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1 Motivation and Outline

"Point set topology is a disease from which the human race will soon recover."

-Henri Poincaré, 1908 [1]

Although the Poincaré conjecture was solved in November 2002 by Grigori Perelman, the
conjecture cited above has not come true yet. Rather the opposite is the case. Topology
has become a thriving field of study for many physicists and in 2016 the Nobel Prize
in physics was awarded to D. J. Thouless, F. D. M. Haldane and J. M. Kosterlitz "for
theoretical discoveries of topological phase transitions and topological phases of matter"
[2].
In 1982 Thouless, Kohmoto, Nightingale and den Nijs managed to link the quantized
Hall conductance to the hitherto purely mathematical concept of Chern classes [3]. They
showed that where the classical theory of phase transitions failed, topological methods
are capable of describing these exotic phases.
The topological order of these special systems gives rise to edge states localized at the
boundary between a topological and a trivial material. For us, the coupling of these edge
or rather interface states with each other is of particular interest.
This thesis is structured as follows: First, an introduction to the theoretical framework
underlying topological band theory is given. To this end it is shown how insulators are
classified by examining the geometry of their band structure using the concept of the
Berry phase.
In chapter 3 this approach in combination with linear response theory is employed to
explain the integer quantum Hall effect. The biggest part of these two chapters is taken
from the flip lecture I gave on this topic earlier this semester [4].
Afterwards, the notion of density functional theory (DFT) is established as it is our
method of choice for gaining insight into the electronic structure of condensed matter.
This section is then concluded by presenting WIEN2k, which is the program package that
has been used to do the DFT calculations.
Chapter 5 is wholly dedicated to the analysis of graphene. We investigate its electronic
structure by analytical and numerical means, explore its symmetries and the consequences
of breaking them and derive the Berry phase around graphene’s Dirac points.
To disperse the impression that in the end graphene does not exhibit interesting topologi-
cal properties at all, the Z2 invariant is introduced (Ch.6). By cutting our previously
infinitely extended sheet of graphene into thin stripes in chapter 8, which are called
graphene nanoribbons (GNR), we learn how this topological invariant changes depending
on the width, shape and termination of these new quasi-1D systems using the results of
[5].
Subsequently, chapter 7 presents the Su-Schrieffer-Heeger (SSH) for the electronic trans-
port in long chains of polyacetylene and shows how this well-known model links to the
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CHAPTER 1 MOTIVATION AND OUTLINE

dispersion of our bands of interest.
Finally, different GNR are put together in order to reproduce the interesting effects
of [6] and to verify the validity of their interpretation, namely the appearance of new,
"topologically induced" bands in the energy spectrum due to the coupling of interface
states. As our computational power is limited, we try to keep the composite structures
as small as possible while still recreating the desired effect.
This thesis is then concluded in chapter 9 by summarizing the results and giving an
outlook on how they can be applied.
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2 Topological band theory

Despite the fact that electronic band theory exists for almost a century now, it was
recognized only recently that this picture is not sufficient to describe all systems. Taking
into consideration the geometry of the band space, one can find new and exciting phases
where the line between insulator and metal starts to get blurred, as these materials
are insulators in their bulk, but conduct electricity at their boundaries. To provide
a foundation for understanding this phenomenon, the concept of the Berry phase is
introduced, giving us the tool for classifying differently ordered phases by linking them
to a topological invariant. We start off by reminding ourselves of a topological concept
from geometry we are already familiar with.

2.1 Gauß-Bonnet theorem

(a) (b)

Fig. 2.1: A sphere (a) with genus g = 0 and a torus (b) with genus g = 1. As they have
different genera they are not connected by any homeomorphism.

The Gauß-Bonnet theorem associates the geometry of a surface to its topology by es-
tablishing a relation between its curvature K with its genus g (or more exact, its Euler
characteristic). The genus g is a topological invariant, meaning its value stays invariant
under homeomorphisms, which are continuous functions that have a continuous inverse
function. Let M be a compact two-dimensional Riemannian manifold without boundary
and with a compact, orientable surface and let K be the Gaussian curvature of M and
dA the element of area, then ∫

M
KdA = 2π(2− 2g). (2.1)

The genus g is basically the number of holes in the object. A sphere, which has a Gaussian
curvature K of 1 in each point, has therefore a genus of g = 0, whereas a torus has a
genus of g = 1 (see Fig.2.1). Notice that the genus g can only take integer values.
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CHAPTER 2 TOPOLOGICAL BAND THEORY

2.2 Berry phase

Next, we will extrapolate the concept of the previous section to parameter space. Our goal
is to find a topological invariant that classifies band structures that are not adiabatically
connected, and thus stays invariant under continuous transformations.
Accordingly, let us consider a parameter dependent Hamiltonian H(R(t)) where R is a
n-dimensional, time dependent vector, which is moving on a closed loop C in parameter
space and |n(R(t))〉 as the normalized instantaneous eigenstate of H(R(t)) with

H(R(t)) |n(R(t))〉 = En(R(t)) |n(R(t))〉 . (2.2)

This equation determines the eigenstate |n(R(t))〉 only up to a phase and we know per
adiabatic theorem that for slow variation of R the system remains in its eigenstate [8].
We will now consider the phase θ(t) of the state |ψ(t)〉 = e−iθ(t) |n(R(t))〉 during an
adiabatic evolution along the loop C. The time evolution of the system is given by

H(R(t)) |ψ(t)〉 = i~
d

dt
|ψ(t)〉 (2.3)

which yields

En(R(t)) |n(R(t))〉 = ~
(
d

dt
θ(t)

)
|n(R(t))〉+ i~

d

dt
|n(R(t))〉 . (2.4)

Taking the dot product with 〈n(R(t))| and integrating, we obtain

θ(t) = 1
~

∫ t

0
En(R(t′))− i

∫ t

0

〈
n(R(t′))

∣∣ d
dt′
∣∣n(R(t′))

〉
dt′. (2.5)

The first part is the dynamical phase factor, which we already know, whereas the negative
of the second term is the so-called Berry or geometrical phase γn

γn = i

∫ t

0

〈
n(R(t′))

∣∣ d
dt′
∣∣n(R(t′))

〉
dt′. (2.6)

The Berry phase is the most important concept in topological band theory, although it
was not even related specifically to Bloch bands originally. Berry was rather interested in
the idea that the wave functions of particles in a slowly varying field could, in principle,
be modified by something other than just the dynamical phase. Only later it has been
realized that this concept can be applied to the Bloch-periodic system in a crystal, where
the parameter R(t) corresponds to the crystal momentum k. The loop in k-space can be
considered as closed due to the periodicity of the Brillouin zone.
As the eigenstates |n〉 depend on R, we can just as well parameterize the evolution of
our eigenstates with respect to R and thereby get rid of the explicit time dependence.

γn = i

∫ t

0

〈
n(R(t′))

∣∣∇R
∣∣n(R(t′))

〉 dR
dt′

dt′ = i

∫
C
〈n(R)| ∇R |n(R)〉 dR (2.7)
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2.2 BERRY PHASE

Note that the time dependence of R has been dropped and that ∇R is a n-dimensional
vector defined as ∇R = ( ∂

∂R1
, ∂
∂R2

. . . ∂
∂Rn

)>.
In analogy to electromagnetism let us define a vector potential An, called the Berry
connection:

An(R) = i 〈n(R)| ∇R |n(R)〉 (2.8)

⇒ γn =
∫
C
dR An(R) (2.9)

One might be tempted to think that one should always be able to find a gauge where
the Berry phase γn is canceled. However, this is not true. From the beginning of this
section we assumed that we are moving on a closed path C in parameter space. In order
to understand why this postulate was even necessary, let us examine the behavior of the
Berry connection An under gauge transformations.
Under a U(1) gauge transformation |n(R)〉 → eiΛ(R) |n(R)〉 the vector potential An
transforms in the usual way

An(R)→ An(R)−∇RΛ(R) (2.10)

with Λ(R) as any smooth and single-valued function. Moving on a closed loop means that
we will return to our inital parameter configuration R(0) after a period T . Therefore,
R(0) = R(T ). Because we chose our eigenstate basis |n(R)〉 to be single-valued, |n(0)〉 =
|n(T)〉 must hold as well. As gauge transformations must maintain the aforementioned
properties, we get

eiΛ(R(0)) |n(R(0))〉 = eiΛ(R(T )) |n(R(T ))〉

⇔ eiΛ(R(0)) |n(R(0))〉 = eiΛ(R(T )) |n(R(0))〉
⇔ Λ(R(T ))− Λ(R(0)) = 2πn with n ∈ Z (2.11)

As such, the Berry phase γn is a gauge invariant quantity and can not be cancelled by a
choice of gauge, as long as R is varied on a closed path C. If that is the case, we can
apply Stokes’ theorem to (2.9):

γn =
∫
C
dR An(R) =

∫
S
dS ∇R ×An (2.12)

where S is the surface enclosed by the loop C and dS the element of area. The integrand
of this equation is called the Berry curvature Fn and is the analog to the Gaussian
curvature K:

Fn = ∇R ×An (2.13)

Due to its resemblance to the well-known expression from electrodynamics, the Berry
curvature has often been referred to as the magnetic field in parameter space.
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CHAPTER 2 TOPOLOGICAL BAND THEORY

2.3 Chern number

Now, as we have worked out an expression for the curvature of parameter space, we are
ready to define a topological invariant in analogy to the Gauß-Bonnet theorem presented
in section 2.1. Just as the genus of a surface, it only takes integer values and stays
invariant under any continuous transformation or rather conveyance to an adiabatically
connected system.
In mathematics, the Chern classes are used to test the equivalence of complex vector
bundles and were introduced in 1946 by Shiing-Shen Chern [9].
For us, the Chern number of the nth band Cn is proportional to the surface integral of
the Berry curvature Fn over S, which is the surface enclosed by loop C. The total Chern
number C is just the sum of all Cn and is then given by

C = 1
2π
∑
n

∫
S
Fn. (2.14)

In a crystal we identify the parameter R with the crystal momentum k. Thus, S is just
the area of the first Brillouin zone. As we are only interested in the geometry of the
bands that are actually occupied, the sum only runs over the filled bands.
In the next chapter we will show that the Chern number of a two-dimensional system
can be related to the Hall conductance.

2.3.1 Chern number of time-reversal-invariant systems

Although topological phases of matter are not tied to a broken discrete and continuous
symmetry, they can be protected by one. Let us examine what a system with time-reversal
symmetry implies for the Chern number.
Time reversal is a discrete symmetry that flips the direction of time.

T : t→ −t (2.15)

A system is called time-invariant if the particles of that system retraced their motion
upon reversal of time.
T is an operator that leaves the position operators unchanged, but acts upon the momenta,
as they are time derivatives of the position operators (which are invariant under time
reversal). Furthermore, T is anti-unitary which means it is the product of a unitary
matrix U and the complex conjugation operator K. For spinless particles this unitary
matrix is just the identity U = 1.
Having identified T = K (for spinless particles), we can determine our system’s behavior
under time reversal as

TH(q)T−1 = H(−q) (2.16)

where we used that K commutes with the creation and annihilation operators a(R) and
b(R).
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2.3 CHERN NUMBER

Applying T to the Berry curvature Fn,i, we get

TFn,i(R) = T (εijk ∂RjAk)
= iεijk 〈∂RjTn(R)|∂Rk

Tn(R)〉
= iεijk 〈∂Rk

Tn(−R)|∂RjTn(−R)〉
= −iεikj 〈∂Rk

Tn(−R)|∂RjTn(−R)〉
= −Fn,i(−R) (2.17)

The anti-symmetry of the Levi-Civita tensor has been used. Requiring that our system is
time-reversal invariant, such that TFn,i(R) = Fn,i(R), it follows that the Berry curvature
must be an odd function of R:

Fn,i(−R) = −Fn,i(R) (2.18)

Using this result on equation 2.14, we obtain

T Cn = 1
2π

∫
S
T Fn(R) = − 1

2π

∫
S
Fn(−R) = −Cn

⇒ Cn = 0 (2.19)

Hence, we have proved that only systems with broken time-reversal symmetry can exhibit
a non-zero Chern number.
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3 Quantum Hall effect

The abstract concepts of the preceding chapter are now applied to a real system. The
discovery that the quantization of the Hall conductance can be explained by means
of topology made a strong impact and as a consequence many physicists turned their
attention to this field of study.
After a short comparision of the results that would have been expected classically with
the actual results measured by Klaus von Klitzing in 1980 [10], we show that the Hall
conductance is proportional to the Chern number. This relation is sometimes called
Thouless, Kohmoto, Nightingale, den Nijs (TKNN) invariant [3].

