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1. Closed vs. Open Dynamical Systems
Dynamics of Closed Systems

reversible dynamics conservation of energy
. 10 ,
Class:| Newton: X+ E&V(x) =0 x: class. trajectory

Hamilton: H = ﬁpz +V(x)=T+V

. _9H_p . _ _OH_ OV
x_ap_m'p_ dx  Ox
Gibbs: or(x,p) : phase space distribution fct.
: 9 9 (p 9 ((_2v _9 _ _
CE: 5. 9r T 5~ (m Qr) + . (( ax) Qr) = or {H,or}pg =0
f f

X 1%



Closed Quantum Systems

Hamiltonian
canhonical
guantization

SE| W(t) =|¥) wave function

Liouville space Wigner transform

density operator @,, = |W)(W| W(x,p;t) = f_:o dg er?? | W) (Y|

(pure state)



p05|t|0n Space, canon. quantlzatlon X = X,

Schrodinger:

Probability density:

CE:

op — X, p_)pop:Ta

2 2
H— Hyy = —— 2 4 y(x)

2m 0x?

., 0
1ha‘lj(x, t) = Hy,W(x,t)

o(x,t) =W (x,t) P(x,t)

P
P4 +£(U—Q) =0

0

d d
O e S . .
V_ = (ax — 9x ) “drift” velocity

2mi yp p*
__h 81 W
"~ 2miox p*

real, depending on phase of ¥



Density operator:

von Neumann:

Wigner:

pure state:

CE:

op — PN pure state

Qop = 2i W; | (W] mixture, w;: class. probab.
Dirac: W(x,t) 2 |¥),P*(x,t) 2 (V]

3¢ %op * 5 [Hop: €op)

commutator —h[ - 2 {,}ps

q

W(x,p,t) = E dq ehpq <x + =

Qop|X — E) “FT” of Qop

—

@'op (x, q)

W(x,p,t)— f dqehpqq’ (x+ )Lp(x—g)

21h

Wt (2w) + (- w) = 0

f f
X p



Dynamics of Open Systems

irreversible dynamics dissipation of energy

Class:| Langevin: |X +yx+ 1oy = f(t)| (phenomenological)

m ox

y: friction coefficient
mf(t): stochastic force, (f)=20

Hamilton: PH=T+V+W

W =yxp
. . d
— X =£+yx, p = __V_yp
m
G, d (p 0 )% 02 02
Fokker—Planck: 5. Or + Py (E QF) + e ((— P yp) QF) — Dxxwgp —Dyp—— 377 or =0
ﬂ N— ~ _
X D

D;;: diffusion coefficients, i = x,p



Open Quantum Systems

Hamiltonian = ?

— (non) canonical transform (class.)
— (non) unitary transform (gm)

modified (NL)SEs| W(t) = |¥)

facto w'zatiovy

Caldeira- Leggett

bath of HOs \ /
t

_—_>

GKSL

AN

modified von Neumann eq. |«

positivity &\
race preserv.

\?
\

Qop = PNV

N \T» Wigner function

— modified eq. of motion

— additional irrev. diffusion terms



:| a) Modified Schrodinger equations

— canonical Hamiltonians, e.g., explicitly TD (Caldirola—Kanai)
— NLSEs, also with non-Hermitian Hamiltonians
(e.g.: Kostin, Hasse, Gisin, S.C.H.,, ...)

.. O .
ih—W(t) = (Hop + W)¥(t)| different W

b) S+R-approach
— generalized master eq. for reduced density op. @,, (for S)

%QOp = %[QOP’ Hop)_ + D|0op]

with different versions of D[Qop], representing

the influence of the reservoir R on the system S

introducing irreversibility and, (but not necessarily), dissipation
(Caldeira—Leggett, Dekker, Diosi, Sandulescu, Gao, GKSL, Redfield, ...)

c) Modified Wigner eq. (including diffusion terms)



2mKkT
|

Caldeira-Leggett: [Dgylo] = —+(L[x, {p,0}.]-) =L (=[x [x 0]-1-)| 0 = eup

DGao[ ] — —12[.[\/([ {p; Q}+]— _ [xp; Q]—)
Gao: ,
— u?[x, [x,0]_]- — v?[p,[p, 0]-]-
Dekker: Dpekle] =—1%(g[x,{p,g}+] —)+ %(Dpx+Dxp) [p,[x,0]-]-
—2Dpplxlx.el-1-—Dxxlp 0] -]-
1 D ics: - i
Dossule] = = 53 (L, g}, — 2hgl?)] - Oimmies: e resedig

Physical meaning of L*L ?
Gao, Dekker: L* L prop.to annihilation/creation operators a, a*and modifications



CLOSED:

Max.

