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A biased1review of relativistic MHD from a (heavy-ion) theoretical
P.O.V

▶ Why should we study resistive MHD?

▶ Equilibrium and stability in second-order
MHD

▶ (Mostly) analytical and numerical solutions

1Picture from https://medium.com/ml-and-automation/a-i-bias-a-thought-experiment-3ad6a5da74dc
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Notations and conventions
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▶ Natural units (ℏ = c = kB = 1) and mostly minus metric sign
convention, i.e., ηµν = diag(1,−1,−1,−1)

▶ Covariant derivative D, Lie derivative L
▶ Projector ∆µν = gµν − uµuν , ∇µΦ = ∆α

µDαΦ

▶ Dot notation Ẋ = uµDµX

▶ Traceless symmetric projector of rank four reads

∆µν
αβ := ∆

(µ
α ∆

ν)
β −∆µν∆αβ/3 → A⟨µν⟩ := ∆µν

αβA
αβ

M. Shokri MHD Review 30.10.2025 2



Why should we study resistive MHD?



Huang, 2016

▶ EM fields comparable with QCD scale eE ∼ eB ∼ Λ2
QCD

2

▶ → studies on the effects of strong magnetic fields on different
observables 3

▶ . . . assuming long-standing eB at QGP stage (when one can define T )

2B ∼ 1018 − 1020Gauss (see, e.g., [Huang (2016)] for a review)
3Some examples are cited in [Jaiswal et al. (2021)]
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Electromagnetic fields in Heavy-ion collisions
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Let’s assume eB ∼ m2
π in the QGP stage

▶ =⇒ Alfven speed4∼ speed of sound

▶ EM fields compete with ∇P to modify the
flow

▶ . . . but hydrodynamics agrees well with flow
observables

▶ Our current understanding of HICs suggests
that v2a ≪ v2s at mid-rapidity

▶ An estimate from the experimental data is
eB ≤ 3× 10−3m2

π at late times [Müller and Schäfer

(2018)]

But where did it go?

4v2a =
√

2σP /(1 + 2σP + v2s) with σp = B2/(2ε).
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Evolution of EM fields in Heavy-ion collisions
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A quantitative understanding of the fate of EM fields requires real-
istic simulations based on a robust theory of resistive dissipative
magnetohydrodynamics

▶ Early time fireball is almost an insulator → fast decay of EM fields

▶ At the QGP stage the fluid is conductive → MHD fits

▶ Do we need a resistive theory?
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Ideal MHD
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▶ Ohm’s law J = σeE
▶ Ideal MHD limit: σe → ∞ =⇒ E → 0 (in the LRF)

Basic equations of ideal MHD

=Tµν
f +Tµν

em︷ ︸︸ ︷
∂µT

µν = 0 ∂µJ
µe = 0

3 d.o.f in B︷ ︸︸ ︷
ϵµνλρ∂νFλρ = 0

EM energy-momentum tensor is well known

Tµν
em = −FµλF ν

λ +
1

4
gµνFαβFαβ

Covariant iMHD condition

Fµνuν ≡ Eµ = 0
1

2
ϵµναβuνFαβ ≡ Bµ

LRF︷︸︸︷
= (0,B)
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QGP’s electrical conductivity
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Is QGP highly conductive?

▶ LQCD: σe ∼ 0.02T (huge number ∼ 1000σe for copper)5

▶ Magnetic Reynolds number Rm = Luσe ∼ 0.2T/(200MeV)

▶ . . . is quite small → iMHD might be a poor approximation

▶ Magnetic susceptibility of QGP χm = M
B ∼ 10−2 can be neglected 6

5
[Aarts and Nikolaev (2021)]

6Bali et al. (2014)
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Basic equations of resistive MHD
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Now we have 6 EM d.o.f:

Fµν = Eµuν − Eνuµ + ϵµναβu
αBβ

Maxwell equations

ϵµνλρ∂νFλρ = 0 ∂µF
µν = Jν

Jµ =

Mostly spectators︷︸︸︷
Jµ
ext +Jµ

f ∂µT
µν = −

Lorenz force︷ ︸︸ ︷
F νλJλ,ext
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Currents Beyond iMHD
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“In a famous remark, Einstein once likened the left-hand side of his
field equations to a marble palace, while the right-hand side was
only a house of straw, “a formal condensation of all things whose
comprehension in the sense of a field theory is still problematical””
[Israel (1978)]