3.1 Classical Hall effect

The classical Hall effect, or sometimes ordinary Hall effect, was discovered by Edwin Hall
in 1879 [11].
Consider a quasi-2D conductor, e.g. a very thin sheet of metal. If a constant current of
electrons I is made to flow into one direction and the sample is subjected to a perpendic-
ular magnetic field B, a transversal difference in current UH is produced. This current is
the Hall conductance, which is proportional to the magnetic field B and the current I
with the Hall constant RH being the proportionality constant.

Ix

UH

Bz

Fig. 3.1: The classical Hall effect: As the electrons are restricted to move only in the
xy-plane (orange), the magnetic field B in the z-direction (black) in combination
with the electrons’ direction of movement I in x-direction (blue) results in a
potential difference on the y-boundaries of the sample (red), which is called the
Hall conductance UH .

13



CHAPTER 3 QUANTUM HALL EFFECT

3.1.1 Classical picture

The equations of motions for a charged particle in a magnetic field B with charge q = −e
and mass me are

mer̈ = −e ṙ×B. (3.1)

In our case the magnetic field points along the z-direction and the current is restricted
to the transverse plane, so that B = (0, 0, B)> and ṙ = (ẋ, ẏ, 0)>. Computing the cross
product we obtain two coupled differential equations:

meẍ = −eBẏ
meÿ = eBẋ (3.2)

Their general solutions read

x(t) = x0 −R sin(ω0t+ ϕ0)
y(t) = y0 +R cos(ω0t+ ϕ0) (3.3)

We can easily see that the electrons move on circles with a frequency ω0 that is also called
cyclotron frequency and is given by

ω0 = eB

m
. (3.4)

The radius R, as well as their phase ϕ0 and their initial positions x0, y0, are determined
by the initial conditions.

3.1.2 Drude Model

Now, we take into account an electric field E that will result in a current of particles
and a linear scattering term which models the effect of electrons bouncing off impurities,
other electrons or the lattice. The resulting equations of motion are given by

mer̈ = −e ṙ×B− eE− m

τ
ṙ. (3.5)

The coefficent τ in the friction term is the scattering time. These equations are called the
Drude model and restricting oneself to its equilibrium solutions one can obtain Ohm’s law

J = σE (3.6)

with J being the the current density and σ is the conductivity matrix. As we know, the
current density is given by

J = −ne ṙ (3.7)

where n is the charge density. It can be shown that the following expression holds

σ = σ0
1 + ω2

0τ
2

(
1 −ω0τ

ω0τ 1

)
with σ0 = ne2

me
τ. (3.8)
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3.2 QUANTIZATION OF HALL CONDUCTIVITY

ρxx

ρxy

ρ

B

Fig. 3.2: Resistivity in dependence of the magnetic field. ρxx (orange) depicts the longi-
tudinal part of the resistivity, which is parallel to the current J, whereas ρxy
(blue) shows the transverse resistivity.

σ0 describes the conductivity in the absence of a magnetic field. The resistivity ρ is
defined as the inverse of the conductivity σ, so taking into account (3.8) we get

ρ = σ−1 = me

ne2τ

(
1 ω0τ

−ω0τ 1

)
. (3.9)

Thus, the longitudinal and transverse components of the resistivity should amount to

ρxx = m

ne2τ
and ρxy = B

ne
. (3.10)

So considering the classical picture, we are expecting a constant longitudinal resistivity
ρxx and a linearly increasing transverse resistivity ρxywith an increasing magnetic field B
(see Fig.3.2).

3.2 Quantization of Hall conductivity

3.2.1 Experimental results

We have set our expectations on how the Hall conductivity should behave under a strong
magnetic field, but the precedent section would not have been named "classical" Hall
effect if there were not any caveats to our previous discussion.
It was Klaus von Klitzing who received the Nobel prize in 1985 for his discovery that
the classical model does not sufficiently describe the behavior of the resistivity for strong
magnetic fields, as we can see in Fig. 3.3. This clearly does not meet our expections, as
for a strong magnetic field, the linear behavior of the transverse resistivity becomes a
stepwise ascent, whereas the longitudinal resistivity features distinct peaks every time
ρxy jumps up one step.
The difference in resistivity between two of these plateaus is exactly RK = h

e2 with RK
being the Klitzing constant. In fact, the quantization of the resistivity is exceedingly
precise and easily measurable with modern means so that the Klitzing constant RK serves
as a norm for the resistance.
Notice, that in two dimensions resistance R and resistivity ρ, as well as conductance and
conductivity are the same thing, as R and ρ are related by

R = ρ2−d (3.11)

with d being the dimension of space.

15



CHAPTER 3 QUANTUM HALL EFFECT

K. v o n Kli t zi n g

M A G N E T I C   F I E L D   ( T )

Fi g.  1 4.  E x p e ri m e nt al  c u r v e s  f o r  t h e  H all  r e si st a n c e  R H =   a n d  t h e  r e si sti vit y   of  a
h et er o str u ct ur e  a s  a  f u n cti o n  of  t h e  m a g n eti c  fi el d  at  a  fi x e d  c arri er  d e n sit y  c orr e s p o n di n g  t o  a  g at e
v olt a g e  V g ,  =  0 V.  T h e  t e m p er at ur e  i s  a b o ut  8 m K.

T hi s  a n al y si s  i s  b a s e d  o n  t h e  e q u ati o n

T h e  c o m bi n ati o n  of  t h e  diff e r e nt  m et h o d s  f o r  t h e  d et e r mi n ati o n  of  t h e  D O S

l e a d s  t o  a  r e s ult  a s  s h o w n  i n  Fi g.  ( 2 0). Si mil a r  r e s ult s  a r e  o bt ai n e d  f r o m  ot h e r

e x p e ri m e nt s,  t o o  [ 3 3,  3 4]  b ut  n o  t h e o r eti c al  e x pl a n ati o n  i s  a v ail a bl e.

If  o n e  a s s u m e s  t h at  o nl y  t h e  o c c u p ati o n  of  e xt e n d e d  st at e s  i nfl u e n c e s  t h e

H all  eff e ct,  t h a n  t h e  sl o p e   i n  t h e  pl at e a u  r e gi o n  s h o ul d  b e  d o mi n at e d

Fig. 3.3: Experimental resistivities ρxx and ρxy of a Hall system as a function of the
magnetic field [10].

3.2.2 Landau levels

To understand this behavior, we consider the Hamiltonian of a charged particle coupled
to an external magnetic field B in z-direction and an electric field E in the x-direction.
As a gauge we choose the Landau gauge A = (0, Bx, 0)>. We get

H = 1
2m

(
p2
x + (py + eBx)2)− eEx. (3.12)

This is a well-known Hamiltonian leading to the strongly degenerate Landau levels.
Having added the electric field, the degeneracies are lifted and the Hamiltonian above
yields the following spectrum

Enk = ~ω0

(
n+ 1

2

)
+ eE

(
kyλ

2 − eE

mω2
0

)
+ m

2
E2

B2 (3.13)

with λ being the magnetic length defined as

λ = ~
eB

. (3.14)

It is worth noting that the states drift neither in the E- nor in the B-direction, but in
the E×B-direction with the group velocity being

vy = 1
~
∂Enk
∂ky

= e~Eλ2 = E

B
. (3.15)
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3.2 QUANTIZATION OF HALL CONDUCTIVITY

en
er

gy

ky

(a)

en
er

gy

ky

(b)

Fig. 3.4: (a) non-dispersive, degenerate Landau levels that result from the coupling to a
magnetic field B; (b) electric field E has been added, which lifts the degeneracies
and makes the electrons disperse linearly.

We can think of the third term of (3.13) as the kinetic energy while the middle part
corresponds to the potential energy of a wave packet, now localized around −kyλ2 +
eE/mω2

0.
Let us assume the Fermi energy sits between the first two Landau levels and vary the
strength of the magnetic field B adiabatically. Remember that the spacing between the
Landau levels, or rather the cyclotron frequency ω0, is proportional to B (3.4), so via
changing B we can shift the Fermi Energy up and down. Since the Landau energy levels
are linearly dependent on ky, each intersection of the Fermi energy with a Landau energy
level contributes a fixed amount of conductivity to the overall Hall conductivity σxy,
independently of where this intersection is. In Fig. 3.5 we can see two differently placed
Fermi energies and their intersections with the Landau levels. Since the upper Fermi
energy has overstepped one more level it has one more intersection and thereby the Hall
conductivity is larger by e2

2π~ .

E
F

E
F

en
er

gy

ky

Fig. 3.5: Linearly dispersing Landau levels that are intersected by two different Fermi
levels, resulting in a different number of nodes (blue circles).
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3.3 Classical edge states

It can be shown experimentally that these conducting states are not evenly distributed
over the sample, but they are localized exclusively at the boundary of the system.
Classical arguments, meaning not considering topology, can be given to explain this
phenomenon.
Up to now, we have only considered periodic boundary conditions. Let us now factor in
that the boundaries of our material are in fact open, so that we have a potential well
with very steep walls (see Fig. 3.6) which makes the Landau bands bend upwards sharply
at the edge of the system. As ky and x are proportional to each other (3.13), with the

EF

en
er

gy

x

Fig. 3.6: Bent Landau levels in a potential well. The intersections of the bands with the
arbitrarily set Fermi energy are located at the boundary.

proportionality constant being λ2, we are able to consider the energy spectrum in real
space representation and see that indeed all of the intersections are located at boundaries
of the sample.
Regarding the quantization of the Hall conductivity σxy, the same argument holds as
in the previous section. However, looking at Fig. 3.6, we would argue that the bulk of
our material is an insulator whereas the edges are metallic because that is where our
intersections with the (arbitrarily chosen) Fermi energy sit.
Another way of understanding the appearance of conducting edge states in a classical
fashion is to think about the cyclotron orbits of the particles. In the bulk of the material
the particles will just describe a circular movement due to the applied magnetic field and
the resulting Lorentz force. On the edges, however, the open boundaries of our system
put a constraint on their movement. Imagine the particles bouncing off the boundary
and thereby moving on skipping orbits (see Fig. 3.7). This results in an overall, chiral
charge transport along the edges of our system.
This behavior can also account for the robustness of the effect. If the edges are the only
places where charge is transported, the electrons have to travel a macroscopical distance
(namely the width of the sample) in order to scatter other electrons.
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B

ω0

Fig. 3.7: Particles tracing circular trajectories due to the magnetic field B and the
resulting Lorentz force. Along the boundaries they are constrained to perform
skipping orbits.

3.4 Kubo Formula

Putting aside the previous discussions for a while, we should now think of how to calculate
the Hall conductivity. To this end, yet another technique has to be introduced.
The Kubo formula expresses the linear response of an observable quantity due to a
time-dependent perturbation [14]. Let H0 be our unperturbed Hamiltonian and |m〉 its
energy eigenstates with

H0 |m〉 = Em |m〉 . (3.16)

We now add a pertubation in the form of

∆H = −JA (3.17)

with J as the current density operator and A as the electro-magnetic potential. We
choose as gauge

At = 0 ⇒ −∂tA = E. (3.18)

Ultimately, we would like to consider a DC, but it is easier to work with an AC first and
then take the limit ω → 0, where ω is the frequency of the current. We get

E(t) = Ee−iωt and A = E
iω
e−iωt (3.19)

In the following we will work in the Dirac Picture, so that operators evolve with
J(t) = V −1JV with V = e−iH0t/~, but the states with

|ψ(t)〉D = U(t, t0) |ψ(t0)〉D , (3.20)

U(t, t0) = e
− i

~

∫ t

t0
∆H(t′)dt′

. (3.21)
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Let us assume the system in its ground state |ψ0〉 at time t→ −∞.