-

Newton eq.

Factorization

a(t),a*(t)

TDSE

4

Gaussian WPs

T~

Width
/

Dynamical Invariant

generalized creation/annihilation ops

\

Complex Riccati eq.

Wigner transform
“FT”lOf Qop

Wigner function

|

Wigner eq.

eqs. of motion for

mean (£ max)and variance (£ width)



OPEN:

Max.

generalized creation/annihilation ops

modified TDSE

¥

— Gaussian WPs

Newton eq.

T~

Width
/

Dynamical Invariant

Factorization

a(t),a* (¢

Modifications
(Gao, Dekker, S-K)

GKSL-operators

\

Complex Riccati eq.

Wigner transform
“FT”lOf Qop

Wigner function

|

Wigner eq.

eqs. of motion for

mean (£ max)and variance (£ width)



2. TDSE for Closed Systems, WP Solutions

A

()

TDSE: |ih 2 W(t) = Hy,W(t)| [Hy = — 2oL 4 T 22
' ot op op 2m dx2 = 2 ~a(t)
Analytical solutions: Gaussian WPs J
Wp(x,t) = N(Oexp{; |2 €% + () + K(1)|} X
N h
X=x—(x)=x-n(t) €1 =5
C(t) = Cr +iC (#2) = (x2) — (x)2 = O rx
max | fj+ w’n = Newton
width |é 4 2 4 2 = | Complex Riccati
1 a N 1
C1=—,Cr=" = a+w2a=$ Ermakov

2
= I, ==|(ha — an)? + (g) ] = const|| Dynamical invariant ml;: action




Dynamical (Ermakov) Invariant and
generalized Creation/Annihilation Operators

H,, = hwy (a+a + %)

HO

: m (D . : m (D -
a=i ( L — 1w0x) , at =—i ( 2+ lwox)
2hwg \' M 2hiwg \' M

Connection with Riccati variable:
C=C+V(t), C: particularsolution, WV(t): solution of Bernoulli eq.

5 . . 1

)

C =iC, = iwy = i—| Generalization: |Cg = % + 0 =>a = a(t) , ie, TD width

a(t) = i \F a(t) (p°p C(t)x), a*(t) = —i \F a(t)(pOp e*(t)x)

L, = (a*(Da(t) +5)

Invariant also for w = w(t), where H = H(t) # const.




Connections between C(t) and Uncertainties

h h

C2m{%2)  2moy,

Cr = 1 {({X,p}+) _ 1 (0xptopx)

T om &2 2m 0. Ixp = 9px
1 Py ho1 .axp) ]
alt) =—-./o 1 (———1— X
. () = 3V Oux |1Pop + (55— 1
1 [ h 1 o
+ _ : . Oxp
a'(t ——1/0 —1 (—— 1—)x]
( ) h XX I pop + 20'xx O.xx

C, = = (X%) = (x?) — (x)* = Oxx

= ~({%,p})

Coefficients of p,, and x NOT just “numbers” but TD functions og;;(t)!
=  Ermakov invariant rewritten in terms of uncertainties:

I, = — [0p(x)? — 20, (x)(P) + 0. (p)?]

Opp = (ﬁz )

Combination of mean values and uncertainties



Ermakov Invariant, Wigner Function and
Equation of Motion (closed Systems)

W(x,p,t) = #exp {—% |6,p%? — 20, %P + axxﬁz]}

Wigner fct.: 2 2
_ 1 My — 4P X _ 1 _zam ¥
 Th exp{ h [(C(X am) T (a) ]} th exp{ th I(a' .X)}
: . 9 9 (r ) 9 (_ 0_") _
Wigner eq.: a’tW + ™ (mW + ap( ™ W) =0
. 92 5
Insert Wigner fct. = ﬁ(x) + w(x) =0 mean value
. 2
Oxx = ;O-xp
0pp = —2M w0y, uncertainties
. . . 1 m 2
Oxp = Opx = 2 (%“pp ¢ “xx)




