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1 Quantum Hall e�ect continued

These notes continue where section 2.6 left o� and aims to deepen the understanding of the
quantum Hall e�ect. For an introduction to this e�ect please refer to the aforementioned
part in Prof. Valentis script.

Let us consider the Hamiltonian of a charged particle coupled to an external magnetic �eld
again as we did in section 2.4 Landau diamagnetism. Now, we will consider an electric �eld
E in the x-direction additionally

H =
1

2m

(
p2x + (py + eBx)2

)
− eEx (1)

Notice that we reduced our problem to two dimensions and that we set c = 1. We can use
the ansatz we used before to obtain the same states, but with a shifted argument

ψ(x, y) = ψnk(x−mE/eB2, y) (2)

and our energies are now given by

Enk = ~ω0

(
n+

1

2

)
+ eE

(
kyλ

2 − eE

mω2
0

)
+
m

2

E2

B2
(3)

with

ω0 =
eB

m
(4)

λ =
~
eB

(5)
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Figure 1: Landau levels with and without an electric �eld applied
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As the energies Enk depend linearly on k now the degeneracy of the Landau has been
lifted (Fig.1). It is worth noting that the states drift neither in the E nor in the B-direction,
but in the E×B-direction. With the group velocity being

vy =
1

~
∂Enk
∂ky

= e~Eλ2 =
E

B
(6)

we can think of the third term of Eq. 3 as the kinetic energy while the middle part corre-
sponds to the potential energy of a wave packet; now localized around −kyλ2 + eE/mω2

0.
Let us now put the Fermi energy between the �rst two Landau levels (Fig.2) and vary the
strength of the magnetic �eld B adiabatically. Remember that the spacing between the
Landau levels or rather the cyclotron frequency ω0 is proportional to B (Eq.4), so via chang-
ing B we can shift the Fermi Energy up and down. Since the Landau Energy levels are
linearly dependent on ky each intersection of the Fermi energy with a landau energy level
contributes a �xed amount of conductivity to the overall Hall conductivity σxy, independently
on where this intersection is. In Figure 2 we can see two di�erently placed Fermi energies
and their intersections with the Landau levels. Since the upper Fermi energy has overstepped
one more level it has one more intersection and thereby the Hall conductivity is higher by e2

2π~ .
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Figure 2: Landau levels intersected by two Fermi levels
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2 Edge states

Section 1 aimed to clarify why the Hall conductivity σxy is quantized. Now we will elaborate
on why the states that are localized in the bulk of our material do not contribute to the total
conductivity whereas the edge states carry all the current.
The bending of the Landau levels due to an electric �eld has already been object to our
discussion. Up to now, we have only considered periodic boundary conditions. Let us now
factor in that our material has in fact open boundaries, so that we consider a potential well
with very steep walls Fig 3.

EF

E

x

Figure 3: Landau levels in potential well

Please be aware that we are in real and not in k-space, although in the particular case
of E = (E, 0, 0)> ky and x are proportional to each other, anyway (Eq. 3), with the propor-
tionality constant being λ2.
Regarding the quantization of the Hall conductivity σxy the same argument holds as in the
previous section. However, looking at Fig. 3 we would argue that the bulk of our material is
an insulator whereas the edges are metallic, because that is where our intersections with the
(arbitrarily chosen) Fermi energy sit.
Another way of understanding the appearance of conducting edge states in a classical fashion
is to think about the cyclotron orbits of the particles. In the bulk of the material the particles
will just describe a circular movement due to the applied magnetic �eld and the resulting
Lorentz force. On the edges however the open boundaries of our system put a constraint
on their movement. Imagine the particles bouncing of the boundary and thereby moving on
skipping orbits (Fig.4). This results in an overall, chiral charge transport along the edges of
our system.
This behaviour can also account for the robustness of the e�ect. If the edges are the only
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places where charge is transported, the electrons have to travel a macroscopical distance
(namely the width of the sample) in order to scatter other electrons.

