesh describing
the surface: The output of the present version of cornelius does not return
the corner points of polygons forming the surface required to form the mesh,
but only the coordinates of the centroid of the polygons.

grid dual of a grid

Figure 1: Gridpoint in the middle of a volume element in a grid, and at the
corners of a volume element in a dual of a grid.

In algorithms solving the equations of motion of fluid dynamics like
SHASTA [3], a grid point is considered to be in the middle of a corre-
sponding volume element. For purposes of surface finding it is useful to
consider the dual of the grid, where the grid points are thought to be at the
corners of a volume element, see Fig. 1. The values between the grid points
are interpolated linearly, and thus an isosurface can be located between two
gridpoints, one of which is above and one below the isovalue, for details
see Ref. [2]. A surface element is thus within a volume element which has
at least one corner above or equal to the isovalue, and at least one corner
below the isovalue. Since the grid in different applications of fluid dynamics
is very different, cornelius does not search for such elements in a grid, it
only evaluates the properties of the surface elements (four vector ∆σµ in
Eq. (1)) within volume elements containing them. Note that the grid where
the surface is searched for, does not need to be the same than where the
hydrodynamical equations are solved. One can use a grid containing, say,
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every second spatial gridpoint, and every fifth timestep. Other combinations
are perfectly possible as well depending on the desired accuracy.

To find the volume elements where the value is equal to the isovalue, it is
practical to use so called exhaustive search method, i.e. to check every single
volume element whether some of its corners are above (or equal) and some
below the isovalue. In practice this can be done during the hydrodynamical
evolution. After i timesteps (i ≥ 1 as described) the n-dimensional arrays
containing the relevant field now and i timesteps ago are combined to form a
n+1-dimensional array. All the volume elements are checked whether some
of the corners are above (or equal) and some below the isovalue. If this is
the case, the volume element contains a surface element, and its properties
are evaluated using cornelius. Note that checking the volume elements is
a n-dimensional task, since all the volume elements are between the grid
points, and there are only two points in time direction in this grid. After
the entire grid has been searched, the field at this timestep is stored in
the array containing the earlier timestep, the system is evolved i timesteps
further, and the procedure is repeated.

Use of cornelius.f90

Once a (hyper)volume element containing a (hyper)surface element, i.e. a
hypercube with corners above and below the criterion, has been located,
and the values in the hypercube corners are stored in an array HyperCube,
subroutine Cornelius is called:

CALL Cornelius(E0,HyperCube,dSigma,Nsurf,Vmid,dt,dx,dy,dz,Nambi,Ndisc)

The arguments are

E0: isovalue, i.e. the criterion for the surface, e.g. freeze-out value for a
freeze-out surface (REAL(KIND(0D0))).

HyperCube(t,i,j,k): A 4D array (2x2x2x2) (REAL(KIND(0D0))) for the
values of the field at the corners of the volume element. The first
index denotes time, the second x, the third y, and the fourth z:
HyperCube(0,0,0,0) ↔ t = 0, x = 0, y = 0, z = 0
HyperCube(0,0,0,1) ↔ t = 0, x = 0, y = 0, z = 1
HyperCube(0,0,1,0) ↔ t = 0, x = 0, y = 1, z = 0
HyperCube(0,0,1,1) ↔ t = 0, x = 0, y = 1, z = 1
HyperCube(0,1,0,0) ↔ t = 0, x = 1, y = 0, z = 0
HyperCube(0,1,0,1) ↔ t = 0, x = 1, y = 0, z = 1
HyperCube(0,1,1,0) ↔ t = 0, x = 1, y = 1, z = 0
HyperCube(0,1,1,1) ↔ t = 0, x = 1, y = 1, z = 1
HyperCube(1,0,0,0) ↔ t = 1, x = 0, y = 0, z = 0
HyperCube(1,0,0,1) ↔ t = 1, x = 0, y = 0, z = 1
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HyperCube(1,0,1,0) ↔ t = 1, x = 0, y = 1, z = 0
HyperCube(1,0,1,1) ↔ t = 1, x = 0, y = 1, z = 1
HyperCube(1,1,0,0) ↔ t = 1, x = 1, y = 0, z = 0
HyperCube(1,1,0,1) ↔ t = 1, x = 1, y = 0, z = 1
HyperCube(1,1,1,0) ↔ t = 1, x = 1, y = 1, z = 0
HyperCube(1,1,1,1) ↔ t = 1, x = 1, y = 1, z = 1

dSigma(i,j) : An array (REAL(KIND(0D0))) to store the normal vector(s) of
the surface elements. The first index runs from 0 to 3, and it contains
the components of a normal vector j. The second index runs from 1
to 8, so there is space for eight vectors in this array. The components
are as expected — dSigma(0,j) is the time component, dSigma(1,j)
the x-component, dSigma(2,j) the y-component, and dSigma(3,j) the
z-component.