3. Modifications for Open Systems

3.1 Effective Hamiltonians via non-canonical transformations

a) Caldirola/Kanai: L.y = (T — V)elt = (%xz — %wzxz) ert
oL
Pck = a;K = mxe'" = pe?’, X = x
Hqx = —pCK e "'+ V(x)e’™  No const. of motion

(x,p) » (X = x, Pcx = ve’")| non-canonical

- . ) o 0 o ~ ~
Quantisation: Pex 2 -— = lhaLPCK(x, t) = Heg opWek (x, )

[ 0x

Note:  canonical WF W (x,t) # “physical” WF W(x,t)
Connection via non-unitary transformation

otherwise: violation of uncertainty relation



b) Expanding CS:

non-canonical

constant of motion

a) and b) both lead to

both connected via canonical transformation

mxZ+yx+w?x)=0

A~ ~ Yt ~ . _Y
Q:xezl :P:pCKez

AN

Hexp —

—~ 0 ~ A
HCK +§F2(X,p, t)

*0

(averaged) Langevin eq.



Canonical quantization:

Canonical WF L/Ijexpz

Maximum:

Width complex Riccati:

Ermakov eq.:

~ h o

P - ?a_é ’ H\exp;op(@:jsop) ¢ L/peXI-”(Q\’ t)

Gaussian WP

class. (averaged) Langevin eq.

A A 2 ]
Cexp + Cezxp T ((1)2 — y:) = like HO, only

Ermakov Invariant:




3.2 Nonlinear Modifications of Hamiltonian OPERATOR

By adding “friction potential” W,

HNL=HO+W

based on: dissipative friction force in Eom (— real part)

irreversible diffusion terms in CE = FPE (— imag. part)

To include both aspects — complex addition necessary!
Resulting effective NLSEs have analytical Gaussian WP solutions
Maximum: classical EOM including friction force
Width: modified Riccati eq.

modified Ermakov eq.

- modified Ermakov Invariant Iy,



I. Approaches based on Dissipative Friction Force

According to Ehrenfest: %(p) + y(p) + (;—x V)y=|0

Necessary cond. for W (:—x W) =vy(p)

a) Kostin

Problems:

W = y%(ln hi :I ) real
) ho, W
as ™~ — Wg = yZaxl = ymuv_ (see CE for g)

with (v_) = (V) = E(P)

1

1) unshifted freq. w instead of () = (a) — —) for damped HO

2) solutions of undamped HO (real) solve NLSE
3) Eq. for g still reversible CE



b) General “friction potential”:

For ANY K,

Sussmann

Albrecht

Hasse

We = y{p)(x — (x)) + Z K{(x — (x)), (p — (PN}

(ZWe) = ¥(p) fulfilled
K =1 Wsa = 5 {(x = (x)), pls
2 _ .2\1/2
damped HO: Qg = (wo ol 4 ) wrong
K=0 Wy = y{p)(x — (x))
‘Q‘Al = Wy wrong
General: Qg = (W3 —K?)yH1/?2 -5 K= i%
- 1 Whas = E{(x —(x)), (@ + (P)) }+
=3 1
2 = (Wsy + W)
2 1/2
Qs = (w(z, - yz) correct

but (Whas) # 0= (H) = (T) + (V)



II. Approach based on irreversible Diffusion Term

.. O —
NLSE: ih—W(x,t) = (Hop + W)W (x, 1)

Breaking time-reversal symmetry via
diffusion term for probability density:

9
Eg(x’ t) + (v 0) — DL P, Q = 0|| Fokker—Planck-type

not separable in general but via separation condition

62
.20
-D a"; =y (Ing — (In g))

= ||W = y? (In¥ — (In¥))|| complex log NL




Connection with other NLSEs
W = yﬁ(lnLP — (In¥))

=Y ( )"‘V%(IHQ—(IHQ))

\ J | }
| |

62
~—50
real 2 Kostin imag. igD axQz 2 Doebner—Goldin
U U
0 ~
— (W) = —ym(v) FPE
dissipation irreversibility

WW®ywp = Wias — Witas)Pivp = WitasPvp Hasse



Connection with Canonical Approaches

Hamilton—Jacobi iS + H (x,iS, t) =0
ot ox

Schrddinger Def.: S, = ?lnllJ complex!

log NLSE written with S_.: (% + y) S, +H =y(5,)

N for normalization — neglect

Define: S.=elS., H=e"H 2 Caldirola/Kanai
log NLSE — %§C+IZI\=O
and lnq\J — eyt In LIJNL

Non-unitary connection between canonical WF P(&, p) and physical WF Wy, (x, p)!