〈J(t)〉 = 〈ψ0(t)|J(t) |ψ0(t)〉 = 〈ψ0|U−1(t)J(t)U(t) |ψ0〉 (3.22)

≈ 〈ψ0|
i

~

∫ t

−∞
dt′[∆H(t′),J(t)] |ψ0〉 (3.23)

where we have used the time evolution of the states 〈ψ0| and |ψ0〉, as well as the linear
expansion of U(t) while assuming that the zeroth order vanishes. Combining (3.17) and
(3.19) we get

〈Ji(t)〉 = 1
~ω

∫ t

−∞
dt′ 〈ψ0| [Jj(t′), Ji(t)] |ψ0〉Eje−iωt

′ (3.24)

and due to the system’s time-translational invariance, we can write this expression as

〈Ji(t)〉 = 1
~ω

(∫ ∞
0

dt′′eiωt
′′ 〈ψ0| [Jj(0), Ji(t′′)] |ψ0〉

)
Eje

−iωt. (3.25)

As we can see, the current responds by oscillating at the same frequency ω when an
electric field with that frequency is applied. The proportionality constant corresponds
to our Hall conductivity. We are interested in the off-diagonal part, which is the Kubo
formula for the Hall conductivity

σxy(ω) = 1
~ω

∫ ∞
0

dteiωt 〈ψ0| [Jy(0), Jx(t)] |ψ0〉 . (3.26)

Now we take into account that the current operator evolves as J(t) = V −1JV with
V = e−iH0t/~ and insert complete basis sets of the eigenstates of H0:

σxy(ω) = 1
~ω

∫ ∞
0

dteiωt
∑
n

〈ψ0| Jy |n〉 〈n| Jx |ψ0〉 ei(En−E0)t/~

−
∑
n

〈ψ0| Jx |n〉 〈n| Jy |ψ0〉 ei(E0−En)t/~ (3.27)

Before we perform the integral, we should substitute ω with ω+ iε in order to circumvent
poles on the real axis. After the integration we take the limit ε→ 0. Doing this yields
the following expression:

σxy(ω) = −i 1
ω

∑
n6=0

(〈ψ0| Jy |n〉 〈n| Jx |ψ0〉
~ω + En − E0

− 〈ψ0| Jx |n〉 〈n| Jy |ψ0〉
~ω + E0 − En

)
(3.28)

In the DC Limit ω → 0 the denominators become

1
~ω + En − E0

≈ 1
En + E0

− ~ω
(En − E0)2 +O(ω2). (3.29)

Assuming rotational invariance (or conservation of current) it can be shown, that the
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zeroth order terms must vanish. We are left with

σxy = i~
∑
n6=0

〈ψ0| Jy |n〉 〈n| Jx |ψ0〉 − 〈ψ0| Jx |n〉 〈n| Jy |ψ0〉
(En − E0)2 . (3.30)

3.5 Hall conductivity as a Chern number

Finally, we are in a position to combine what we have learned so far and show the
relationship between the Hall conductivity σxy and topology.
Let us consider a cubic lattice with lattice constant a and periodic boundary conditions.
We will neglect electron-electron interaction, so the wavefunctions in a given band n can
be given by Bloch waves

ψnk(x) = eikxunk(x) (3.31)

with unk(x) being periodic on the unit cell. Furthermore, we will assume that we are
dealing with an insulator at T = 0, so that all bands below EF are completely filled and
those above are completely empty. Let us examine the matrix elements of the Berry
connection (2.9)

Ani = i 〈unk|
∂

∂ki
|unk〉 . (3.32)

We can see that a U(1) gauge transformation of A corresponds to a change of phase of
|unk〉. Calculating the corresponding Berry curvature, we arrive at

Fxy = ∂Ay
∂kx

− ∂Ax
∂ky

= i〈∂u
n
k

∂kx
|∂u

n
k

∂ky
〉 − i〈∂u

n
k

∂ky
|∂u

n
k

∂kx
〉. (3.33)

The Chern number for our two-dimensional system is given by

C = 1
2π

∫
BZ

d2kFxy. (3.34)

For particles on the lattice the Kubo formula (3.30) becomes

σxy = i~
∑
n

∑
m

∫
BZ

d2k d2k′

(2π)4
〈unk| Jy |umk′〉 〈umk′ | Jx |unk〉 − 〈unk| Jx |umk′〉 〈umk′ | Jy |unk〉

(Em(k)− En(k))2

(3.35)

where n runs over the filled bands and m runs over all bands, such that the following
completeness relation is fulfilled:

∑
m

∫
BZ

d2k′

(2π)2 |u
m
k′〉 〈umk′ | = 1 (3.36)
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Let us define J in terms of the group velocity of the wave packet:

J = e

~
∂H

∂k
(3.37)

We would like to work with |unk〉 rather than with |ψnk〉, so we take a look at the eigen-
problem of our Bloch functions again and define

H0 |ψnk〉 = En(k) |ψnk〉 ⇒ e−ikxH0e
ikx |unk〉

⇒ H |unk〉 = En(k) |unk〉

where we set H = e−ikxH0e
ikx. The Kubo formula becomes

σxy = ie2

~
∑
n

∑
m

∫
BZ

d2k d2k′

(2π)4
〈unk| ∂yH |umk′〉 〈umk′ | ∂xH |unk〉 − 〈unk| ∂xH |umk′〉 〈umk′ | ∂y |unk〉

(Em(k)− En(k))2

(3.38)

with ∂x ≡ ∂
∂kx

and ∂y ≡ ∂
∂ky

. For i being either x or y respectively, consider the product
rule

〈unk| ∂i
(
H |umk′〉

)
= 〈unk| ∂iH |umk′〉+ 〈unk|H |∂iumk′〉

⇔ 〈unk| ∂iH |umk′〉 = 〈unk| ∂i
(
H |umk′〉

)
− 〈unk|H |∂iumk′〉

=
(
Em(k′)− En(k)

)
〈unk| ∂iumk′〉

= −
(
Em(k′)− En(k)

)
〈∂iunk|umk′〉

Substituting this into the Kubo formula (3.30) yields

σxy = ie2

~
∑
n

∫
BZ

d2k

(2π)2 〈∂xu
n
k |∂yunk〉 − 〈∂yunk |∂xunk〉 . (3.39)

With (3.33) and (3.34) we finally get

σxy = e2

~
∑
n

∫
BZ

d2k

(2π)2Fxy (3.40)

= e2

2π~
∑
n

Cn. (3.41)

This equation states that the Hall conductivity σxy is the sum over the Chern numbers
of the filled bands of our material (with the exception of some prefactor). We see that
the behavior of such a system is a manifestly topological property, which can account for
the robustness of the effect.
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3.6 Topological edge states

In the last section, we saw that the Hall conductivity is a topological invariant and it has
also been discussed that the states which contribute to the overall Hall conductivity σxy
live on the edges of our system. We have also learned that we can explain this behavior
by considering the bending of the Landau levels due to the two-dimensional-box potential
of the system. The previous calculation enables us to discuss the appearance of the edge
conductivity under a new aspect.
In the same way as no homeomorphism between two objects with different genera can
be found, the band structures of materials belonging to different Chern classes can not
be adiabatically transformed into one another. At the transition between two insulating
materials, having two different Chern numbers, metallic edge states appear in order to
have a smooth transition between a topological non-trivial and a trivial material (e.g.
vacuum).
Imagine two bands that have to unwind in order to unravel a knot representing the
topological non-triviality (see Fig. 3.8). This is not possible without closing the band
gap somewhere, which is why the topological non-trivial material becomes metallic at the
edges.

Fig. 3.8: A "twist" between two bands renders the material topological non-trivial.
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4 Density functional theory

Density functional theory (DFT) is the most widely used tool for the calculation of
electronic structure in solids. The foundation of this method is that every observable or
property of an interacting, many-particle system can be derived from the ground state
density n0(r). Any quantity can be treated as a functional of n0(r), which contains, in
theory, all the information about the many-body wave function.
However, no exact functionals for any many-particle or even two-particle systems are
known. It was the famous ansatz of Kohn and Sham which finally enabled physicists to
make useful approximations for ground state functionals. Their ansatz maps the real,
interacting many-body system to an auxiliary system of non-interacting particles. The
many-particle effects are contained in the so-called exchange-correlation functional.

4.1 Hohenberg-Kohn Theorems

For a system of N interacting particles, the Hamiltonian can be written as

H = − ~2

2me

N∑
i=1
∇2
i +

N∑
i=1

Vext(ri) + 1
2

N∑
i,j=0
i 6=j

e2

|ri − rj |
. (4.1)

As we know, no exact solution for this Hamiltonian can be obtained if N exceeds only a
few particles, neither analytically, nor numerically. This is far below the 1023 particles a
solid usually consists of. Thus, only with drastic simplifications we are able to gain access
to certain approximate solutions. This is where density functional theory comes into play.
The foundation on which DFT is based upon are two theorems first proposed by Hohenberg
and Kohn [15] and applies to any system of N interacting particles in an external potential
Vext(r):

• Theorem 1: For any interacting many-body system in an external potential Vext(r),
the ground state density n0(r) uniquely determines Vext(r), up to a constant.

• Theorem 2: For any Vext(r) an energy functional E[n(r)] exists and choosing a
fixed Vext(r), the minimun of E[n(r)] is the exact ground state energy of the system,
which is found at n(r) = n0(r).

25



CHAPTER 4 DENSITY FUNCTIONAL THEORY

Vext(r) Hohenberg-⇐=======
Kohn

n0(r)wwww�
~wwww

ψi(r) ======⇒ ψ0(r)

Fig. 4.1: Assuming we know the external potential Vext(r), our Hamiltonian H is fully
determined, which means we are able to determine its set of wave functions
ψi(r), in principle. The wave function ψ0(r), belonging to the ground state
energy value, is contained in this set. With ψ0(r) at hand, any observable can
be calculated, including the ground state density n0(r). The Hohenberg-Kohn
theorem states, though, that n0(r) completely determines the external potential
Vext(r), and thus closes the circle.

4.1.1 Proof of theorem 1

Let us now consider the first theorem and proof it by contradiction:
Suppose there are two different external potentials Vext(r) and V ′ext(r) which both yield
the same ground state density n0(r). Of course, different potentials lead to different
Hamiltonians H and H ′ with their ground state wave functions ψ0(r) and ψ′0(r). Knowing
that the energy obtained by the exact ground state wave function sets a lower bound
for the energy spectrum and taking into account that ψ′0(r) is no eigenfunction of H it
follows that

E = 〈ψ0(r)|H |ψ0(r)〉 <
〈
ψ′0(r)

∣∣H ∣∣ψ′0(r)
〉

(4.2)

where we assumed that the ground state is non-degenerate. This assumption is not
necessary and the proof can be extended to cover degenerate cases as well [16]. The right
side of the inequality can be expressed as〈

ψ′0(r)
∣∣H ∣∣ψ′0(r)

〉
=
〈
ψ′0(r)

∣∣H ′ ∣∣ψ′0(r)
〉
−
〈
ψ′0(r)

∣∣H −H ′ ∣∣ψ′0(r)
〉

= E′ +
∫
V
d3r

[
Vext(r)− V ′ext(r)

]
n0(r)

⇒ E < E′ +
∫
V
d3r

[
Vext(r)− V ′ext(r)

]
n0(r) (4.3)

If we choose the following equation as our starting point

E′ =
〈
ψ′0(r)

∣∣H ′ ∣∣ψ′0(r)
〉
< 〈ψ0(r)|H ′ |ψ0(r)〉 (4.4)

we will arrive at
E′ < E +

∫
V
d3r

[
V ′ext(r)− Vext(r)

]
n0(r). (4.5)

Adding 4.3 and 4.5 we arrive at the contradiction

E + E′ < E + E′. (4.6)

This means the ground state density n0(r) determines the external potential Vext(r)
uniquely up to a constant shift.
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4.1.2 Proof of theorem 2

Let us restrict ourselves to the subspace of densities n(r) that only contains the so-called
V-representable densities. Those are densities that are ground state densities of H with
any external potential Vext. Since all quantities of the system are uniquely determined by
n(r), the functional becomes linearly separable such that

E[n(r)] = E0[n(r)] +
∫
V
d3rVext(r)n(r) + Enuc (4.7)

where E0 contains all the internal energies, i.e. the kinetic and the potential terms and
Enuc is the interaction energy of the nuclei.
Because E0 is a functional of the particle density n(r) only, it must be universal by
construction, meaning independent of the external potential Vext(r) and thus the same
for all electron systems.
Now suppose there is a ground state density n0(r) corresponding to the external potential
Vext(r) and the ground state wave function ψ0(r), so

E = E[n0(r)] = 〈ψ0(r)|H |ψ0(r)〉 . (4.8)

For a different ground state density n′0(r) and its ground state wave function ψ′0(r), we
necessarily get a greater energy.