Nsurf: Number of separate surface elements within the cube, and thus the
number of separate normal vectors in dSigma (INTEGER).

Vmid(i,j): coordinates of the approximate centroid(s) of the surface ele-
ment(s) evaluated placing the origin at (0,0,0,0) corner of the cube.
Again, Vmid(i,j) is the i’th coordinate of the position vector j.
(REAL(KIND(0D0)))

dt, dx, dy, dz: the lengths of the edges of the cube, which can be multi-
plets of the grid spacing and timestep of the grid where hydro is solved
(REAL(KIND(0D0))).

Nambi: number of ambiguous faces on surfaces, this is only to study the
properties of the surface (INTEGER).

Ndisc: number of disconnected surface-elements so far, also only to produce
some statistics of the surface (INTEGER).

Use of cornelius2.f90

Once a volume element containing a surface element, i.e. a cube with corners
above and below the criterion, has been located, and the values in the cube
corners are stored in an array Cube, subroutine Cornelius2 is called:

CALL Cornelius2(E0,Cube,dSigma,Nsurf,Vmid,dt,dx,dy,Nambi,Ndisc)

The arguments are

E0: isovalue, i.e. the criterion for the surface, e.g. freeze-out value for a
freeze-out surface (REAL(KIND(0D0))).
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Cube(i,j,k): A 3D array (2x2x2) (REAL(KIND(0D0))) for the values of the
field at the corners of the volume element. The first index denotes
time, the second x and third y:
Cube(0,0,0) ↔ t = 0, x = 0, y = 0
Cube(0,0,1) ↔ t = 0, x = 0, y = 1
Cube(0,1,0) ↔ t = 0, x = 1, y = 0
Cube(0,1,1) ↔ t = 0, x = 1, y = 1
Cube(1,0,0) ↔ t = 1, x = 0, y = 0
Cube(1,0,1) ↔ t = 1, x = 0, y = 1
Cube(1,1,0) ↔ t = 1, x = 1, y = 0
Cube(1,1,1) ↔ t = 1, x = 1, y = 1

dSigma(i,j): An array (REAL(KIND(0D0))) to store the normal vector(s) of
the surface elements. The first index runs from 0 to 2, and it contains
the components of a normal vector j. The second index runs from 1
to 4, so there is space for four vectors in this array. The components
are as expected — dSigma(0,j) is the time component, dSigma(1,j) the
x-component, and dSigma(2,j) the y-component.

Nsurf: Number of separate surface elements within the cube, and thus the
number of separate normal vectors in dSigma (INTEGER).

Vmid(i,j): coordinates of the approximate centroid(s) of the surface el-
ement(s) evaluated placing the origin at (0,0,0) corner of the cube.
Again, Vmid(i,j) is the i’th coordinate of the position vector j.
(REAL(KIND(0D0)))

dt, dx, dy: the lengths of the edges of the cube, which can be multiplets
of the grid spacing and timestep of the grid where hydro is solved
(REAL(KIND(0D0))).

Nambi: number of ambiguous faces on surfaces, this is only to study the
properties of the surface (INTEGER).

Ndisc: number of disconnected surface-elements so far, also only to produce
some statistics of the surface (INTEGER).

Use of cornelius.cpp

The C++ version cornelius.cpp is constructed slightly differently. First,
the subroutine is initialised by giving a command

init(dimension,E0,dx)

where the arguments are
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dimension: dimension of the cube where the surface elements are deter-
mined, i.e. this should be 2, 3 or 4 (int).

E0: isovalue, i.e. the criterion for the surface, e.g. freeze-out value for a
freeze-out surface (double).

dx[i]: An array (length dimension) (double*) for the lengths of the edges
of the cube:

4D 3D 2D

dx[0] ↔ dt dx[0] ↔ dt dx[0] ↔ dt

dx[1] ↔ dx dx[1] ↔ dx dx[1] ↔ dx

dx[2] ↔ dy dx[2] ↔ dy

dx[3] ↔ dz

Lengths can be multiplets of the grid spacing and timestep of the grid
where hydro is solved.