Properties of the log NLSE

NLSE with complex logarithmic nonlinearity:

., 0 h
ih— = {Hop +y-(In¥ - (lnlp))}tp
C — ,
Wscn
Gaussian WP-solutions like for isolated systems (y = 0)

max i+ yn+wn=0 n = (x)

modified eqgs. of motion: ) :
A G ! width Cn. + VG + CIEIL + w? = 0| Cyi: complex

y> 1

= &NL + ((1)2 — _) any, = 3
4 ayL

QR | K
N <

1
CNL,I — 72! CNL,R —

modified Ermakov invariant:

P >

Iy, = %e”t [(ﬁaNL — (dNL — gaNL) 77)2 + (L)Zl = const|| &

ex
aNL p




Modified Creation/Annihilation Operators

an(t) =1 %aNL(t) (

m

. m Po * Zt
ay,(t) = —i /z_h oy (t) (;p — CNLx) ez

14
— Apart from factor ez’ same form as in isolated system,
only C(t) — Cy.(t), fulfilling Riccati equation
with additional linear term yCy;..

—In terms of g;;, Cy;, same form as in isolated system,

A1 1 Oxp

Le. Ci=——, Cp=——F=
’ L' omoy,,’ R7T moay,’

only g;j obey different eoms than in isolated system.



Wigner Function

In terms of X, p and o;;, same form as in isolated system, apart from factor ev?,

eVt 2 B — -
WNL(X, D, t) — FeXp {_ﬁeyt[ﬂppxz — Zo'xpxp + O-xxp2]}

This leads to the modified equation of motion

P P P
Py WL + — (% WNL) s ((mwzx + vYp) WNL) +y(nWy, — (In Wy )Wy =0

2
with p = —yp —mw?x and (InW) = w

2




Inserting Wy leads to an equation of motion for the mean value

(from terms linear in X, p):

2 (p) + ¥(p) + mw?(x) = 0

and equations of motion for the g;;

(from terms quadratic or bilinear in X, p):

. 2
Oxx = ;O-xp TV Oxx

. _ 2 .
Opp = —2M W0y, =V Oy,

. . _2 1 m 2
Oxp = Opx = 25— 0pp =5 W 0xy

These equations are consistent with expressions for g;; in terms of a,

corresponding to the log NLSE and the respective Ermakov eq.



Comparison: additional In-terms vs. diffusion terms

ynW — (InW)DW = D, 2w — D, 2w + (D,, + D,,) ==

XX 9x2 pp ap apax
: _Y _Y _ V _7Y
2 2 2

In this case, our Wigner eq. turns into the one by Dekker!
(N.B.: Compare with separation condition leading to our log NLSE)

Mean values: Dekker obtains the same eom including friction force.



Dekker Condition for Diffusion Coefficients and Uncertainties

Initially, Dekker used D;; corresponding to particular solution of Riccati eq.,

h mh w? _ —%

i.e. without TD of WP width: |0y, = 5 O =" g » Opx =O0xp =7,

He obtains a more general form of D;; in terms of g;; from the Wigner equation,
whereby D;; must fulfil a relation correspondlng to the

2
. : . 2 _h
Schrodinger—Robertson uncertainty relation:  |0y,0,, — 0%y = ”

also valid for the general solution corresponding to the TD g;.
The equations of motion for his g;; are

. 2
Oxx = —Oxp +2D,,

L 2
Opp = —2M W0y —2Y 0y, +2 Dy,

. m
Oxp = Opy = 2 ( Opp — wzaxx) — Y Opx + Dy + Dy

which turn into our equations if D;; is replaced by |D;; = ya

7]




