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Outline cRc’-rm

A biased'review of relativistic MHD from a (heavy-ion) theoretical
P.O.V

» Why should we study resistive MHD?

» Equilibrium and stability in second-order
MHD

» (Mostly) analytical and numerical solutions

1 .
Picture from https://medium.com/ml-and-automation/a-i-bias-a-thought-experiment-3ad6a5da74dc
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Notations and conventions cRc'-rm

v

Natural units (A = ¢ = kg = 1) and mostly minus metric sign
convention, i.e., 1, = diag(1,—1,—-1,—1)

» Covariant derivative D, Lie derivative £

» Projector AM = g —wutu”, V@ = A D,

» Dot notation X = u D, X

» Traceless symmetric projector of rank four reads
A= AYAY) — AP AL5/3 — Al = A A0
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Why should we study resistive MHD?



Reaction plane

Huang, 2016

> EM fields comparable with QCD scale eE ~ eB ~ AéCDz

> — studies on the effects of strong magnetic fields on different
observables 3

> ...assuming long-standing eB at QGP stage (when one can define T')

2B ~ 10" — 10*°Gauss (see, e.g., [Huang (2016)] for a review)
3Some examples are cited in [Jaiswal et al. (2021)]
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Electromagnetic fields in Heavy-ion collisions cRc'-rm

Let's assume eB ~ m2 in the QGP stage

» — Alfven speed*~ speed of sound
> EM fields compete with VP to modify the

flow
» ... but hydrodynamics agrees well with flow
observables
» Qur current understanding of HICs suggests ITIALL MAKES SENSENOW..

that v2 < v? at mid-rapidity
> An estimate from the experimental data is

eB S 3 X 10_377’131. at late times [Miiller and Schéfer
(2018)]

But where did it go?

*v2 = \/20p /(1 + 20p + v2) with o, = B?/(2¢).
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Evolution of EM fields in Heavy-ion collisions cacﬁﬁ

A quantitative understanding of the fate of EM fields requires real-
istic simulations based on a robust theory of resistive dissipative
magnetohydrodynamics

Time—» Fast Relativistic
EM fields created decay Magnetohvdrodvnamicsl

s

» Early time fireball is almost an insulator — fast decay of EM fields
> At the QGP stage the fluid is conductive — MHD fits
» Do we need a resistive theory?
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ldeal MHD cRc'-rm

» Ohm'slaw J = ¢ . E
» Ideal MHD limit: 0o — 00 = E — 0 (in the LRF)

Basic equations of ideal MHD

=T +Thy 3dofinB

—— —~~
T =0 9 =0 M9,Fy, =0
EM energy-momentum tensor is well known
1% 1 17
Th = —F"™F'x+ 19" F* Fop

Covariant iMHD condition

LRF
1 A
FHy, = B* =0 56“”6%,,1?&6 = B""=>(0,B)
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QGP'’s electrical conductivity cRc'-rm

[ Is QGP highly conductive?

|uinm|tsmm
» LQCD: 0. ~ 0.02T (huge number ~ 10000, for copper)®

» Magnetic Reynolds number Ry, = Luo, ~ 0.27'/(200MeV)

» .. .is quite small — iIMHD might be a poor approximation

» Magnetic susceptibility of QGP x,, = % ~ 1072 can be neglected °

5[Aarts and Nikolaev (2021)]
®Bali et al. (2014)
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Basic equations of resistive MHD cRc'-rm

r

Now we have 6 EM d.o.f:
F = Eyu, — Eyuy, + €papu®BP
Maxwell equations

O, F\, =0 9, FM =J”

spectators I
ek g—

before collision after collision

Mostly spectators Lorenz force
_ % g _ A
JE= JE 4T 9T = — PN e
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Currents Beyond iMHD cnc'-rm

“In a famous remark, Einstein once likened the left-hand side of his
field equations to a marble palace, while the right-hand side was
only a house of straw, “a formal condensation of all things whose
comprehension in the sense of a field theory is still problematical””
[Israel (1978)]

» F),, is exact (as the Einstein tensor is in GR) while J# is not (as T
on the r.h.s of Einstein's equation)

» The energy-momentum tensor of the nonpolarizable matter doesn't
change

» Gradient expansion of the current

JH = (P(L))+J("1)_|_...
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Charge diffusion cnc'-ﬁ

» In Landau’s frame (single charge)
JH = q(nut +V*#)
» Relativistic (Navier-Stokes) Ohm's law
qV* = gqrV*a + o E¥

» Wiedemann—Franz law: o = ¢?x/T ( is the particle diffusion
coefficient)
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The need for a better theory cRc'-rm