Figure 4: Particles performing skipping orbits along the boundary of the Hall system

3 Berry phase

Moving away for now from our Hall system, let us consider a parameter dependent Hamil-
tonian H(R(t)) where R is a n-dimensional, time dependent vector, which is moving on a
closed loop C in parameter space and |n(R(t))〉 as the normalized instantaneous eigenstate
of H(R(t)) with

H(R(t)) |n(R(t))〉 = En(R(t)) |n(R(t))〉 (7)

Equation (1.1) determines the eigenstate |n(R(t))〉 only up to a phase and we know per adia-
batic theorem, that for slow variation of R the system remains in its eigenstate. We will now
consider the phase θ(t) of the state |ψ(t)〉 = e−iθ(t) |n(R(t))〉 during an adiabatic evolution
along the loop C. The time evolution of the system is given by

H(R(t)) |ψ(t)〉 = i~
d

dt
|ψ(t)〉 (8)

Which yields

En(R(t)) |n(R(t))〉 = ~
(
d

dt
θ(t)

)
|n(R(t))〉+ i~

d

dt
|n(R(t))〉 (9)

Taking the scalarproduct with 〈n(R(t))| and integrating we obtain
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θ(t) =
1

~

∫ t

0

En(R(t′))− i
∫ t

0

〈n(R(t′))| d
dt′
|n(R(t′))〉 dt′ (10)

The �rst part is the dynamical phase factor, which we already know, whereas the negative
of the second term is the so called Berry or geometrical Phase γn

γn = i

∫ t

0

〈n(R(t′))| d
dt′
|n(R(t′))〉 dt′ (11)

Via a transformation we obtain

γn = i

∫ t

0

〈n(R(t′))| ∇R |n(R(t′))〉 dR
dt′

dt′ = i

∫
C
〈n(R)| ∇R |n(R)〉 dR (12)

Where we have dropped the time dependence of R.
We can now de�ne a vector potential called Berry connection

An(R) = i 〈n(R)| ∇R |n(R)〉 (13)

Or in components (we now omit the subscript n, as well as theR-dependence of n and assume
we stay in the eigenstate n)

An = i 〈n| ∇R |n〉 (14)

Lastly, we de�ne the curvature of our vector potential.

F = ∇R ×A (15)

Or in components:

Fij =
∂Aj
∂Ri

− ∂Ai
∂Rj

(16)

Notice, how the expressions above resemble those that are de�ned in electrodynamics. A lot
of authors refer to the Berry curvature as magnetic �eld in parameter space.

4 Gauÿ-Bonnet theorem

Via the Gauÿ-Bonnet theorem it is possible to establish a relation between the curvature K of
a surface and its genus g, which is a topological invariant under homeomorphisms (a contin-
uous function that has a continious inverse function). Let M be a compact two-dimensional
Riemannian manifold without boundary and with a compact orientable surface. Let K be
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the Gaussian curvature of M and dA the element of area. Then∫
M

KdA = 2π(2− 2g) (17)

The genus g is basically the number of holes in the object. A sphere (whose Gaussian cur-
vature K equals 1 in each point) has therefore a genus of g = 0, whereas a torus has a genus
of g = 1. Notice, that the genus g can only take integer values.

5 Chern number

In the previous section, we have been reminded that the integration over the curvature on
a surface yields integers, which are topologically invariant (for another analogy just think of
the winding number which yields an integer value depending on how often a point is encir-
cled counterclockwise by a closed curve). Two sections before (Sec.3), we have obtained the
Berry curvature F , which describes the geometry of parameter space. Integrating the Berry
Curvature F over the surface S gives the Chern number C (where S is the surface whose
boundary is the closed loop C)

C =
1

2π

∫
S
F (18)

The Chern number C can be used to classify electronic bandstructures. In that case the
parameter R corresponds to k and the path C can be considered closed due to the periodicity
of the lattice. In the following section we will see how to Chern number and the Hall
conductivity relate to each other.

6 Kubo Formula

Putting aside the previous discussions for a while, we should now think of how to calculate
the Hall conductivity. To this end, yet another technique has to be introduced.

The Kubo formula expresses the linear response of an observable quantity due to a time-
dependent perturbation. Let H0 be our unperturbed Hamiltonian and |m〉 its energy eigen-
states with

H0 |m〉 = Em |m〉 (19)

We now add a pertubation in the form of

∆H = −JA (20)

With J as the current density operator and A as the electro-magnetic potential. We choose
as gauge

At = 0 ⇒ −∂tA = E (21)
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Ultimately, we would like to consider a DC, but it is easier to work with an AC �rst and
then take the limit ω → 0, where ω is the frequency of the current. We get

E(t) = Ee−iωt and A =
E

iω
e−iωt (22)

In the following we will work in the Dirac Picture, so that operators evolve with J(t) = V −1JV
with V = e−iH0t/~, but the states with

|ψ(t)〉D = U(t, t0) |ψ(t0)〉D (23)

U(t, t0) = e
− i

~
∫ t
t0
∆H(t′)dt′

(24)

Let us prepare the system in its ground state |ψ0〉 at time t→ −∞.