Comparison of different GKSL Approaches and Physical Meaning

Connection between L, L™ and a,a™

a(t) = m[1p+( Gxx_la_xx)x]

_a_ v
CR  « 2
o: WP width - a =0, ze const. width — Oxp = —g Dekker
a=0 and Yy =0 — |0y =0 Gao

U i d g S

ncertainty product Oxx Opp = 7 + Oxp

.. . h?
Minimum uncertainty WP |0, 0, = = | Le. Oyp =0

At least fort = 0: o,, = 0 possible, even fora # 0

xp



Gao

a 1 : h
CR:;:O AGao = 7V Oxx [1p+20xxx]

Loo =ux+1ivp w,v: real, TI
MZ:Z 1 zzﬂzzzka ~
240y, 2 B2 2 K2 with ZL:; = kT
2 h?2  240,,  28mkT Gao: kT by comparison with C-L

4 _ Y
= KV = m and LGao = \/; dGao

+ _ Y +
LGaoLGao — E dGao9dGao




R |

N <

for

from particular solution

Dekker

const. width

)4

()
I
|
I

+1()

— complex coeff. of x

1 ] h . Y
oo =17 17+ (o + 1m)

D;

J

=Y.
_ZO'IJ

TD in gy, later via Wigner eq. and equations of motion for g;;

and

I 4
LDek — \/; dpek




for

S-K

a # 0| TD width

from general solution|C = C + V(¢t)

— complex TD coeff. of x

ask(t) = %V Txx(t) [i Pt (za,i(t) B ‘Zﬁiﬁg) x ]

/119/15 4

, - —~ A, :real, TD
— X +1 .
sk = Ax PPl 3 — AR 1iAL:complex, TD
Y Y | Y
|ﬂx|2_£app' A%—%Gxx, AP)‘X—_gal’x’
Lsg = \E as(t)|  |Lsg Lsk = 5 asgasg = 7€ "y




Comparison of D[]

Deao = —L{i (Ix, (b, 0}4]- — [xp,e])
Gao: 5 .
+ 2222 [, [x, 0] ] + 22 [p, [p, 0] ]}
Dekker: DDek B _g{lz_lh ([x, {p, Q}+]_ B [xp’ Q]_) - h_lz (&xp T &px) [p; [x' Q]—]_

+% Ix, [x,0]_]_ + % lp, [p, Q]_]_}

Dsx = — L{is= ([x, {p, 0341 — [xp, 0]-) — (0%, [p, €)1 + 0lp, [x,0]-])

S—K: o g
n % [x, [x,0]_]_ + % [p, [p. Q]—]—}

use: a) [p,[x,0]-]- =[x [p e]-]-
b) [, {p, 0}.]- — [xp,0]- = ([x.{p, @}+]- — [, {x, 0}.]-)




Solution of the Riccati Equation

~

C: particular solution
V(t): solution of (homog.) Bernoulli eq.

C(t) = C+ V(t)

Bernoulli eq. V4+2CV+V2=0
. a—2Ct
= general solution: C(t) =C+ 5 ——
pe(1-e720 )+,
O'xp_gaZCR
Q ~
y=0 CR:;, a=0->C=0-0,,0=0
_a_ Y
)/;tO CR_C( 2
_ s _ Y _ .~ _ _Y 2"
a = —>CR——§—>0xp —anz—const.io
. 1% % a
a¢0—>C’R=—E+WR(t)—>axp=(—E+;)a — =



Critical comment on Gao’s approach:

Wrong Ehrenfest eqgs. of motion

9 (p) 0 J
—(x) =2 —T(x), - {p) = —<£V>—§ (p)

m 2

instead of correct dynamics of Brownian motion

9 (p) 0 9
—(x) =2 , 5.0y == (V) — v (p)

m

Similar to “friction potentials”

Wiras = 5 W + > Wa = L{(x = (x), p)}+ + L (p)(x — (x))

§ L

complex real

- 2(p)  ~2(p)

+ non-unit. contrib.  + only unit. contrib.



General Formalism

) i,
—0=L[o] = —-[H' 0] + D [o]
NG — Nz \/_/
unitary contrib. non-unitary contrib.