E = 〈ψ0(r)|H |ψ0(r)〉 <
〈
ψ′0(r)

∣∣H ∣∣ψ′0(r)
〉

= E′. (4.9)

Thus, if we knew the functional E, we could find the exact ground state energy and
density by minimization.

4.2 Kohn-Sham ansatz

Since systems of interacting particles are difficult, if not impossible, to solve, Kohn and
Sham provided an ansatz which replaces that problem with something that is more
manageable [17]. They assume that there is some non-interacting system that has the
same ground state density as the original one. Even large non-interacting systems are
in practice solvable (numerically). The terms arising due to the many-body nature of
the problem are put into the exchange-correlation functional that was mentioned in the
introduction of this chapter.
The accuracy of the obtained ground state energy and density is only limited by the
approximations concerning the exchange-correlation functional.
We choose the Hamiltonian of the auxiliary system such that it consists of the kinetic
term T and an effective local potential V σ

KS , acting on an electron of spin σ at r. Using
the Hartree units, the Hamiltonian takes the form

Hσ
KS = −1

2∇
2 + V σ

KS(r). (4.10)

Let us now collect all the necessary terms to build the functional. The density is given
by the square of all the orbitals ψσi (r)

n(r) =
∑
σ

N∑
i=1
|ψσi (r)|2 (4.11)
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Vext(r) Hohenberg-⇐=======
Kohn

n0(r) Kohn-⇐==⇒
Sham

n0(r) Hohenberg-=======⇒
Kohn
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~wwww
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wwww�
ψi(r) ======⇒ ψ0(r) ψi=1...N (r) ⇐====== ψi(r)
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Fig. 4.2: (a) on the left hand side we recognize Fig. 4.1, which is linked to the auxiliary
system by the Kohn-Sham ansatz. As the right system is non-interacting, we
get a separate one-particle wave function for each particle; (b) depiction of an
interacting system of electrons; (c) a non-interacting system of particles that
has the same ground state density as system (b) does.

and T can be calculated by

T = 1
2
∑
σ

N∑
i=1
|∇ψσi (r)|2. (4.12)

Naturally, we have to consider the interaction of the charged particles via the Coloumb
repulsion. This energy functional is called the Hartree energy and is just the classical
Coulomb interaction of the electron density

EH [n(r)] = 1
2

∫
V
d3r d3r′

n(r)n(r′)
|r− r′| . (4.13)

Now, we have everything we need in order to rewrite the Hohenberg-Kohn functional
(4.7) as

EKS [n(r)] = T [n(r)] +
∫
V
d3rVext(r)n(r) + EH [n(r)] + E int.

nuc.
+ Exc[n(r)]. (4.14)

Vext(r) contains the potential of the nuclei and is well-defined, just as EH and Enuc. As
previously mentioned, all many-body effects are contained in Exc. Comparing EKS to
the Hohenberg-Kohn functional (4.7), we see that the exchange-correlation functional
can be written as

Exc[n(r)] = E0[n(r)]− T [n(r)]− EH [n(r)]
= 〈T0〉 − T [n(r)] + 〈Vint〉 − EH [n(r)]. (4.15)
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The latter equation shows that Exc is just the difference between the energies of the
real and the auxiliary system. Still, we do not know the exact form of the exchange-
correlation functional, but finding a reasonable approximation for Exc will finally enable
us to calculate the ground state properties of the interacting many-body system.
We have demonstrated that the minimum of our energy functional yields the exact ground
state energy and density (see Sec. 4.1.2). Minimizing EKS , under the constraint of ψσi (r)
being normalized, gives the Kohn-Sham-equations:

(Hσ
KS(r)− εσi )ψσi (r) = 0 (4.16)

Hσ
KS has already been introduced in (4.10). εσi are the energy eigenvalues and V σ

KS(r),
which we have not specified earlier, has now been identified as

V σ
KS(r) = Vext(r) + δEH [n(r)]

δn′(r) + δExc[n(r)]
δn′(r)

= Vext(r) + VH(r) + V σ
xc(r). (4.17)

Notice that the spin-dependency of n(r) has been omitted so far, but appears now
explicitly as an index of V σ

xc(r). As we still do not know the form of Exc, we are forced
to consider approximate forms of this functional to get any further. It is reasonable to
approximate Exc as a local or nearly local functional of the density:

Exc[n(r)] =
∫
V
d3r n(r)εxc([n], r) (4.18)

This means that the energy per electron εxc only depends on the density n(r) in a small
area around the point r. εxc can be related to the so-called exchange-correlation. To see
this, we will vary our Hamiltonian adiabatically in parameter space and calculate the
change in energy, which reads

∆E =
∫ λ2

λ1
dλ

dE

dλ
=
∫ λ2

λ1
dλ 〈ψλ|

dH

dλ
|ψλ〉 . (4.19)

We will vary λ from 0 to 1, which is equivalent to connecting the non-interacting system
smoothly with the interacting one, as in Hartree units e = 1 and therefore e2 = 1.
Basically, we are turning on the interaction slowly by progressively increasing the coupling
constant e2 of the interaction. For a constant density n(r), all the terms in (4.15), except
for Vint, will remain constant too. Hence this integral yields

Exc[n(r)] =
∫ e2

0
dλ 〈ψλ|

d

dλ
|ψλ〉 − EH [n(r)] = 1

2

∫
V
d3r n(r)

∫
V
d3r′

n̄xc(r, r′)
|r− r′| (4.20)

with
n̄xc(r, r′) =

∫ 1

0
dλ nλxc(r, r′). (4.21)

nλxc(r, r′) is the exchange-correlation hole, which we averaged above with respect to
the coupling constant e2. Together, (4.18) and (4.20) allow us to write the exchange-
correlation density εxc as

εxc([n], r) = 1
2

∫
V
d3r′

n̄xc(r, r′)
|r− r′| . (4.22)
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Fundamentally, εxc is the average change of the potential energy due to the exchange-
correlation hole when varying from no correlation at all to the real, fully-correlated
system.
Considering (4.17) and applying the product rule, we can write the exchange-correlation
potential V σ

xc(r) as

V σ
xc(r) = εxc([n], r) + n(r)δεxc([n], r)

δn′(r) . (4.23)

The second term in the equation above is called response potential because it describes
the change of the exchange-correlation hole nλxc(r, r′) with the density n(r). As this term
is discontinuous at the band gap, adding a single electron to the system changes the
potential by a constant amount. This can easily be understood considering the kinetic
energy T , which must change unsteadily too when a transition from an occupied to
an empty band occurs. Therefore, the functional T [n] has discontinuous derivatives at
densities that correspond to filled bands, which is very hard to incorporate into a density
functional. Hence, these effects will not occur for the simpler approximate functional that
is introduced in the next section and is used for our calculations later on.

4.3 Perdew-Burke-Ernzerhof generalized-gradient
approximation

A special approach to construct the exchange-correlation functional Exc has been intro-
duced by Perdew, Burke and Ernzerhof (PBE) [18].
Typically, a generalized-gradient approximation (GGA) is a choice for Exc which includes
the gradient of the density ∇nσ, whereas earlier approximations of Exc, like local spin
density approximation (LSDA), are merely functions of the density n.

• Local spin density approximation: Exc = ELSDAxc [n↑, n↓]

• generalized gradient approximation Exc = EGGAxc [n↑, n↓,∇n↑,∇n↓]

The hypernym generalized-gradient approximation denotes a range of functions that
modify the behavior of large gradients in such a way that fits real materials best. Let us
define the functional EGGAxc in a general form that is used for GGA:

EGGAxc =
∫
d3rn(r)εunifxc (n)Fxc (4.24)

where εunifxc is the exchange-correlation energy of a uniform electron gas and Fxc is a
dimensionless function that scales εunifxc . While εunifxc is well established [19], Fxc has to
be chosen in a fashion that preserves the desired qualities best.
Perdew, Burke and Ernzerhof constructed the correlation part of the fuctional EGGAc

from three conditions.

1. In the slowly varying limit |∇n| → 0, the gradient contribution H of this functional
is given by its second-order gradient expansion

H → α|∇n|2. (4.25)
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2. In the rapidly varying limit |∇n| → ∞,

H → −εunifc (4.26)

making correlation necessarily vanish, as for very large gradients the sum rule is
only satisfied by nc = 0.

3. Under uniform scaling to the high density limit, the correlation energy must converge
to a constant.

To model the exchange part of energy functional EGGAx , they took into account four more
constraints to which EGGAx must oblige.

4. For the same limit as in condition 3 and a vanishing spin polarization everywhere,
EGGAx must be of the same form as (4.24), with Fx only depending on a dimensionless
density gradient s = |∇n|

2kFn
. Then, to recover the correct uniform gas limit, Fx(0) = 1

must obviously hold.

5. The exact exchange energy obeys the spin-scaling relationship

Ex[n↑, n↓] = 1
2 (Ex[2n↑] + Ex[2n↓]) . (4.27)

6. For the linear response of the spin-unpolarized uniform electron gas, i.e. for small
variations of density around the uniform density, the linear response of the LSDA
should be attained.

7. The so-called Lieb-Oxford bound should be satisfied [20]. It reads

EX [n↑, n↓] ≥ EXC [n↑, n↓]. (4.28)

Perdew, Burke and Ernzerhof managed to find a function Fxc that fulfills all of the
requirements mentioned above and is given in their original paper [18].
Up to the present day, their model is implemented in a lot of codes and all the DFT
calculations that will appear later on in this thesis have been calculated using PBE.
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4.4 WIEN2k

WIEN2k is a DFT program package that allows to perform electronic structure calcu-
lations of solids. All the results on the electronic properties of graphene nanoribbons
(GNR) that are presented later, are obtained using this code.

(a)

(b)(b)

(b) (b)

Fig. 4.3: (a): interstitial region
(b): atomic spheres

WIEN2k uses the linearized augmented plane wave
(LAPW) method which is among the most accurate
methods for performing DFT on crystals. Although
this method is originally based on LSDA, it is also
implemented for GGA.
With LAPW, the Kohn-Sham equations of a many-
electron system can be calculated by introducing a
basis set as an ansatz which has been adapted to the
problem. To achieve this, the space is divided into
non-overlapping regions centered around the atoms
of the lattice and an interstitial region (see Fig.4.3).
For each region a different basis set is used. In the
interstitial region ordinary plane waves form our
basis:

φkn = 1√
ω
eiknr (4.29)

k is the crystal momentum inside the first Brillouin zone and kn = k + Kn with Kn as
the set of reciprocal lattice vectors.
Inside the atomic spheres of a certain radius R, we choose linear combinations of radial
functions multiplied with spherical harmonics Ylm(r).

φkn =
∑
lm

[Almul(r, El) +Blmu̇l(r, El)]Ylm(r) (4.30)

with ul(r, El) being the regular solution of the radial Schrödinger equation for energy El.
The coefficients Alm and Blm are functions of kn and are determined by requiring that this
basis function and its derivative connect smoothly to the basis functions of the interstitial
region. The boundary conditions can also be chosen such that the coefficients Alm and
Blm do not depend on kn, are normalized and equal zero at the sphere boundaries. This
is called APW+lo, where "lo" stands for local orbitals [21]. Since these basis functions
vanish abruptly at the boundaries, they have to be made smooth and differentiable again
by adding surface terms.
ul and its time derivative u̇l can be computed numerically on a radial mesh inside the
sphere.
With these tools at hand, we can calculate all the relevant quantities for the systems
that are be examined later. Unfortunately, the GNR presented in [6] contain many
atoms per unit cell. Although parallelization is used to distribute the work load over the
university’s cluster, the size of these structures exceeds our means, as the computational
effort scales exponentially with the number of atoms. One of the main goals of this thesis
is to reproduce the effects presented in [6] with GNR that are as small as possible and
therefore easier to handle with DFT.
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5 Graphene

In 2010 Andre Geim and Konstantin Novoselov were awarded with the Nobel Prize for
the synthesis of the world’s first 2D material: graphene [50]. Since then, graphene has
been a very popular subject of research due to its interesting properties and the rich
physics it provides.
Graphene is a semimetal and has a hexagonal lattice, which can be seen as two interleaving
triangular lattices with A and B sites (see Fig.5.1a).
In this chapter we examine graphene’s band structure and show that graphene fea-
tures gapless Dirac fermions close to the Fermi level. Afterwards we investigate on its
symmetries, which protect the system from opening a gap and becoming an insulator.