〈J(t)〉 = 〈ψ0(t)|J(t) |ψ0(t)〉 = 〈ψ0|U−1(t)J(t)U(t) |ψ0〉 (25)

≈ 〈ψ0|
i

~

∫ t

−∞
dt′[∆H(t′),J(t)] |ψ0〉 (26)

Where we have used the time evolution of the states 〈ψ0| and |ψ0〉, as well as the linear expan-
sion of U(t) while assuming that the zeroth order vanishes. Using Eq.(20) and Eq.(22) we get

〈Ji(t)〉 =
1

~ω

∫ t

−∞
dt′ 〈ψ0| [Jj(t′), Ji(t)] |ψ0〉Eje−iωt

′
(27)

But due to the system's time translational invariane we can write this expression as

〈Ji(t)〉 =
1

~ω

(∫ ∞
0

dt′′eiωt
′′ 〈ψ0| [Jj(0), Ji(t′′)] |ψ0〉

)
Eje

−iωt (28)

As we can see, the current responds by oscillating at the same frequency ω when an electric
�eld with that frequency is applied. The proportionality constant corresponds to our Hall
conductivity. We are interested in the o�-diagonal part, which is the Kubo formula for the
Hall conductivity:

σxy(ω) =
1

~ω

∫ ∞
0

dteiωt 〈ψ0| [Jy(0), Jx(t)] |ψ0〉 (29)

Now we take into account that the current operator evolves as J(t) = V −1JV with V =
e−iH0t/~ and insert some complete basis sets of the eigenstates of H0.

σxy(ω) =
1

~ω

∫ ∞
0

dteiωt
∑
n

〈ψ0| Jy |n〉 〈n| Jx |ψ0〉 ei(En−E0)t/~−
∑
n

〈ψ0| Jx |n〉 〈n| Jy |ψ0〉 ei(E0−En)t/~

(30)
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Before we perform the integral we should substitute ω with ω + iε in order to circumvent
poles on the real axis. After the integration we take the limit ε → 0. Doing this yields the
following expression:

σxy(ω) = −i
1

ω

∑
n6=0

(
〈ψ0| Jy |n〉 〈n| Jx |ψ0〉

~ω + En − E0

− 〈ψ0| Jx |n〉 〈n| Jy |ψ0〉
~ω + E0 − En

)
(31)

In the DC Limit ω → 0 the denominators become

1

~ω + En − E0

≈ 1

En + E0

− ~ω
(En − E0)2

+O(ω2) (32)

Assuming rotational variance (or conservation of current) it can be shown, that the zeroth
order terms must vanish. We are left with

σxy = i~
∑
n6=0

〈ψ0| Jy |n〉 〈n| Jx |ψ0〉 − 〈ψ0| Jx |n〉 〈n| Jy |ψ0〉
(En − E0)2

(33)

7 Hall conductivity as a Chern number

Finally, we are in a position to combine what we have learnt so far and show the relationship
between the Hall conductivity σxy and topology.
Let us consider a cubic lattice with lattice constant a and periodic boundary conditions. We
will neglect electron-electron interaction, so the wavefunctions in a given band n can be given
by Bloch waves.

ψnk(x) = eikxunk(x) (34)

With unk(x) being periodic on the unit cell.
Furthermore, we will assume that we are dealing with an insulator at T = 0 so that all bands
below EF are completely �lled and those above are completely empty. Let me remind you of
the Berry connection de�ned in section 3.

Ai = i 〈uk|
∂

∂ki
|uk〉 (35)

We can see that a U(1) gauge transformation of A corresponds to a change of phase of |unk〉.
Let us calculate the corresponding Berry curvature

Fxy =
∂Ay
∂kx
− ∂Ax
∂ky

= i〈∂u
n
k

∂kx
|∂u

n
k

∂ky
〉 − i〈∂u

n
k

∂ky
|∂u

n
k

∂kx
〉 (36)
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Our Chern number in 2d is given by

C =
1

2π

∫
BZ

d2kFxy (37)

For particles on the lattice our Kubo formula (Eq.33) becomes

σxy = i~
∑
n

∑
m

∫
BZ

d2k

(2π)2

∫
BZ

d2k′

(2π)2
〈unk| Jy |umk′〉 〈umk′ | Jx |unk〉 − 〈unk| Jx |umk′〉 〈umk′ | Jy |unk〉

(Em(k)− En(k))2
(38)

Where n runs over the �lled bands and m runs over all bands so that the following complete-
ness relation is ful�lled: ∑

m

∫
BZ

d2k′

(2π)2
|umk′〉 〈umk′| = 1 (39)

Let us de�ne J in terms of the group velocity of the wave packets,

J =
e

~
∂H

∂k
(40)

We would like to work with |unk〉 rather than with |ψnk〉, so we take a look at the eigenproblem
of our Bloch functions again and de�ne,

H0 |ψnk〉 = En(k) |ψnk〉 ⇒ e−ikxH0e
ikx |unk〉

⇒ H |unk〉 = En(k) |unk〉

Where we de�ned H = e−ikxH0e
ikx.