▶ Fµν is exact (as the Einstein tensor is in GR) while Jµ is not (as Tµν

on the r.h.s of Einstein’s equation)

▶ The energy-momentum tensor of the nonpolarizable matter doesn’t
change

▶ Gradient expansion of the current

Jµ = Jµ
(0) + Jµ

(1) + · · ·
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Charge diffusion
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▶ In Landau’s frame (single charge)

Jµ = q (nuµ + V µ)

▶ Relativistic (Navier-Stokes) Ohm’s law

qV µ = qκ∇µα+ σEµ

▶ Wiedemann–Franz law: σ = q2κ/T (κ is the particle diffusion
coefficient)
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The need for a better theory
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Navier-Stokes diffusion equation is acausal and unstable

While one observer sees damped waves another one sees them growing7

7Picture from G. Denicol https://physics.aps.org/articles/v15/149
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Approaches to better theories
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▶ MIS theory from entropy current [Israel (1976)]

Sµ = Sµ
NS −Ruµ R ∝ V 2

∂µS
µ ≥ 0 =⇒ τV V̇ + V = VNS

▶ Denicol-Niemi-Molnar-Rischke (DNMR) theory: formulation of
dissipative hydrodynamics based on kinetic theory [Denicol et al. (2012)]

▶ Bemfica-Discnosi-Noronha-Kovtun (BDNK) theory: enhanced
gradient expansion [Bemfica et al. (2020)] [Hoult and Kovtun (2020)]
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Examples of currently developed theories
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▶ Gradient expansion [Hernandez and Kovtun (2017)]

▶ BDNK theory for polarized and non-resistive fluid [Armas and Camilloni (2022)]

▶ Second-order resistive dissipative MHD from Boltzmann-Vlasov
equation (single charge) [Denicol et al. (2019)]

p.∂f(x, p) + qFµνpν
∂

∂pµ
f = C[f ]

▶ In the next part of this talk I focus on this theory which is a
Maxwell-Israel-Stewart type one
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Second-order resistive and dissipative MHD



Constitutive relations for a multi-component Maxwell-Israel-Stewart
type theory

Tµν
f = εuµuν − (P +Π)∆µν + πµν

A = 1 · · · l species index︷ ︸︸ ︷
Nµ

A = nAu
µ + V µ

A Jµ =

electric charge of A︷ ︸︸ ︷
qeANµ

A

▶ Equations of motion for Π, πµν and V µ
A that are (C.I) consistent with

DµS
µ ≥ 0

▶ . . . and are (C.II) identically satisfied in equilibrium
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Gibbs stability
 

 

CRC -  TR 

The Gibbs stability criterion: Equilibrium state (λ = 0) is the state
where the entropy is maximum compared to all states (λ ̸= 0) with
the same values of conserved charges

▶ Solving EOM
→ ψi(λ) ∈ {ε, P, uµ, · · · }

▶ Slightly away from equilibrium

ψi(λ) = ψi(0) +
dψi

dλ
δλ
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Gibbs stability
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▶ A conserved charge arises from DµJ
µ
I = 08

QI =

∫
Σ
dΣµ J

µ
I

▶ qIA quantum charge I carried by species A

▶ Find the stationary point of the following in the solutions space

ϕµ = Sµ +

constants︷︸︸︷
αA
⋆ Nµ

A − Tµ
ν

Timelike killing vector︷︸︸︷
βν⋆︸ ︷︷ ︸

Our knowledge

8D is the covariant derivative
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Equilibrium without EM fields
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The stationary point dϕ
dλ = 0 at λ = 0