5.1 Electronic structure of graphene

5.1.1 Tight-binding

As we can see in Fig. 5.1a, graphene’s hexagonal lattice has the following translation
vectors

(a)

b1

b2

ky

kx

K

K'

(b)

Fig. 5.1: (a) graphene lattice, its primitive vectors a1, a2 (orange) and the hopping bonds
δ1, δ2, δ3 (blue); (b) first Brillouin zone, the K-points and the reciprocal lattice
vectors b1 and b2.

a1 = a0
2

(
3√
3

)
, a2 = a0

2

(
3
−
√

3

)
(5.1)

with a0 being the bond length. For real graphene a0 = 1.4245Å. Because the reciprocal
lattice vectors bi need to satisfy aibj = 2πδij , we get

b1 = 2π
3a0

(
1√
3

)
, b2 = 2π

3a0

(
1
−
√

3

)
. (5.2)

The vectors linking one site with its nearest neighbors are described by

δ1 = a0
2

(
1√
3

)
, δ2 = a0

2

(
1
−
√

3

)
, δ3 = a0

(
−1
0

)
. (5.3)
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Taking into account only nearest-neighbor interactions, we can easily build the Hamilto-
nian, in which we initially neglect the system’s spin degrees of freedom, as graphene’s
ground state is non-magnetic.

H = −
∑
R

3∑
i=1

[
tib
†(R + δi)a(R) + tia

†(R)b(R + δi)
]

(5.4)

where ti is the hopping along the δi and a(R) and b(R) are the annihilation operators
on the A and B site respectively. The sum over R implies summation over all sites
R = na1 +ma2 with n,m ∈ N. The Fourier transform of one of these operators is given
by

a(R) = 1√
N

∑
k
eikRak. (5.5)

This leads to

H = − 1
N

∑
k,q

∑
R

3∑
i=1

ei(k−q)R
[
tie
−iqδib†qak + tie

ikδia†qbk

]
. (5.6)

Using the completeness relation

δkq = 1
N

∑
R
ei(k−q)R (5.7)

where δkq is the Kronecker-Delta, we obtain

H = −
∑

k

3∑
i=1

[
tie
−ikδib†kak + tie

ikδia†kbk

]

= −
∑

k

3∑
i=1

(
a†k b†k

)( 0 tie
ikδi

tie
−ikδi 0

)(
ak
bk

)
. (5.8)

We define the matrix as

h(k) =
(

0 −t1eikδ1 − t2eikδ2 − t3eikδ3

−t1e−ikδ1 − t2e−ikδ2 − t3e−ikδ3 0

)
. (5.9)

Let us now consider the reciprocal lattice G = kb1 + lb2 spanned by the reciprocal lattice
vectors defined in (5.2) with k and l being integers. We notice that h(k) is not periodic
with respect to translation on the reciprocal lattice, i.e. h(k + G) 6= h(k). For this to be
the case, we need to fulfill the condition that biδj = 2πδij .
Since we know that the difference between two bond vectors must yield a lattice vector
in R again, which does fulfill this condition, we perform a U(1) gauge transform on the
A site annihilation and creation operators:

ak → eikδ3ak, a†k → e−ikδ3a†k (5.10)

In this new gauge the matrix becomes

h′(k) =
(

0 −t1eik(δ1−δ3) − t2eik(δ2−δ3) − t3
−t1e−ik(δ1−δ3) − t2e−ik(δ2−δ3) − t3 0

)
.

(5.11)
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5.1 ELECTRONIC STRUCTURE OF GRAPHENE

Fig. 5.2: Three-dimensional plot of graphene’s semimetallic energy spectrum in k-space
for a0 = 1 and t = 1. At K and K′ the bands form Dirac cones around which
the dispersion is linear.

Combining (5.1) and (5.3) we see that δi − δ3 = ai and therefore

h′(k) =
(

0 −t1eika1 − t2eika2 − t3
−t1e−ika1 − t2e−ika2 − t3 0

)
(5.12)

which is finally invariant under lattice translations with h′(k + G) = h′(k).
For the isotropic case t1 = t2 = t3, we get

E = ±t

√
3 + 2 cos

√
3a0ky + 4 cos

√
3

2 a0ky × cos 3
2a0kx. (5.13)

5.1.2 Massless Dirac Fermions

In Fig. 5.2 we see that the bands touch at the K-points (see Fig. 5.1b). The reciprocal
coordinates of the these points are given by

K = 2π
3a0

(
1
1√
3

)
, K′ = 2π

3a0

(
1
− 1√

3

)
. (5.14)

At these so-called Dirac cones or Dirac nodes the dispersion becomes linear. Thus, let us
expand h′(k) around K. Obviously, the matrix elements of h′(k) become zero at k = K.
Defining q = k−K, for the first order term, we get

h
′(1)
12 (k) = ∂h′12(k)

∂kx

∣∣∣∣
k=K

(kx −Kx) + ∂h′12(k)
∂ky

∣∣∣∣
k=K

(ky −Ky)

= −3a0
2 (qx − iqy)

⇒ h′′(q) = c q · σ +O(q2) (5.15)
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Fig. 5.3: Band structure of an infinitely extended sheet of graphene obtained with DFT.
At the K-point the conductance and valence band meet, just as predicted by
(5.13).

Above, we absorbed any prefactors into the constant c and defined σ to be the 2D vector
that contains the first two Pauli matrices σ = (σx, σy)>.
The electrons close to the K-points are called massless Dirac Fermions, since the equation
derived above resembles the Dirac equation of a free Fermion with mass m = 0.

5.1.3 DFT calculations for graphene

In this section the electronic structure of graphene obtained through DFT calculations is
presented. Because WIEN2k accepts only three-dimensional structures as input, the unit
cell has been chosen such that the layers of graphene are separated by a distance of 15Å,
thereby eliminating possible interactions along a third spatial dimension.
The bands given in Fig. 5.3 confirm the analytical results from (5.13). The conductance
and valence band touch at the K-point and disperse linearly around it, forming the
aforementioned Dirac cone. Having only a small band overlap, graphene classifies as a
semimetal.

5.2 Symmetries

The two most important symmetries present in a sheet of graphene are inversion and
time-reversal symmetry. In the case of real and isotropic hopping (t1 = t2 = t3 and
Im(ti) = 0, i ∈ 1, 2) both are present. Next the consequences of these symmetries will be
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analyzed.
A third symmetry of graphene, the C3 symmetry, will not be part of our discussion. It can
be shown, though, that the C3 symmetry in combination with inversion and time-reversal
symmetry fixes the position of the Dirac cones within the Brillouin zone [23].
Take notice that h′′(q) will be denoted as just h(q) and we will drop the constant factor
c from now on.

5.2.1 Inversion symmetry

Fig. 5.4: An infinite sheet of graphene and an arbitrarily chosen inversion center (blue
circle) that connects any two sites of the lattice (orange arrows).

The inversion operator I must be a unitary operator that flips the sign of the spatial
variables of our system:

I : (x, y)→ (−x,−y) (5.16)

Here, the matrix representation of the inversion operator is the first Pauli matrix σx. It
can be easily shown that if the system is symmetric under inversion, i.e. [H, I] = 0,
h(q) must fulfill

h(q) = σxh(−q)σx. (5.17)

Trivially, at k = K⇒ q = 0, adding a mass term and thereby opening a gap does not
conflict with the condition above. Thus, inversion symmetry on its own does not protect
the system’s gaplessness.

5.2.2 Time-reversal symmetry

Time reversal has already been presented in section 2.3.1. As a reminder:
T inverts the direction of time

T : t→ −t (5.18)

and for spinless systems we have identified T as the complex conjugate operator K. Thus,
a time-reversal-invariant system behaves as

Th(q)T−1 = h(−q). (5.19)

5.2.3 Symmetry protection of the Dirac points

In the previous two sections we argued that neither inversion nor time-reversal symmetry
protects the system from opening a gap. Let us now examine the combined effect of these
symmetries.
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Using (5.17) and (5.19), we can state that a system that is invariant under time reversal
and inversion must conform to

TI h(q) (TI)−1 = σxh
∗(q)σx = h∗(−q) = h(q). (5.20)

In order to open a gap, let us add a mass term of the form mσz to our Hamiltonian:

h(q) = qxσx + qyσy +mσz (5.21)

Demanding inversion and time-reversal symmetry, we get

h(q) = qxσx + qyσy +mσz

= σx(qxσx + qyσy +mσz)∗σx = qxσx + qyσy −mσz
⇒ mσz = −mσz
⇒ m = 0 (5.22)

As such, there can be no gap in the presence of inversion and time-reversal symmetry.
Although it is not forbidden to add any σx- or σy-terms, these perturbations would only
result in shifting the nodes in reciprocal space.
As it has already been mentioned, the position of the Dirac cones can be can fixed by
requiring C3 symmetry.

5.3 Topological properties

In chapter 2 the concepts of topological band theory were introduced. Let us now calculate
the Berry phase of graphene to gain insight into its topological properties.

5.3.1 Berry phase of graphene

Suspecting the more interesting properties of our system around the Dirac Points, we
first have a look at our Dirac Hamiltonian given by (5.15)

h(q) = q · σ. (5.23)

It should be pointed out that we still denote h′′(q) as just h(q) and that the constant
factor c has been dropped. In polar coordinates q and h(q) read

q = q

(
cosϕ
sinϕ

)
with |q| = q (5.24)

h(q) = q

(
0 cosϕ− i sinϕ

cosϕ+ i sinϕ 0

)
= q

(
0 e−iϕ

eiϕ 0

)
. (5.25)

The normalized eigenvectors of h(q) are

|ψ−〉 = 1√
2

(
−e−iϕ

1

)
and |ψ+〉 = 1√

2

(
e−iϕ

1

)
. (5.26)

We now use (2.9) to calculate the Berry connection. Let us remind ourselves that only
the filled bands are taken into account. Thus, we will consider only |ψ−〉.

A = i 〈ψ−| ∇q |ψ−〉 (5.27)
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K'

K

Fig. 5.5: Berry phase around the two Dirac nodes at K and K′ is the winding number
multiplied by π. The two nodes carry opposite vorticities +1 and −1 and
introduce a measure of topological charge.

Because |ψ−〉 does not depend on q and the gradient ∇q in polar coordinates is given by
∇q = ( ∂∂q ,

1
q
∂
∂ϕ)>, we obtain

A = i

2
(
−eiϕ 1

) 1
q

∂

∂ϕ

(
−e−iϕ

1

)

= i2

2q
(
−eiϕ 1

)(e−iϕ
0

)

= 1
2q (5.28)

With (2.7), we are able to derive the wave function’s Berry phase. For our loop C, we
choose only a small circle around the K-point, as we are only interested in the Berry
phase for transport around the Dirac cone at k = K for now.

γ =
∫
C
dq A =

∫ 2π

0
dϕ qA = π (5.29)

Analogously, it can be shown that the Dirac fermion sitting at K′ carries a Berry phase
of γ = −π, so for the whole Brillouin zone, the Berry phase amounts to γ = 0.
Accordingly, the Chern number must be C = 0 as well. This certainly does not come
as a surprise, since we have already shown that the Chern number C must vanish for
time-reversal-invariant systems in (2.19).
We see that the Berry phase around the K-points is nothing but the winding number
multiplied by π, which is then either +1 or −1. This introduces a measure of topological
charge for the Dirac points in k-space, which tells us how the wave functions wind around
these singular points differently with respect to each other. The K-point that carries the
topological charge +1 is called a vortex, whereas the other one is called an anti-vortex
(see Fig. 5.5).
Them coming together and annihilating each other would result in a gap, but as long as
C3 symmetry is present, the vortices are fixed.

39



CHAPTER 5 GRAPHENE

5.3.2 Breaking inversion symmetry

Breaking inversion symmetry will result in a gapped spectrum. This can easily be done
by adding a mass term to the Hamiltonian h(q):

hgap(q) = h(q) +mσz (5.30)

Going through the same calculations as above results in a Berry phase γ which picks up
a contribution that is proportional to (1−m).
This means, upon opening a gap, the Berry phase will not vanish instantly, but will
decrease progressively with an increasing gap, whereas for m→ 0 we return to the case
considered previously.
As adding a term proportional to σz does not violate time-reversal symmetry, the Chern
number is still zero and the system can not enter a quantum Hall phase.