The Kubo formula becomes

σxy =
ie2

~
∑
n

∑
m

∫
BZ

d2k

(2π)2

∫
BZ

d2k′

(2π)2
〈unk| ∂yH |umk′〉 〈umk′ | ∂xH |unk〉 − 〈unk| ∂xH |umk′〉 〈umk′ | ∂y |unk〉

(Em(k)− En(k))2
(41)

with ∂x ≡ ∂
∂kx

and ∂y ≡ ∂
∂ky

.

For i being either x or y respectively, consider the product rule

〈unk| ∂i
(
H |umk′〉

)
= 〈unk| ∂iH |umk′〉+ 〈unk|H |∂iumk′〉

⇔ 〈unk| ∂iH |umk′〉 = 〈unk| ∂i
(
H |umk′〉

)
− 〈unk|H |∂iumk′〉

=
(
Em(k

′)− En(k)
)
〈unk| |∂iumk′〉

= −
(
Em(k

′)− En(k)
)
〈∂iunk| |umk′〉
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Substituting this into the Kubo formula (Eq. 33) yields

σxy =
ie2

~
∑
n

∫
BZ

d2k

(2π)2
〈∂xunk |∂yunk〉 − 〈∂yunk |∂xunk〉 (42)

With equation 36 and 37 we �nally get

σxy =
e2

~
∑
n

∫
BZ

d2k

(2π)2
Fxy (43)

=
e2

2π~
∑
n

Cn (44)

This equation states that the Hall conductivity σxy is the sum over the Chern numbers of
the �lled bands of our material (with the exception of some prefactor). We see that the
behaviour of such a system is a manifestly topological property, which can account for the
robustness of the e�ect.

8 Topological edge states

In the last section, we saw that the Hall conductivity is a topological invariant and it has
also been discussed that the states which contribute to the overall Hall conductivity σxy live
on the edges of our system. We have also learnt that we can explain this behaviour by con-
sidering the bending of the Landau levels due to the 2d box-potential of the system. The
previous calculation enables us to discuss the appearance of the edge conductivity under a
new aspect.
To this end, remember section 5 concerning the Chern number and that it is somewhat anal-
ogous to the genus of a geometric object. Let us remind ourselves that no homeomorphism
between two objects with di�erent genera can be found.
In the same way the band structure of materials belonging to di�erent Chern classes can
not be adiabatically transformed into one another. At the transition between two insulating
materials, having two di�erent Chern numbers, metallic edge states appear in order to have
a smooth transition between a topological non-trivial and a trivial material (e.g. vacuum).
Imagine two bands that have to unwind in order to unravel a knot representing the topolog-
ical non-triviality in that case (Fig. 5). This is not possible without closing the band gap
somewhere, which is why at the edges the topological non-trivial material becomes metallic.
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k

Figure 5: A "twist" between two bands renders the material topological non-trivial

9 References

• Advanced Solid State Theory, R. Valenti, Goethe university, April 2018

• The Quantum Hall e�ect, David Tong, arXiv:1606.06687v2, September 2016

• Quantal Phase Factors Accompanying Adiabatic Changes, M. V. Berry, Royal Society
of London A, Vol. 392, No. 1804, March 1984

• Topological insulators and topological superconductors, B. Andrei Bernevig, Princeton
University Press, 2013

• Quantized Hall conductivity in two dimension, R. B. Laughlin, American Physical
Society, Phys. Rev. B 23,5632(R), May 1981

• Interacting Topological Insulators: a review, Stephan Rachel, arXiv:1804.10656v1,
April 2018

• A Short Course on Topological Insulators, J. K. Asbóth, L. Oroszlány, A. Pályi,
arXiv:1509.02295v1, September 2015

• An introduction to topological insulators, Michel Fruchart, David Carpentier, C. R.
Physique 14 (2013) 779�815, October 2013

12