µA

T
= αA⋆ T =

1√
β⋆ · β⋆

uµ =
β⋆µ√
β⋆ · β⋆

V A
µ = Π = πµν = 0 Lβ⋆Physics = 0

▶ The information current must be future-directed non-spacelike

Iµ ≡ −1

2

d2ϕµ

dλ2

▶ =⇒ (linear) stability and causality conditions
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Example of SC conditions
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A single charge diffusive fluid with η = ζ = 0

h = ε+ P > 0 c2s =
∂P

∂ε

∣∣∣∣
n/s

∈ (0, 1] cv = T
∂s

∂T

∣∣∣∣
n

> 0

τV >
hσ

qn2

 1

1− c2s

(
1− n

T

∂2ε

∂n∂s
− s

T

∂2ε

∂s2

)2

+
h

T 2

∂2ε

∂s2
− 1


▶ The case of multiple charges is derived in [Gavassino and Shokri (2023)]

▶ How do EM fields change the equilibrium and stability conditions?

M. Shokri MHD Review 30.10.2025 18



Please stay with me, I have a surprise for you.
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Equilibrium in background EM fields
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▶ Energy-momentum is not conserved anymore ∇µT
µν = −F νλJλ

▶ The external fields must be stationary
Lβ⋆F = 0 =⇒ β⋆νF

ν
µ = −∂µψ⋆

▶ The external electrostatic potential ψ⋆ appears in ϕµ

ϕµ = Sµ + (α⋆
Iq

IA + ψ⋆qeA)Nµ
A − β⋆νT

νµ

▶ ... and the equilibrium condition

(⋆)
µA

T
= α⋆

Iq
IA + ψ⋆qeA Eµ = −T∂µψ⋆

▶ The fluid counterbalances the electric force

T∂µ(µ
A/T ) + qeAEµ = 0

▶ The stability conditions for these equilibrium states are found by
replacing µ/T from (⋆) in the previous ones!
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Equilibrium in dynamic EM fields
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▶ Now ϕµ = ϕµf + ϕµem

ϕµem = β⋆νF
µ
αF

να − 1

4
FαβFαββ

⋆µ

▶ Using some mathematical tricks

δϕµem = β⋆νA
νδJµ + 2δAνβ

⋆[νJeµ] + δFµα(Lβ⋆A)α

− δAα(Lβ⋆F )µα +DαZ
[αµ]
(1)

▶ Clearly Lβ⋆Fµα = 0 =⇒ Lβ⋆Aµ = −∂µΛ
▶ . . . partially absorbed into the last term (Z(1))

▶ Stokes theorem is applicable because Z(1) is antisymmetric

∫
Σ
dΣµDαZ

[αµ]
(1) =

∮
∂Σ

pertubations on ∂Σ → 0︷ ︸︸ ︷
Z

[αµ]
(1) dSαµ = 0
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Stationary point

(⋆⋆)
µA

T
= qIAα⋆

I + qeA(β⋆νA
ν + Λ)

▶ Using (⋆⋆) in d2ϕµ

dλ2 the current terms are absorbed into the fluid sector

▶ The Maxwell energy-momentum tensor with F → δF

TIµ
em = uν

[
δFµ

αδF
να − 1

4
gµνδFαβδFαβ

]
▶ Dominant energy condition Tµνuν for a nonspacelike u is a

future-pointing causal vector (for any observer energy density can
never flow faster than light)
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The electromagnetic part of the information current is stable and
causal by construction and, therefore, the stability criteria found for
Israel-Stewart-type theories of hydrodynamics automatically extend
to similar formulations of magnetohydrodynamics.

▶ A simple form of the multi-component diffusion equation

τBA u
νDνV

B⟨µ⟩ + V Aµ = κABD
⟨µ⟩αB + σAE

µ

▶ The multi-component form of the Wiedemann-Franz law

σA =
κACq

eC

T
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Solutions



Examples of analytical and numerical solutions
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▶ Analytical solutions

Bjorken: iMHD [Roy et al. (2015)], iMHD with magnetization [Pu et al. (2016)],
resistive inviscid MHD [Shokri and Sadooghi (2017)]

Perturbative solutions [Pu and Yang (2016)]

Gubser MHD [Shokri and Sadooghi (2018)]

Bantilan-Ishi-Romatschke (BIR) MHD [Shokri (2020)]

Static fluid solutions [Gursoy et al. (2014)]

▶ Numerical solutions

iMHD solutions: ECHO-QGP [Inghirami et al. (2018)], BHAC-QGP [Mayer et al.