H': in general NOT identical with
unperturbed Hamiltonian Hy = T,, + V

of system (due to environment)
— “renormalization” of energy levels

Gao: H = H, V' D [e] all fulfill

Dekker: H' = H, + %{x, p}. [ GKSL-condition,
DS: H =7 ) but different g,




Canonical: o = =72 + 7 (w2~ 2) 02
A (% + gxp + %wzxz) e’! = const
= H(@a-@a) +(2)]
o %{(ﬁa —(a—La)n) + (g)z}e” = Iy,
H = He"*| non-canonical In® =e"InWy | non-unitary
InW =e''InW , InW ~I(Q, &)

Physical: Factorizationof Te 7! —= a(t),a*(t) » D[o]

Hamiltonian:

ﬁexp e "' > H = H, + %{x, p}. 2 Dekker



5 Y,
Q = Xez
< ~ =X -
Canonical P=pest + mgxezt
level 1 2
ooy 1 yta2 M 252 yt » - A . Lgy  mf.  YEX. B9
HCK(gnp: t) - Zme ﬁ + 2 w ke’ = HCK(t) - v Hexp(Q: ﬁ) - ZmP + 2 w 4 = const.
canonical
transformation
A A 2 ~ . 24
P+ mw?ze’t =0 P+m (wZ - V_) Q=0| C“conservative”
4
3
2=x
p = pe”*
4
Et
non-canonical
; B -1 | R
transformation =pe 2 +m_xez
non-canonical
transformation
v
H=?
Physical
level

p+yp+mwix =0

p = mx
E = —2yT < 0 : dissipative



Canonical
level

Physical
level

) i -
lﬁg;q)cx(f‘ t) = Heg opPcx (R, 1)

4 A .o @
pop“?a_f

SCK = Seyt ?ln“l) = e_y[ g ln‘T’CK

Schrodinger:

s=%mw

8 Y A2
gexp"SCK+m4Q

<+

Py = exp {—ﬁzfze"} P

2h 2

h - Gl imy
s =e 7t L (B
; In¥ = e " InWey, ok

") _
ih 2 WL (x, t) = Hyy, opPrL(x, ) = {Hy + Wscn}WnL(x,t)

%qjexp(o' t) = ﬁexp op"pexp(Q: t)
had
ﬁop = TB_Q

~

= t Y A2
Sexp = Se¥ +m;Q




Caldeira

Bateman
Leggett \tt

Caldirola | ‘ Expanding
Kanai coordinates
A )

S’ unitary S\.,

——
non-canonical 'nonunitary 'nonunitary

S unitary Sr

v M

A 4

. Sussmann
log NLSE | < Albrecht
Hasse

Doebner—Goldin
Beretta

Kostin




4. Conclusions

|. Closed TD Quantum Systems
TDSE — Gaussian WP solutions |¥)

Dynamics of Maximum: Newton eq. — class. trajectory

Width: Riccati/Ermakov eq. — position uncertainty

Combined egs. of motion — | Dynamical invariant (action)

ﬁcto rization

TD creation/annihilation ops

Liouville eq. for g,, = [P V| > | Wigner function

o FTH



[I. Open TD Quantum Systems

Modified TDSEs —  canonical (ﬁexp)
I non-canonical / non-unitary
— physical (Hyp) , nonlinear
— Gaussian WP solutions |W¥)
— modified egs. of motion for Maximum (Langevin) and Width

— modified Dynamical invariant | (action)

/ factorization

generalized TD creat./annihil. ops
(3 models: Gao, Dekker, S-K)

U
—| generalized GKSL ops | D|o]| < » | Wigner function
physical meaning in terms of g;; — generalized eq. of motion with
— H.y, = modified Hamiltonian H' . friction force (dissipative)

— missing part of friction force - diffusion terms (irreversible)
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combination of coordinate x and momentum p [19],

V=npux+ivp

V"=p.x—iup’ €Y

where coefficients 1 and v are arbitrary ¢ numbers that
will be determined below. The equation of motion for
p, f{—‘: + #[H,p] = Lp[p], can be written out explicitly
according to Egs. (2) and (3),

dp

L 4 —[H'.p] = - wlxlx.p]l - 2ipvlx(p.p).]

dt
- v’Lp.[p.p]], )
H' =H - 2uvhxp,

where [A, B]+ represents an anticommutation relation be-
tween operators A and B. In obtaining Eq. (4), the iden-
tity [x, p] = i/ has been used to rearrange the cross terms
of x and p. The three terms on the right-hand side and
the last one on the left are all traceless (due to the cyclic
property of trace), which guarantees % Trp =0, ie., the
norm conservation of the reduced density matrix. In fact,
the general form Eq. (2) is traceless and thus the Lindblad
approach is generally norm conserving.