After the object has been initialised and the values in the cube corners
are stored in an array HyperCube, it can be passed on to the object by the
following command corresponding the given dimension

find_surface_4d(HyperCube)

find_surface_3d(Cube)

find_surface_2d(Square)

where

HyperCube[i][j][k][l]: A 4D array (2x2x2x2) (double****) for the values
of the field at the corners of the volume element. The first index
denotes time, the second x, the third y and fourth z:
HyperCube[0][0][0][0] ↔ t = 0, x = 0, y = 0, z = 0
HyperCube[0][0][0][1] ↔ t = 0, x = 0, y = 0, z = 1
HyperCube[0][0][1][0] ↔ t = 0, x = 0, y = 1, z = 0
HyperCube[0][0][1][1] ↔ t = 0, x = 0, y = 1, z = 1
HyperCube[0][1][0][0] ↔ t = 0, x = 1, y = 0, z = 0
HyperCube[0][1][0][1] ↔ t = 0, x = 1, y = 0, z = 1
HyperCube[0][1][1][0] ↔ t = 0, x = 1, y = 1, z = 0
HyperCube[0][1][1][1] ↔ t = 0, x = 1, y = 1, z = 1
HyperCube[1][0][0][0] ↔ t = 1, x = 0, y = 0, z = 0
HyperCube[1][0][0][1] ↔ t = 1, x = 0, y = 0, z = 1
HyperCube[1][0][1][0] ↔ t = 1, x = 0, y = 1, z = 0
HyperCube[1][0][1][1] ↔ t = 1, x = 0, y = 1, z = 1
HyperCube[1][1][0][0] ↔ t = 1, x = 1, y = 0, z = 0
HyperCube[1][1][0][1] ↔ t = 1, x = 1, y = 0, z = 1
HyperCube[1][1][1][0] ↔ t = 1, x = 1, y = 1, z = 0
HyperCube[1][1][1][1] ↔ t = 1, x = 1, y = 1, z = 1
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Cube[i][j][k]: A 3D array (2x2x2) (double***) for the values of the field
at the corners of the volume element. The first index denotes time,
the second x and third y:
Cube[0][0][0] ↔ t = 0, x = 0, y = 0
Cube[0][0][1] ↔ t = 0, x = 0, y = 1
Cube[0][1][0] ↔ t = 0, x = 1, y = 0
Cube[0][1][1] ↔ t = 0, x = 1, y = 1
Cube[1][0][0] ↔ t = 1, x = 0, y = 0
Cube[1][0][1] ↔ t = 1, x = 0, y = 1
Cube[1][1][0] ↔ t = 1, x = 1, y = 0
Cube[1][1][1] ↔ t = 1, x = 1, y = 1

Square[i][j]: A 2D array (2x2) (double**) for the values of the field at
the corners of the volume element. The first index denotes time and
second x:
Square[0][0] ↔ t = 0, x = 0
Square[0][1] ↔ t = 0, x = 1
Square[1][0] ↔ t = 1, x = 0
Square[1][1] ↔ t = 1, x = 1

The number of separate surface elements (int) within the volume ele-
ment is subsequently obtained via a command

get_Nelements()

the normal vector components (double) of an element i are obtained using
a command

get_normal_elem(element,component)

and the coordinates of the centroid (double) of an element i are obtained
by

get_centroid_elem(element,component)

where the arguments are

element: number of the surface element of interest in studied cube (int).
Must be in range [0,get_Nelements()-1].

component: number of the component of interest (int):
0 ↔ t-component
1 ↔ x-component
2 ↔ y-component
3 ↔ z-component
Must be in range [0,dimension-1]
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Note that initialisation has to be done only once during the run of the
program, unless the size of the volume element or the isovalue changes.
Same object can also be used for surface finding in a case with a differ-
ent dimensionality just by initializing it again with a different number of
dimensions.