5.3.3 Breaking time-reversal symmetry and the Haldane model

In the previous section it was shown that breaking inversion symmetry does not do the
job if we want to observe interesting, topological phenomena, like the quantum Hall effect.

(a) (b)

Fig. 5.6: (a) nearest-neighbor (blue) and next-nearest-neighbor, hopping bonds δ̃1, δ̃2, δ̃3,
δ̃4, δ̃5, δ̃6, (orange); (b) different directions of rotation for next-nearest-neighbor
hopping for sublattices A and B.

Of course, we could apply an extrinsic magnetic field, which breaks time-reversal symmetry,
but preferably we would like to keep the translation invariance of our system intact and
we are more involved in finding intrinsic effects, i.e. properties of graphene that are not
field-induced anyway.
Duncan Haldane was the first who managed to mimic the integer quantum Hall effect on
a honeycomb lattice [30].
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C=1 C=-1
trivial

trivial

Fig. 5.7: Haldane phase diagram. Depending on magnitude of the inversion-symmetry-
breaking term mσz and the phase φ, the Haldane model assumes different
quantum Hall phases corresponding to different Chern numbers C. In the
orange region C = 1 and in the blue region C = −1. Everywhere else the
system’s topology is trivial.

Starting at our real-space Hamiltonian (5.4) and assuming isotropic hopping t = t1 = t2 = t3,
we now add a next-nearest-neighbor hopping term along the next-nearest neighbor bonds
δ̃i (see Fig. 5.6a):

HHal. =−
∑
R

3∑
i=1

t

[
b†(R + δi)a(R) + a†(R)b(R + δi)

]

−
∑
R

3∑
i=1

t′
[
eiφa†(R + δ̃i)a(R) + e−iφb†(R + δ̃i)b(R)

]
+ h.c.

+m

[∑
RA

a†(RA)a(RA)−
∑
RB

b†(RA)b(RA)
]

(5.31)

The crucial point is that we do not restrict the next-nearest-neighbor hopping term t′ to
be real, as we do for t. In fact, t′ is completely imaginary. This leads to the time-reversal
symmetry being broken, as this term will change sign if T is applied.
Additionally, we have broken inversion symmetry by adding a mass term, which is the
third line of the equation above.
In k-space representation, this Hamiltonian takes a much shorter form:

hHal. = h0(q) +mσz + 2t′
6∑
i=1

σz sin k · δ̃i (5.32)

The first addend h0(k) is the unexpanded Hamiltonian, previously called h′(k) in (5.12).
It can be shown that the Chern number C can take three possible values: −1, 0 and 1
[30]. Which topological phase the system assumes, depends on the values of the phase φ
and the inversion-symmetry breaking term m.
The interplay of φ and m results in the famous Haldane phase diagram (see Fig. 5.7).
For graphene, such a behavior has not been observed. Nevertheless, such a system has
been realized experimentally for a system of ultracold fermions [33].
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6 Z2 invariant

In the previous chapter, we thoroughly examined the electronic and topological properties
of a sheet of graphene. We found that graphene features two linearly dispersing Dirac
cones in its Brillouin zone, at which the bands touch. The gaplessness of the system is
protected by inversion and time-reversal symmetry, whereas the cone’s position is fixed
by C3 symmetry.
We learned that if we want to find a non-zero Hall conductance, time-reversal symmetry
has to be broken. This can be accomplished by either applying a magnetic field, or by
introducing complex hopping. The competition between the inversion- and the time-
reversal-breaking term finally resulted in the Haldane phase diagram (see Fig. 5.7).
Since spin-orbit coupling in graphene is weak, only small effects of complex hopping have
been observed yet. This might lead to believe that, in the end, graphene does not exhibit
any interesting topological behavior at all. Kane and Mele first realized that systems
with intact time-reversal symmetry can enter an exotic topological phase too [34]. This
new phase of matter is called the Quantum Spin Hall phase and it hosts edge states
that are not transporting charge, as in the case for the Hall conductance, but it features
counterpropagating edge modes that carry spin charge (see Fig. 6.1). The topological
invariant related to this effect is called the Z2 invariant [29]. In two dimensions it is given
by

(−1)Z2 =
4∏
i=1

√
det[A(Λi)]

Pf[A(Λi)]
. (6.1)

The matrix elements Anm(k) above are defined as

Anm(k) =
〈
un−k

∣∣T |umk 〉 (6.2)

and Λi are the points in the Brillouin zone of a spin system which stay invariant under
time reversal. Let us remind ourselves that the time-reversal operator T does not only
flip the sign of the crystal momentum k, but also of the spin. Considering a spinless
system, every k-point of the Brillouin zone would be a time-reversal-invariant momentum

topological insulator

trivial insulator

Fig. 6.1: Interface between two insulators with different topologies resulting in spin-
polarized, counterpropagating edge modes.
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Tables and Figures 

 

Table. 1: Categorization of topology of armchair graphene nanoribbons (AGNRs). The 

nanoribbons are identified according the type of termination (labelled in first row) and width. 

Schematics of AGNR structure with different termination types is defined and plotted in the 

second row. The bracket denotes a specific termination of an infinitely long AGNR. The row 

number for the carbon atoms along the lateral direction are labelled from “1” to “N”. The bulk 

unit cell of each structure that is commensurate with the termination is indicated by the dashed 

red rectangle. The bulk symmetry is indicated in the third row. The value of the Z2 invariant is 

given in the fourth row. The floor function ⌊𝑥⌋ takes the largest integer less than or equal to a real 

number 𝑥.  

 

 

 

 

 

 

 

 

Fig. 6.2: Categorization of the different armchair graphene nanoribbons (AGNR). The
unit cell is given in red and the brackets denote a specific termination of an
effectively infinitely long AGNR. The hydrogen atoms saturating the structures
are omitted. The width N is given by the number of carbon atoms in one dimer
along the lateral direction. The floor function bxc outputs x if x is an integer
and otherwise the next lower integer [5].

(TRIM) because we know by Kramers’ theorem that for every energy of an eigenstate
|k〉, the time-reversed state T |k〉 has the same energy, as long H and T commute.
The Z2 invariant can be tricky to calculate, since it requires you to find a smooth
gauge over the whole Brillouin zone. Other methods to obtain the invariant have been
introduced, one of which is only applicable for inversion-symmetric systems. As the
structures examined in the next chapter preserve inversion symmetry, we will choose this
approach accordingly.
Fu and Kane were able to show that if [H, IT ] = 0 is obeyed, the Pfaffian can be expressed
through the eigenvalues of the inversion operator [28]

Pf[A]2 =
N∏
i=1

ζi. (6.3)

This drastically simplifies the calculation of the Z2 invariant because the eigenvalues
of the inversion operator I can be obtained much more easily than a global gauge. It
might seem strange that although this classification is used for spinful systems, no spin
dependent term appears in (6.3) at all. Of course, bands have inversion eigenvalues,
irrespective of whether spin is considered or not. Here, spin-orbit coupling’s role is to
ensure that an energy gap exists and is finite everywhere.
In Fig. 6.2 the Z2 invariants for armchair graphene nanoribbons (AGNR) of different
width, termination and unit cells are given.
To characterize the topology of the quasi-1D AGNR, we calculate the Zak phase φZ ,
which is just the one-dimensional Berry phase [49]. It reads

φZn = i

∫ π

−π
dk 〈unk | ∂k |unk〉 . (6.4)

Due to the spatial symmetries of the system, the intercell Zak phase of a system is
quantized at either 0 or π. The Z2 invariant and the sum of all intercell Zak phases φZn
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are related through

(−1)Z2 = exp
(
i
∑
n

φZn

)
. (6.5)

This classification enables us to predict when interface states at the heterojunctions
between different AGNR should arise due to the gap closing at the transition from the
topologically trivial to the non-trivial material. In this way we hope to construct AGNR
with new, topological bands that are induced by the coupling of these interface states.
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7 Su-Schrieffer-Heeger model

This chapter is devoted to the topological properties of the one-dimensional, organic
polymer called polyacetylene. It consists of a chain of carbon atoms with alternating single
and double bonds between them, each with one hydrogen atom (see Fig. 7.1). In 1979 Su,
Schrieffer and Heeger (SSH) proposed a tight-binding model for such a system and it is
introduced to explain the origin of certain bands in the spectrum of graphene-nanoribbon
composites later on.

7.1 Tight-binding of polyacetylene

The model Hamiltonian for a N unit cell chain, with each cell consisting of two sublattices
A and B, is given in terms of single particle creation and annihilation operators that act
on either the A or B sublattice (see Fig. 7.1).

H = −
N∑
n=1

t1b
†
nan −

N−1∑
n=1

t2a
†
n+1bn + h.c. (7.1)

Here, an is the annihilation operator of an electron on the nth site of sublattice A and bn
the annihilation operator of one on the nth site of sublattice B. While t1 represents the
intracell hopping, meaning the hopping along a double bond, t2 is for intercell hopping
along a single bond.
Let l0 be the spatial distance between two atoms belonging to the same sublattice. The
Fourier transform of these operators is given by

an = 1
N

∑
k

eiknl0ak (7.2)

a†n = 1
N

∑
k

e−iknl0ak (7.3)

A
B

Fig. 7.1: Structural diagram of polyacetylene in its trans configuration. The unit cells
are marked in red. The lower row of carbon atoms represents the A sublattice,
whereas the upper row atoms sit on the B sublattice.
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Fig. 7.2: Dispersion in polyacetylene for different hopping amplitudes at l0 = 1. (a),
(b), (d) and (e) for staggered hopping amplitudes t1 6= t2 we find an insulating
phase; (c) gap is closed at the boundaries of the Brillouin zone which renders
the material semimetallic.

Considering periodic boundary conditions, the Fourier transformed Hamiltonian is given
by

H = −
N∑
n=1

∑
k,q

t1
1
N
ei(k−q)l0n

[
b†qak − a†qbk

]
−

N∑
n=1

∑
k,q

t2
1
N
ei(k−q)l0n

[
e−iql0a†qbk + eikl0b†qak

]
.

(7.4)

In the thermodynamic limit N →∞, we can use the completeness relation

δkq = 1
N

∞∑
n=1

ei(k−q)nl0 (7.5)

which leads to

H = −
∑
k

t1

[
b†qak + a†qbk

]
−
∑
k

t2

[
e−ikl0a†qbk + eikl0b†qak

]
(7.6)

= −
∑
k

(
a†k b†k

)( 0 t1 + t2e
−ikl0

t1 + t2e
+ikl0 0

)(
ak
bk

)
. (7.7)

Let us define
h(k) = −

(
0 t1 + t2e

−ikl0

t1 + t2e
+ikl0 0

)
. (7.8)

Diagonalizing h(k), we obtain the energy eigenvalues

E2 = (t1 + t2e
−ikl0)(t1 + t2e

+ikl0)
⇔ E2 = t21 + t22 + t1t2(e+ikl0 + e−ikl0)

⇔ E = ±
√
t21 + t22 + 2t1t2 cos kl0 (7.9)

We notice that as long as t1 6= t2 holds, the system is gapped, but for t1 = t2 (see Fig.
7.2c) this model describes a conductor. By Peierls’ theorem we know that one-dimensional
metals are not stable [51]. Therefore, we would expect to find such a system with staggered
hopping amplitudes t1 6= t2 in nature.
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7.2 Topological properties of polyacetylene

Let us now investigate the system’s behavior at t1 = t2, where the chain becomes metallic
(see Fig. 7.2c). To this end, consider the matrix element h12(k) from (7.8):

h12(k) = −t1 − t2e−ikl0 = −t1 − t2 cos kl0 + it2 sin kl0 (7.10)

Having split h12(k) in its real and imaginary part, we can easily write h(k) as

h(k) = −g(k) · σ = −
(
t1 + t2 cos kl0 t2 sin kl0

)( σx
σy

)
(7.11)

where we defined g(k) =
(
t1 + t2 cos kl0 t2 sin l0

)
and σi are the Pauli matrices. In

its polar representation g(k) becomes

g(k) = |g(k)|
(

cosφ(k)
sinφ(k)

)
. (7.12)

As we are interested in how the vector g(k) winds around the Brillouin zone, let us solve
for φ(k).

g2(k)
g1(k) = tanφ(k) ⇔ φ(k) = arctan g2(k)

g1(k)

φ(k) = arctan t2 sin kl0
t1 + t2 cos kl0

(7.13)

In Fig. 7.3 we see how the vector g(k) evolves through the first Brillouin zone for different
hopping amplitudes t1 and t2. t1 acts as the position of the center of the sphere on the
x-axis while t2 determines its radius.
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Fig. 7.3: Parametric plot of the vector g(k) for different hopping amplitudes. (a) g(k)
traces out a circle with radius Rg = 0 resulting in a point at x = 1; (c) at the
phase transition the origin of the system and the closed loop touch; (d) system
has entered a topological phase.
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t1

t2

topological

trivial

topological 
transition

Fig. 7.4: Phase diagram of the topological phases of the system with respect to the
hopping parameters t1 and t2. Overstepping the boundary along t1 = t2 results
in a topological phase transition.