(2024)]

Charge diffusion in relativistic resistive second-order dissipative
magnetohydrodynamics (1+1 dimensions) [Dash et al. (2023)]

Resistive MHD in 3+1 dimensions [Takamoto and Inoue (2011)]
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Bjorken iMHD
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Symmetries are the poor man’s best friends. But one cannot spend
too much time with all of one’s friends.
The method used here is an extension of [Bekenstein and Oron (1978)].
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Bjorken iMHD
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Milne metric
ds2 = dτ2 − dx2 − dy2 − τ2 dη2

Bjorken symmetries

ξµi = δµi i =

trans.︷︸︸︷
1, 2 ,

boost︷︸︸︷
3

rotation︷ ︸︸ ︷
ξµϕ = (0,−y, x, 0)

▶ Bjorken symmetries

Translational invariance in the transverse (xy) plane + homogeneous
Maxwell equations9 + Tµν(∞) → 0 =⇒ F12 = 010 (No longitudinal
B)
Also homogeneous Maxwell equations =⇒ ∂τFµν = 0
If we apply the rotational symmetry → Fµν = 0!

9Used in the form ∂[αFβγ] = 0.
10For example 2uµuνT

µν
em = F 2

12 + (F 2
13 + F 2

23)/τ
2.
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Bjorken iMHD
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Breaking the rotational symmetry and assuming the boost invariance
=⇒

Fµν =

from dim.︷︸︸︷
B0τ0


0 0 0 0
0 0 0 − sinϕB
0 0 0 cosϕB
0 sinϕB − cosϕB 0


▶ Bjorken MHD solution

Bµ = B0

τ -dependecy from ϵµναβ︷ ︸︸ ︷
τ0
τ
(0, cosϕB, sinϕB, 0) =⇒ B = B0

τ0
τ

=⇒ B

s
= const.

▶ Found first in [Roy et al. (2015)] and extended to magnetized fluid in [Pu et al.

(2016)]
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Bjorken resistive MHD
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▶ Again start with symmetries (still F12 = 0)

LξiF = 0 =⇒ Fi0 = −∂τψi F12 = 0 Fi3 ∝ B0τ0

▶ Maxwell equations give rise to

ψ′
1,2(τ) = c1,2

τ0
τ
e−σ(τ−τ0) ψ′

3(τ) = c3
τ

τ0
e−σ(τ−τ0)

▶ ∇µT
µν = 0 then requires

c1 sinϕB − c2 cosϕB = 0 c3 = 0

▶ Namely, the Poynting vector must vanish

ϵµναβuνEαBβ = 0
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Bjorken resistive MHD
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E is anti-parallel to B and suppressed by an exponential factor

Eµ = E0
τ0
τ
e−σ(τ−τ0) (0,− cosϕB,− sinϕB, 0)

While the magnetic field remains similar to iMHD

Bµ = B0
τ0
τ
(0, cosϕB, sinϕB, 0)

Joule heating

τ
dε

dτ
+ (ε+ P ) = (στ)E2

0

τ20
τ2

▶ Electric field is suppressed if στ ≫ 1

▶ At the same time strong Joule heating requires στ ≫ 1

▶ This is not the case for the LQCD results
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Further analytical solutions
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▶ Bjorken resistive MHD with partially relaxed boost-invariance
ϕB = ϕB,0 + ω0η and modified evolution of B and E [Shokri and Sadooghi

(2017)]

▶ Gubser MHD: only Bz is fully consistent with the symmetries [Shokri and

Sadooghi (2018)]

▶ BIR MHD: the neutrality condition leads to singularities [Shokri (2020)]
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Summary
 

 

CRC -  TR 

▶ Ideal MHD is a poor approximation for the QGP

▶ Resistive MHD is required for understanding the evolution of strong
electromagnetic fields produced in heavy ion collisions after early
times

▶ This will let us investigate the existence of possible effects from EM
fields

▶ EM fields modify the equilibrium conditions of a nonpolarizable fluid
but the Maxwell sector is stable and causal by construction

▶ We are still waiting for a realistic numerical simulation of resistive and
diffusive MHD
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