General remarks

Jacobians

Note that if one uses non-Cartesian coordinates, cornelius does not express
the normal vector in the covariant components ∆σµ required in the Eq. (1).
Instead, if qµ are the general coordinates, cornelius returns the normal vector
components ∆σ̃µ = (dq1dq2dq3,−dq0dq2dq3,−dq0dq1dq3,−dq0dq1dq2), but
the covariant components of the same normal vector are

∆σµ =

(

g00

√

|g11g22g33|
√

|g00|
dq1dq2dq3, g11

√

|g00g22g33|
√

|g11|
dq0dq2dq3,

g22

√

|g00g11g33|
√

|g22|
dq0dq1dq3, g33

√

|g00g11g22|
√

|g33|
dq0dq1dq2

)

,

where gµν is the corresponding metric tensor. Thus to obtain the covari-
ant components ∆σµ, users have to multiply the components ∆σ̃µ by the
appropriate factors.

Boost invariant calculation

As an example we show in detail how to use cornelius in a boost invariant cal-
culation. In such a case the problem is how to find a two-dimensional surface
element in three dimensional grid, and one has to use either cornelius2.f90
or initialise cornelius.cpp for a three dimensional search by a command
init(3,E0,dx). Since the calculation in a boost-invariant case is carried
out at midrapidity, the time coordinate τ of Milne coordinates is equal to
Cartesian time coordinate t, and the timestep dt is equal to the multiple of
calculational timesteps. As mentioned, if the coordinates are not Cartesian,
cornelius does not provide the covariant components of the normal vector.
In boost-invariant case all the components of the normal vector must be
multiplied by τ to obtain the covariant components, ∆σi = τVmid(i,j),
or ∆σi = τget normal elem(j,i), where the time τ is the sum of time at
the earlier time step of the volume element, and the time coordinate of the
centroid of the surface element, Vmid(0,j), or get centroid elem(j,0).
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Centroid

For triangles and tetrahedra the center of mass can be easily evaluated as
an average of the coordinates of the corners, but more complicated poly-
gons/polyhedra require more complicated evaluation. For polygons we ap-
proximate the centroid by first calculating the average of the coordinates
of the corners, and use this point to divide the polygon into triangles. The
areas and centers of mass of these triangles are evaluated, and the areas
of these triangles are used as masses concentrated in these centers of mass.
Thus we’ve got a system of points of mass, which center of mass is easy to
evaluate. We take this center of mass as an approximate centroid of the
polygon. Note that if the corners of the polygon are all in the same plane,
this procedure gives the actual centroid of the polygon, but if they are not
in the same plane, the result is only an approximation. In the latter case
the correct centroid depends on how one constructs the polygon out of the
cornerpoints.

For polyhedra the approximation of the centroid is again more difficult.
As explained in Ref. [2], the procedure of tetrahedronising the polyhedron
proceeds via identifying the faces of the polygon and triangularising them.
The triangularisation proceeds again via looking for the centroid of these
faces (which are polygons). In cornelius.f90 the centroids of the faces
are approximated as an average of the coordinates of their corners, whereas
cornelius.cpp employs the same procedure than described above to eval-
uate the centroid of 2D surface elements. If the corners of the face are all in
the same plane, this difference does not change the final result, but if they
are not, some difference arises. How large, depends on how complicated the
structure is. The average of the coordinates of the corners of the polyhe-
dron is then used with the corners of the polyhedron and the approximative
centroids of the faces to divide the polyhedron into tetrahedra. The volume
and centers of mass of these tetrahedra are evaluated, and the volumes are
used as masses centered to the centers of mass. Thus we’ve again got a set
of masspoints, which center of mass is easy to evaluate. We take this center
of mass as the approximative centroid of the polyhedron. Analogously to
the case of a 2D surface element, how good approximation this is to the
actual centroid, depends on whether all the corners of the polyhedron are
in the same 3D subspace.

It must be remembered that this procedure for evaluating the centroid of
the (hyper)surface elements does not guarantee that the centroid, Vmid(i,j)
or get centroid elem(j,i), is on the tri-/quadrilinearly interpolated iso-
surface within the volume element. Thus we recommend interpolating also
the value of the field which isosurface has been searched for to the value at
the approximate centroid. The occasions where the interpolated value sig-
nificantly deviates from the isovalue are fortunately rare. We have studied
the possibilities to constrain the centroid to the tri-/quadrilinearly interpo-
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lated isosurface, but so far our attempts have required iterative solution of
a nonlinear set of equations, and thus are far too slow.
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