Thus, the condition for g(k) to enclose the origin is

t2
t1
> 1 (7.14)

It can be shown easily that the winding number of the curve g(k) around the origin times
π is nothing but the Zak phase φZ along the chain [52]. Therefore, it assumes either 0 or
π as a value depending on whether the curve encloses the origin or not. Hence,

φZ = 0 for t2
t1
< 1,

φZ = π for t2
t1
> 1. (7.15)

Increasing t2/t1, we see that at t2/t1 = 1 a topological phase transition takes place
(see Fig. 7.4), characterized by a change of the Zak phase φZ = 0→ φZ = π.
The global topology of the system in terms of the Zak phase thus solely depends on the
ratio between inter- and intracell hopping.

7.3 SSH model for AGNR composites

As polyacetylene is not the material that we are ultimately interested in, let us use what
we have learned so far on composites consisting of AGNR of different width, which is
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Fig. 7.5: AGNR composite that consists of a 9 atom wide and a 7 atom wide AGNR.
Combined, the blue and the orange box represent the unit cell of this quasi-1D
system with length l0. The edge states, which arise du to the different Z2
invariants of the components, are localized at the interfaces and are highlighted
in red. The overlap between the interface states is given by t1 for intracell and
by t2 for intercell hopping.

introduced in depth in chapter 8. For now, just assume a chain of alternating AGNR
which are 7 and 9 carbon atoms wide (see Fig. 7.5).
With Fig. 6.2 we notice that these two AGNR have different Z2 invariants. As the band
gap must be closed necessarily at the transition between materials in different topological
phases, we expect edge states at the interfaces. It is our goal to describe the behavior of
these states with the SSH model, so let us assume that the overlap between the interface
states is given by the hopping amplitudes t1 and t2. Joining the system’s components to
a supercell that contains two of these interfaces, the dispersion between the interfaces
can be described analogously to the polyacetylene system.
Whether the global topology in terms of the Zak phase φZ of this effective chain is trivial
or not depends on the ratio t2/t1. Note, however, that we only consider the local topology
of the system, meaning the value of the Z2 invariant of its components, as we are not
interested in the edge states at the boundary of the chain, but rather assume an infinitely
long chain and examine the consequences of the interplay between the topological interface
states.
In [6], sinusoidally dispersing bands close to the Fermi level are interpreted to be the
result of the coupling between interface states as described above. If these bands were the
consequence of the overall topology of the system as claimed, one could easily alter the
electronic properties of AGNR composites by tuning the overlap between these states.
In the next chapter we find bands that exhibit such a dispersion in smaller structures
and examine whether it is justified to associate them with topology.
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8 Graphene nanoribbons

8.1 Different forms of graphene nanoribbons

Graphene nanoribbons (GNR) are thin strips of graphene. These quasi-1D systems
exhibit different electronic and topological properties depending on their width, edge
shape and unit cell termination. In general, any graphene nanoribbon can be generated
by connecting dimers via a translation of a lattice vector.

(a) (b)

(c)

Fig. 8.1: Different types of graphene nanoribbons

In the following discussion, we are focussing on the armchair graphene nanoribbons
(AGNR) (see Fig. 8.1a). Be aware that in order to avoid dangling bonds, we always
consider hydrogen-saturated GNR for our DFT calculations. A carbon-hydrogen bond
length of 1.06Å has been chosen and the hydrogen atoms were placed at an angle of 90◦

for the pure 7 and 9AGNR, and at an angle of 120◦ to the longitudinal direction for the
composite structures.
The next-neighbor distance of the carbon atoms has been adjusted to 1.4245Å.

8.2 Tight-binding of AGNR of any width

Let us consider an infinitely long AGNR of width W and a unit cell of length A0. With
Fig. 8.2 at hand we can easily construct the tight-binding Hamiltonian in real space
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Fig. 8.2: AGNR of width W . We have periodic boundaries in the x-direction. The width
of the AGNR is determined by the number of carbon atoms in the dimers it
consists of. Each unit cell contains two such dimers with sublattices A and B.

regarding only nearest-neighbor hopping.

H =− t
∑
n

[ ∑
w odd

a†n(w)bn−1(w) +
∑

w even

a†n(w)bn(w) + h.c.

]

− t
∑
n

W−1∑
w

[
a†n(w + 1)bn(w) + b†n(w + 1)an(w) + h.c.

]
(8.1)

a†n(w) and b†n(w) are the creation operators that create an electron at the Aw and Bw site
in the nth unit cell while an(w) and bn(w) are the corresponding annihilation operators.
The upper line of this Hamiltonian describes longitudinal hopping along the x-direction,
whereas the lower line represents transverse hopping along the width of the AGNR.
Since we consider a system with a finite width W , but with periodic boundary conditions
along the x-direction, we can Fourier transform the creation and annihilation operators
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along that axis.

a†n(w) = 1
Lx

∑
k

e−ikxn,Awak(w) (8.2)

b†n(w) = 1
Lx

∑
k

e−ikxn,Bw bk(w) (8.3)

Here, k is the crystal momentum and xn,Aw and xn,Bw are the x-coordinates of the Aw
and Bw sites in the nth cell.
Let us now assume that the x-coordinate does only change for longitudinal hopping, so
we get

xn,A1 = xn,B2 = xn,A3 = ... = xn, (8.4)

xn,B1 = xn,A2 = xn,B3 = ... = xn + A0
2 . (8.5)

with A0 being the length of the unit cell (see Fig. 8.2).
The Fourier transform of one of the creation annihilation pairs reads

a†n(w)bn−1(w) = 1
Lx

∑
k,k′

ei(k−k
′)xne−ik

′ A0
2 a†k′(w)bk(w). (8.6)

Using
δk,k′ = 1

Lx

∑
n

ei(k−k
′)xn , (8.7)

we obtain the Fourier transform of (8.1) as

H =− t
∑
k

[ ∑
w odd

e−ik
A0
2 a†k(w)bk(w) +

∑
w even

e−ik
A0
2 a†k(w)bk(w) + h.c.

]

− t
∑
k

W−1∑
w

[
a†k(w + 1)bk(w) + b†k(w + 1)ak(w) + h.c.

]
. (8.8)

Since both longitudinal hoppings acquire the same phase factor, we can merge the sums
and get

H =− t
∑
k

W∑
w

[
e−ik

A0
2 a†k(w)bk(w) + h.c.

]

− t
∑
k

W−1∑
w

[
a†k(w + 1)bk(w) + b†k(w + 1)ak(w) + h.c.

]
. (8.9)

By adding and subtracting

a†k(W + 1)bk(W ) + b†k(W + 1)ak(W ) + h.c., (8.10)

this expression can be transformed to

H =− t
∑
k

W∑
w

[
e−ik

A0
2 a†k(w)bk(w)a†k(w + 1)bk(w) + b†k(w + 1)ak(w) + h.c.

]
(8.11)

+ t
∑
k

[
a†k(W + 1)bk(W ) + b†k(W + 1)ak(W ) + h.c.

]
. (8.12)
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The lower term of (8.12) will be omitted because it does not contribute to the energies
as we will see later.
As an ansatz, we define the one-particle state

|Ψ(k)〉 = |ψA(k)〉+ |ψB(k)〉 =
W∑
w

(
αwa

†
k(w) + βwb

†
k(w)

)
|0〉 . (8.13)

Inserting this into the Schrödinger equation

H |Ψ(k)〉 = E |Ψ(k)〉 (8.14)

and using the anti-commutation relations

{
ak(w), a†k′(w′)

}
= δk,k′δw,w′ , (8.15){

bk(w), b†k′(w′)
}

= δk,k′δw,w′ , (8.16)

finally yields

E |Ψ(k)〉 = −t
W∑
w

[
e−ik

A0
2 βwa

†
k(w) + βwa

†
k(w + 1) + βw+1a

†
k(w)

+e+ikA00
2 αwb

†
k(w) + αwb

†
k(w + 1) + αw+1b

†
k(w)

]
|0〉 . (8.17)

Shifting the sums and doing a coefficient comparison with E |Ψ(k)〉, we find the following
equations of motion

Eαw = −t
(
e−ik

A0
2 βw + βw−1 + βw+1

)
, (8.18)

Eβw = −t
(
e+ikA0

2 αw + αw−1 + αw+1

)
. (8.19)

As our system has a finite width, we want our amplitudes to vanish at w = 0 and
w = W + 1 and thus we impose the boundary conditions

α0 = β0 = αW+1 = βW+1 = 0 (8.20)

⇒ Eα1 = −t
(
e−ik

A0
2 β1 + β2

)
(8.21)

Eβ1 = −t
(
e+ikA0

2 α1 + α2

)
(8.22)

EαW = −t
(
e−ik

A0
2 βW + βW−1

)
(8.23)

EβW = −t
(
e+ikA0

2 αW + αW−1

)
(8.24)

To solve our equations of motion let us assume the solutions of the amplitudes are of the
form

α(w) = C1e
+iqw + C2e

−iqw, (8.25)
β(w) = C3e

+iqw + C4e
−iqw (8.26)
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with C1 to C4 being coefficents and q as the transverse wave number. (8.21) gives us the
following relations:

α0 = C1 + C2 = 0, (8.27)
β0 = C3 + C4 = 0, (8.28)

αW+1 = C1e
+iq(W+1) + C2e

−iq(W+1) = 0, (8.29)

βW+1 = C3e
+iq(W+1) + C4e

−iq(W+1) = 0. (8.30)

Hence, we have

αw = C1

(
e+iqw − e−iqw

)
, (8.31)

βw = C3

(
e+iqw − e−iqw

)
. (8.32)

Let us now insert these into our equations of motion (8.18).

Eαw =− t
(
e−ik

A0
2 βw + βw−1 + βw+1

)
(8.33)

EC1

(
e+iqw − e−iqw

)
=− C3te

−ikA0
2

(
eiqw − e−iqw

)
− C3t

(
eiqwe−iq − e−iqweiq + eiqweiq − e−iqwe−iq

)
(8.34)

EC1

(
e+iqw − e−iqw

)
=− C3t

(
2 cos q + e−ik

A0
2

)(
eiqw − e−iqw

)
(8.35)

EC1 =− C3t

(
2 cos q + e−ik

A0
2

)
(8.36)

(8.19) analogously yields

EC3 = −C1t

(
2 cos q + e+ikA0

2

)
. (8.37)

Solving (8.37) for C3 and inserting it into (8.36) brings forth

E = 1
E
t2
(

2 cos q + e+ikA0
2

)(
e−ik

A0
2 2 cos q

)
, (8.38)

E2 = t2
(

1 + 4 cos2 q + (e+ikA0
2 + e−ik

A0
2 )2 cos q

)
. (8.39)

Then, we finally obtain the solution for the eigenenergies as

E = ±t

√
1 + 4 cos2 q + 4 cos q cos kA0

2 . (8.40)

In order to calculate the quantization condition for our transverse wave number q,
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Fig. 8.3: Electronic band structure of AGNR for t = 1 and A0 = 1. For W = 3n+ 2 with
n ∈ N0 the spectrum is semimetallic. In general, the band gap decreases with
increasing W .

remember the boundary condition (8.29)

C1e
+iq(W+1) + C2e

−iq(W+1) = 0

⇔ −C1e
+iq(W+1) = C2e

−iq(W+1)

⇔ −C1e
+2iq(W+1) = C2

8.27⇔ C2e
+2iq(W+1) = C2

⇒ 2q(W + 1) = 2π

⇒ q = π
ν

W + 1 , ν = 1, 2, 3, ..., N (8.41)

Upon comparing the spectra of AGNR of various widths W , we learn that the spectrum
is semimetallic for AGNR that fulfill

W = 3n+ 2 with n ∈ N0 (8.42)

and semiconducting for other, small AGNR.
In the limit of W → ∞, we obtain the semimetal spectrum of an ordinary sheet of
graphene.