[ Navier-Stokes diffusion equation is acausal and unstable

Time Time

o ” Position e * Position

Alice ™~ Bob "+

While one observer sees damped waves another one sees them growing’

7Picture from G. Denicol https://physics.aps.org/articles/v15/149
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Approaches to better theories CRc.-rm

» MIS theory from entropy current psrael (1976)]
St =Skg — Ru* R V?
St >0 = vV +V = Ths
» Denicol-Niemi-Molnar-Rischke (DNMR) theory: formulation of
dissipative hydrodynamics based on kinetic theory [penicol et al. (2012)]

» Bemfica-Discnosi-Noronha-Kovtun (BDNK) theory: enhanced

gradient expansion [Bemfica et al. (2020)] [Hoult and Kovtun (2020)]
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Examples of currently developed theories cRc'-rm

v

Gradient expa nsion [Hernandez and Kovtun (2017)]

v

BDNK theory for polarized and non-resistive fluid [armas and camilloni (2022)]

» Second-order resistive dissipative MHD from Boltzmann-Vlasov
equation (single charge) [penicol et al. (2019)]

p-9f(x,p) + qF””puafw = CIf]

P In the next part of this talk | focus on this theory which is a
Maxwell-Israel-Stewart type one
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Second-order resistive and dissipative MHD



Constitutive relations for a multi-component Maxwell-Israel-Stewart
type theory

T = eutu” — (P + I) A + 7

A =1---1 species index electric charge of A
~ - ,_/r
N% =ngut + V¥ JP = ¢““NYy

> Equations of motion for IT, 7/ and V}’ that are (C.I) consistent with
D,S* >0
» ...and are (C.Il) identically satisfied in equilibrium
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Gibbs stability cRc'-rm

The Gibbs stability criterion: Equilibrium state (A = 0) is the state
where the entropy is maximum compared to all states (A # 0) with
the same values of conserved charges

{wi(0}

wion » Solving EOM
= ¥i(A) €{e, Put, -}

» Slightly away from equilibrium

Equilit;rium | ) o d,(bz
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Gibbs stability cRc'-rm

> A conserved charge arises from D, J' = 08

Qr = / s, J¥
%

> ¢'4 quantum charge I carried by species A

» Find the stationary point of the following in the solutions space
constants

Timelike killing vector

¢t =S+ o NE-TH By
A v

* *

Our knowledge

8D is the covariant derivative
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Equilibrium without EM fields CRc'.rm

B o d¢ _ _
The stationary point iz =0at A =0

ﬁ = o T = —1 ut = —IB*H
T v/ B - B* /B* - B*
VA=I=n"=0  LgPhysics=0

» The information current must be future-directed non-spacelike

2
a . LdeH

2 d\?

» — (linear) stability and causality conditions
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Example of SC conditions cRc'-rm

P
h=e+P>0 2-92

A single charge diffusive fluid with n = =0

Os
0,1 =T_— 0
. aan/se(’] “=1er| ~
2
>ha 1 1_2626 _£825 +£825_
v qn? |1 —¢2 T onds T 0s? T2 9s?

» The case of multiple charges is derived in [Gavassino and Shokri (2023)]

» How do EM fields change the equilibrium and stability conditions?

M. Shokri
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Please stay with me, | have a surprise for you.
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Equilibrium in background EM fields cRc'-rm

» Energy-momentum is not conserved anymore V,TH" = —FYM

» The external fields must be stationary
Lg+F =0 = ByFY, = =04
» The external electrostatic potential )* appears in ¢*

o' = 8"+ (afg" + g NG - BT
» ... and the equilibrium condition
0 =i et Bu=-Tou"
» The fluid counterbalances the electric force
Tou(p*/T) + ¢ E, =0

» The stability conditions for these equilibrium states are found by
replacing /T from (%) in the previous ones!
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Equilibrium in dynamic EM fields cRc'-rm

> Now ¢ = ¢f + dem

1
poo—= BEFHEVY 1foﬁFaﬁﬁW

» Using some mathematical tricks
S, = BEAVSTF + 26 A, 8 W JH 1 §FHe (L. A),
— 0Aa (L FY* + Do 25"
» Clearly Lg+FF** =0 = Lp«A, = —0,A
> ... partially absorbed into the last term (7))

> Stokes theorem is applicable because Z(y) is antisymmetric

pertubations on 9¥ — 0

———
/ Ay, DaZt = f 2 d8ey =0
2 0%
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Stationary point

A
(o) & = gMai + ¢ 4(B54" + )

. .2 . :
» Using (x*) in dd)‘f’: the current terms are absorbed into the fluid sector

> The Maxwell energy-momentum tensor with F' — 0 F

1
TThy = uy |SFLOF — - g SFPSE,g

» Dominant energy condition T#"w,, for a nonspacelike u is a
future-pointing causal vector (for any observer energy density can
never flow faster than light)
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The electromagnetic part of the information current is stable and
causal by construction and, therefore, the stability criteria found for
Israel-Stewart-type theories of hydrodynamics automatically extend
to similar formulations of magnetohydrodynamics.