To _determine coefficients g and &, one easily realizes
that the first two terms on the right-hand side of Eq. (4)
are essentially the same terms as in the Caldeira-Leggett

master equation (1). The latter was exactly derived from

a microscopic Hamiltonian in the high-temperature limit,

the same correlation function, results from environment-
induced [fluctuation (noise) fand depends on

T as ag(t,T) = (!)l‘ I[(w) coth(555) cos(wt) dw. Here
T(w) = nw/m is the spectral function for the Ohmic envi-
ronment, and (). is the bandwidth of the spectrum. At low
To com(zﬁk—a;) is a smooth function of w while cos(w?) is
fast oscillating. This observation leads us to the following

approximation:

Q.
ap(t,T) = lwccom<%)f cos(wt) dw
0

m

(6)

hw:\ <
N, coth( T )6([) s
where 8(1) = %f(f,z cos(wt) dw, and w. is a parameter
factorizing the noise kernel and has approximately the
physical meaning as the center of the /(w) band. The
Markovian limit is recovered if {1, — o and thus §(t) ap-
proaches &(¢) [20]. This approximation is different from
the earlier ones [8,10,11], which are all based on a tem-
perature expansion of the noise kernel. It leads to a re-

or equivalently the classical Timit A — 0, where the force-
force correlation function becomes localized in time. This
comparison suggests the following conditions for choosing
p and v:

2uv = y/h, as T — o, (5)
pr=p
which yields straightforwardln thdhi
temperaturej regime. The latter is different from Dg, =
v/6mkT, a diffusion coefficient that has recently been de-
rived by Diési by going beyond the lowest order Markov-
ian approximation at high and medium temperatures [11].
To extend the functional we point
out that the two dissipation terms in Eq. (1) have differ-
ent physical origin. The which is given by
the{imaginary} part of the force-force correlation function

{ u? = y2kTm/h?

s

placement ofl?.kT — hw, coth(%ﬁn the first diffusion
term of Eq. (I) and thus in our choice of x%. In fact,
this is a simple replacement from the classical to quan-
tum representation of the fluctuation-dissipation relation
in the narrow band approximation. The parameter w. can
be uniquely determined by a harmonic oscillator approxi-
mation at 7 = 0, where the system should essentially oc-
cupy its ground state near the potential minimum. The
Lindblad operator V' then reduces to the annihilation op-
erator of the harmonic oscillator, giving /v = m{) and
in um w. = /2, ie., half of the oscillator frequency.
The temperature dependence of the two coefficients then
reads

> ymQ (ﬁﬂ )
= = 7
pAT) = S5 cothl r ) )

) (R .’ﬂ)
() = 25ma mnh(:lkT : ®

{
with the accompanying relation 2uv = y/A. Both ex-
pressions reduce to Eq.(5) in the high-temperature

regime, and have their physical bases on_the quantum

fluctuation-dissipation _theorem. They thus bring the

) describes thefdissipation| effect and is

temperature_independent (8,10,11]. This indicates that
2uv = y/h is valid at all temperatures. On the con-
trary, the which is given by theff@al]part of

dap(x,x’
plr.x'\t)
at

AR — Aol o, 0) =

equilibrium behavior into the Lindblad formalism through
their temperature dependence.

In coordinate space, the master equation (4) takes the
following form:

2 2 wl @ a
*l#‘(T)(X - X+ oyl - U(;; - W)

2
= VZ(T)ﬁZ(% + a%;) }p(x,x’,l), 9)

H(x) = H(x) + iiiyx-a— + iﬁ—;—. (10)

3102

dx
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Comment on “Dissipative Quantum Dynamics
with a Lindblad Functional’

In a recent Letter (1] Gao addressed the question of mas-
ter equations *...known to violate the positivity require-
ment of the density operator...." He began with what we
might call a pre-Lindblad equation for a linear oscillator,
in a form obtained by many authors, and proposed a modi-
fication to put it into Lindblad form [2]. While there have
been objections to Gao's proposal 3], we wish to point out
here that the equation with which he began is not unique
in the sense that unitarily equivalent microscopic Hamilto-
nians lead to different forms of the pre-Lindblad equation.

cal system, but there is no reason to give any special sig-
nificance to any one of them. Moreover, there is a unique
master equation in Lindblad form which is obtained from
these various equations by a well-known prescription (4].