8.3 DFT calculation for AGNR

Let us now compare the tight-binding energy spectrum (see Fig. 8.3) with the results
from the DFT calculations.
In order to simulate a one-dimensional system, we spaced the GNR with about 30Å
between the y-layers and 15Å between the z-layers, thereby eliminating interaction
between them and obtaining the spectrum of an effective one-dimensional system.
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Fig. 8.4: Results of the DFT calculations for a 7AGNR (a) and a 9AGNR (9). Due to
the small band gap both structures classify as semiconductors, which meets our
expectations from the tight-binding calculations (see Fig. 8.3).

The density of the k-mesh has been progressively increased to 10000 points for the
7AGNR and to 5000 points for the 9AGNR, which has been reduced to 14400 and 800
k-points by WIEN2k respectively, due to the symmetries of the systems. The accuracy of
energy and charge convergence has been raised to 0.0001Ry. The final energy stays nearly
constant for all calculations though, so already for a loose mesh, a good convergence can
be obtained.
The point k = 0 has been named Γ and the x-range of the plots has been chosen such
that it extends to the boundaries of the respective unit cell.
Although the DFT and the tight-binding spectra show obvious deviations, we can find
qualitative agreement between them. We have to keep in mind that for the tight-binding
calculations only the nearest-neighbor interactions have been considered and the on-site
energies at the boundaries of the ribbons, which arise due to the hydrogen saturation,
have been neglected.
On the other hand, DFT tends to underestimate the band gap of a system, because of
the derivative discontinuity in the exchange-correlation potential V σ

xc, as discussed by
means of (4.23). Additionally, there is spurious self-interaction between the states in the
occupied bands, which delocalizes them and forces them up in energy.
Whether the width W fulfills (8.42), has no effect whatsoever on the spectra. They
remain semiconductors for all small widths W [53]. This is probably due to the negligence
of the on-site energies in the tight-binding calculations.
Examining the orbital character of the band structure of 7AGNR in Fig. 8.5, we confirm
a statement of [53], where it is argued that if a mirror plane in the strucutre is present,
the orbitals in each band do not mix. Just as expected, the bands close to the Fermi level
have out-of-plane orbital character. These pz-orbitals form π-bonds.
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Fig. 8.5: Band structure of the 7AGNR. The thickness of the bands corresponds to
orbital contribution to the band of atom B5 (see Fig. 8.2). The different colors
correspond to the different orbital types px, py and pz.

8.4 AGNR composites

Considering composite AGNR that consist of AGNR of different width, we can introduce
topological defects without acutally introducing impurities in our system. If the compo-
nents of this composite structure have different Z2 invariants, there will be edge states, or
rather interface states, that couple to each other. Through this coupling we should see new
bands that are topologically induced. An AGNR of a fixed width W produces a quasi-1D

(a) (b)

Fig. 8.6: smooth (a) and abrupt coupling (b) of 7 and 9AGNR

lattice that consists of alternating blocks of bW2 c and b
W
2 c − 1 hexagons (see Fig. 8.1a).

Connecting two AGNR which differ in their width by two, one can basically choose two
different ways of joining the lattices.
In Fig. 8.6a the two AGNR are combined in a way such that the more narrow rows meet
each other. This coupling will be referred to as smooth coupling, while in Fig. 8.6b the
bW2 c and the bW2 c − 1 row are coupled, which will be called abrupt coupling.
Since the structure proposed in [6] is too big to be calculated with our means, let us turn
our attention to smaller, more manageable structures.
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Fig. 8.7: (a) two 3/5/3 AGNR composites. The upper structure has been joined smoothly,
the lower abruptly; (b) band structures resulting from DFT of the two systems
given in (a). The bands corresponding to the abruptly coupled ribbon are given
in orange, the others in blue. Only the components of the abruptly joined GNR
have different values for the Z2 invariant.

8.4.1 3/5/3 AGNR composites

As the computational expense scales exponentially with the size of the unit cell, consider
AGNR composites that consist of 3 and 5AGNR. Consulting our classification scheme for
the Z2 invariant of AGNR (see Fig. 6.2), we come to the conclusion that only the abruptly
coupled structure features components of a distinct topological phase. In Fig. 8.7b the
DFT results for the smoothly and the abruptly joined AGNR are given. The bands of
the topological composite are orange.
For both systems the electronic structure looks quite similar: The valence bands sit on
top of each other and the conduction band of the abrupt structure seems to appear in the
smoothly joined ribbon too, just shifted up about 1eV. At first glance, it does not look
as if completely new bands appear. Notice though that the smooth composite exhibits a
flat band, just below the Fermi level.
In chapter 7 it was demonstrated that the bands, which are a consequence of the coupling
of the interface states, are expected to disperse like the bands in the SSH model. Hence,
we expect orange bands close to the Fermi level of the form

ESSH =
√
t21 + t22 + 2t1t2 cos k. (8.43)

If any of these bands resulted from such a topology, the contribution to them from the
atoms sitting at the interfaces should be large compared to the other atoms. Thus, we

61



CHAPTER 8 GRAPHENE NANORIBBONS

t1 t1

t2 t2

t1 t1

t2 t2

Fig. 8.8: AGNR composite and dimer chain with effective hopping t1 and t2. The localized
interface states between the different components of the AGNR composite
correspond to the sites of the dimer chain in the SSH model. Instead of hopping
along either a single or a double bond, the different components of the composite
are being hopped over.

divided the atoms contained in the unit cell of the abruptly joined 3/5/3 composite into
interface and non-interface atoms (see Fig. 8.9) and its band structure is given again
in Fig. 8.10. Now, the thickness of the bands corresponds to the contribution of the
respective group of atoms. The only bands that are in line to be of topological nature
are those that are bent towards the Fermi level and cross the y-axis at approximately 2
and −1 eV respectively. In the lower plot of Fig. 8.10, the weights have been averaged
with respect to the number of atoms belonging to either the interface or non-interface
group. We observe that the interface atoms mainly contribute to the bands close to the
Fermi level and that in average their weight exceeds the contribution of the non-interface
atoms approaching this region.
As the interface states are not fully localized and should extend a certain amount into
the components adjacent to the respective interface, this favors the interpretation of [6].
The parameters of the SSH dispersion (8.43) have been adjusted to fit the bands in
question and have been plotted in Fig. 8.10 as well.
To match them properly, a shift of 0.55eV is necessary and the hopping amplitudes have
been chosen such that t1 = ±0.38 and t2 = ∓0.96, which yields a gap of ∆t = 1.34eV.
The authors of [6] argue that due to the smaller intrinsic band gap of the wider structure
(see Fig. 8.3), the interface state’s wave function decays more slowly, thus allowing it
to extend further into the wider structure (here the 5AGNR). This would generate a
bigger overlap compared to the overlap that corresponds to hopping over the more narrow
structure, which finally results in t1 6= t2.
Fig. 8.11 illustrates how each carbon atom contributes to the band structure and which
orbitals do so. As expected, the bands are formed by out-of-plane p-orbitals.
The only contribution from in-plane orbitals that we can see in the chosen energy window
comes from atom C4 and C6. The hydrogen atoms that saturate these two carbon atoms
sit very close to each other (0.63Å) and the flat bands are probably a result of their
immediate proximity.
The px- and py-orbitals form bonding and anti-bonding pairs which result in bands that
are far away from the Fermi edge.
Referring to Fig. 8.10, we argued that mainly the interface atoms contribute to the
conductance and valence band. Fig. 8.11 reveals though that atom C3 adds a significant
share to these bands, although it is the atom with the largest distance to the interfaces. In
analogy to the dimer chain, we expect a contribution that decays exponentially with the
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C1 C1

C6 C6

C5 C5

C8 C8

C3 C3C11 C11 C10C10

C7 C7

C9C9 C4 C4

C2 C2

Fig. 8.9: Unit cell of the abruptly joined 3/5/3 AGNR composite. The interface atoms
are marked in red and the hydrogen atoms are given in orange.

distance to the interfaces. Also, we expect carbon atoms that sit in the same component
of the AGNR composite and are equally far away from an interface atom, e.g. atom C3
and C5, to contribute roughly the same weight, which is clearly not the case. The data
rather implies that the position of the respective atom in transverse direction determines
its contribution; if there is a trend to be found at all.
It should be mentioned that sinusoidally dispersing bands like ours are not exclusively
inherent to a topological, SSH-like model. Imagine any two distinct structures which
are not connected with each other. Naturally, we expect non-dispersive energy levels.
Linking these structures perturbatively by slowly increasing the value of some hopping
parameters t and t′ would introduce dispersion similiar to the SSH dispersion. Even the
shift of the bands can be accounted for by considering an on-site energy.
Thus, an understanding of the electronic properties of AGNR composites can be gained
easily, without considering the local topology of these structures at all.
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Fig. 8.10: The radii of the points assembling the graphs depend on the contribution of
the chosen atoms to the bands. The contribution of the interface atoms, which
are marked in red (see Fig. 8.9), is compared to the contribution of the other
carbon atoms. The upper plot depicts the total weights, while the lower one is
averaged with respect to the number of carbon atoms.
(8.43) with t1 = ±0.38, t2 = ∓0.96 and an overall shift of 0.55eV yields the
green, dashed line.
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Fig. 8.11: The contribution to the bands of the p-orbitals of each carbon atom from
the abruptly joined 3/5/3 AGNR composite. Different colors correspond to
different orbital characters and the carbon atoms are labeled according to
Fig. 8.9. Atoms C2, C3, C7 and C8 mainly contribute to the conduction and
valence band. For C4 and C6 flat, in-plane bands appear.
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9 Discussion and Outlook

The results presented throughout this thesis were not able to convince us that the inter-
pretation of [6] is valid. Although the composition of structures consisting of two AGNR
of different width has a notable impact on the band structure, but it is not clear why
this should necessarily be a topological phenomenon, as similiar dispersive properties can
be obtained without employing the framework of topological band theory.
The carbon atoms of the abruptly joined 3/5/3 structure (see Fig. 8.9) sitting at the
interfaces of the composite’s components mainly contribute to the conductance and
valence band, which are the bands in line to be of topological nature. Nevertheless, atoms
that are far away from these interfaces add a significant contribution too.
Comparing the 3/5/3 AGNR composite that is coupled such that its components carry dif-
ferent values for their Z2 invariant with the non-topological joined structure, we find that
in fact both exhibit bands that can be modeled using the SSH dispersion (see Fig. 8.7b),
just with different hopping amplitudes t1 and t2 and a larger gap for the smoothly joined
ribbons.
Furthermore, it is not clear why the decay of the localized wave functions at interfaces
should depend on the intrinsic band structure of the components and why, if that is the
case, small differences in band gap result in significant differences in overlap amplitude ∆t.

A couple of points remain to be investigated:

• How do the hopping amplitudes t1 and t2 react to topology-conserving modifications
like changing the length of the components within the unit cell. As the distance
between the interfaces increases, the overlap of the localized wavefunctions should
decrease. Can the values of t1 and t2 be quantified by ab-initio calculations that
match the results from the fit?

• Which atoms contribute mainly to the bands with SSH-like dispersion in the non-
topological AGNR composites and are those different atoms as for the structure
containing topologically distinct components?

• Does one arrive at the fully dimerized limits of the SSH model by increasing the
distance between interfaces and thus reducing either t1 or t2?

• Can the overlap be tuned to t1 = t2, such that the SSH-like bands touch (see Fig. 7.2c)?

• Do we find edge states at the boundaries of the structure that match the global
bulk-boundary correspondence of the SSH model?

Leaving aside the fact that the interpretation given in [6] does not persuade us, it is
certainly desirable to construct GNR which have a fine-tunable, electronic topology. This
would not only allow to use them as precise semiconducting nanoelectronic parts, but
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it is also predicted in [5] that they can be used to create antiferromagnetic Heisenberg
spin chains with stable spin centers at the internal interfaces. It is suspected that these
spin chains are able to host Majorana fermion states if brought into close proximity of a
superconductor [54].
In conclusion, GNR are fascinating systems that bring some of the most recent fields
of study in physics together. They are a promising candidate to come into use in
nanoelectronic devices and will further expand our knowledge of electronic topology by
challenging our understanding and forcing scientists to come up with new theories and
experiments.
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