» A simple form of the multi-component diffusion equation
Bu D, VB L v A — g DM aB 4 5y BH
» The multi-component form of the Wiedemann-Franz law

_ Kacq®®
T
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Examples of analytical and numerical solutions cRc'-rm

» Analytical solutions
m Bjorken: iMHD [Roy et al. (2015)], IMHD with magnetization [pu et al. (2016)],
resistive inviscid MHD [Shokri and Sadooghi (2017)]
Perturbative solutions [Pu and Yang (2016)]
Gubser MHD [Shokri and Sadooghi (2018)]
Bantilan-Ishi-Romatschke (BIR) MHD {shokri (2020)]
Static fluid solutions [Gursoy et al. (2014)]

» Numerical solutions
m iMHD solutions: ECHO-QGP [inghirami et ai. (2018)], BHAC-QGP [Mayer et al.

(2024)]

m Charge diffusion in relativistic resistive second-order dissipative
magnetohydrodynamics (141 dimensions) [pash et al. (2023)]

m Resistive MHD in 341 dimensions [Takamoto and Inoue (2011)]
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Bjorken iMHD cRc'-rm

Symmetries are the poor man'’s best friends. But one cannot spend
too much time with all of one's friends.
The method used here is an extension of [Bekenstein and Oron (1978)].
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Bjorken iMHD cRc'-rm

Milne metric

ds? = dr? — da?® — dy? — 72 dn?

Bjorken symmetries

trans. boost I‘OtE/lEiOn

> Bjorken symmetries

m Translational invariance in the transverse (zy) plane + homogeneous
Maxwell equations® + TH"(c0) — 0 == Fy5 = 0'° (No longitudinal
B)

m Also homogeneous Maxwell equations = 0, F),, =0

m If we apply the rotational symmetry — F,, = 0!

9Used in the form OlaFpy = 0.
For example 2u,u, T = Fiy + (Fi + Fis) /72
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Bjorken iMHD cRc'-rm

r

Breaking the rotational symmetry and assuming the boost invariance

—
from dim. 0 0 0 0 ¢
. 0 0 0 —sin ¢p
Fur= Boro | o 0 cos ¢
0 singp —cos¢p 0

» Bjorken MHD solution

7-dependecy from e+vo8

B
BM:BOE(O,COSQSB,SHIQSB,O) = B:BOE —> — = const.
T T S

» Found first in [royet al (2015)] and extended to magnetized fluid in (puetal.

(2016)]
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Bjorken resistive MHD cRc'-rm

> Again start with symmetries (still Fi2 = 0)
ﬁgiF =0 = F;o0 = —0:; Fio=0 Fi3 o« Bgm

> Maxwell equations give rise to

Y o(r) = c1p2e ™) yh(r) = ¢3—e 7 T)
T T0
> V,T"” =0 then requires
c18in¢gp — cocospp =0 c3=0

» Namely, the Poynting vector must vanish

Py, EoBs = 0
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Bjorken resistive MHD cRc'-rm

E is anti-parallel to B and suppressed by an exponential factor

E¥ = Eome_"(T_TO) (0, — cos ¢p, —sinpp, 0)
T
While the magnetic field remains similar to iMHD

B = By (0, cos ¢, 5in ¢, 0)
T

Joule heating

de 27’3
TE +(e+P)= (O'T)Eoﬁ

» Electric field is suppressed if o7 > 1
> At the same time strong Joule heating requires o7 > 1
» This is not the case for the LQCD results
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Further analytical solutions cRc‘-rm

» Bjorken resistive MHD with partially relaxed boost-invariance
¢B = ¢p,o + won and modified evolution of B and E' (shokri and Sadooghi

(2017)]

» Gubser MHD: only B, is fully consistent with the symmetries [shokri and

Sadooghi (2018)]

» BIR MHD: the neutrality condition leads to singularities [shokri (2020)]
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Summary cRc'-rm

Ideal MHD is a poor approximation for the QGP

v

» Resistive MHD is required for understanding the evolution of strong
electromagnetic fields produced in heavy ion collisions after early
times

» This will let us investigate the existence of possible effects from EM
fields

> EM fields modify the equilibrium conditions of a nonpolarizable fluid
but the Maxwell sector is stable and causal by construction

> We are still waiting for a realistic numerical simulation of resistive and
diffusive MHD
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Thank you for your attention,

e

please do not ask
hard question
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