For the system of an oscillator coupled to an oscillator
heat bath, one can choose a microscopic Hamiltonian
with either coordinate or momentum coupling. (The two
forms are familiar in electrodynamics as the “xE™ and the
“pA” interactions.) The two Hamiltonians are related by
a gauge transformation that does not change the oscillator
coordinate and therefore describe the same system [5].
But the form of the equation for the reduced density
matrix one derives from the two microscopic Hamiltonians

These different forms describe, of course, the same physi-  is different. Thus, if one uses coordinate coupling one
| obtains the equation (ignoring the energy shift)
ap _ 1 Y(wo) |. hwy
T g Uhe] - T ilx,pp + pp] + mwycoth g L x et (1)

where my(wp) is the Newtonian friction constant and H is the free oscillator Hamiltonian. This is the form of the
equation obtained in most previous discussions and the high temperature Ohmic case is that with which Gao begins. On
the other hand, if one repeats the derivation with the momentum couElinE model [6], one obtains

By 220 [p,[p,ﬁ]]’.

at ik 4
From either of these equations one obtains the same master equation by applying the Wangness-Bloch prescription: go

to the interaction representation, discard the terms explicitly osc;'"atmg at frequency 2wy, and return to the Schrodinger

Y - = | ﬁwn
[—t[p,xp + px] + = coth T (2)

representation [4]. The result 1s

ap ¥ (wo)

ar 4h

1 7] [
a E[H’p]

lite.0 + 76] - [poxp + 72D + o

hay (Lwo[p,[p,m] + mwo[xixﬁﬂ)l‘

L

2kT \'m
3

Here we have introduced a bar to indicate that p is the ! 94-G-0333 and by the Louisiana Board of Regents

slowly varying mean. It is a simple matter to verify that
this has the Lindblad form of the master equation familiar
in_quantum optics [6,7]. This is the equation sought by
Gao and other investigators.

We wish to emphasize that all three of the above equa-
tions lead to the same equilibrium state: peq = expi—H/
kT }; 1.e., detailed balance is obeyed. The difference is in the
approach to equilibrium. For the pre-Lindblad equations
(1) and (2) this can be through (unphysical) states in which
p is not positive definite. Note that this form of the equi-
librium state holds only if H is the oscillator Hamiltonian.

We are well aware that the Wangness-Bloch prescription
requires weak coupling. But Egs. (1) and (2) as well as
master equation (3) are weak coupling results. This is seen
in that for all these equations the mean square displacement
of the oscillator in the equilibrium state is that of a free
oscillator, (x2) = s coth % while the exact result

2mwg 3
obtained from the fluctuation-dissipation theorem is [5]

% hw
= i[m[ dw 5 c?m_m 7, (4)
™ 0 —mw? — iwp(w) + mwy
where Re{i(w)} = my(w).
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— Application of D| @] on pure state |¥) and subtracting mean value
— NLSE equivalent to log NLSE
— Same WP solutions, so-called robust states

— To avoid possible problems with superluminal info transfer
— Classical statistical element via Wiener process etc.

— Stochastic SE

— Classical statistical element via inclusion of heat bath

h

using Wick transform to imaginary time |7 = iﬁ




Applying Wick-Transform to General Solution of Riccati Eq.

C(t)»C (%) with |iwgt - ——

R\ _h hwg N hwg .
C (E) = —-Wq T ehT == Ea)o coth (E) hyperbollc fct.

Bose—Einstein distrib. (solution of Bernoulli eq.)

In momentum space, essentially the inverse quantity
fulfils also a Riccati eq. with the general solution

~ h h hw h hw
6‘1( )=—a) — 0 —"w tanh(—o)
2 0 ehl?—TO+1 2 0 2KT

‘\/_/
Fermi-Dirac distrib.

In agreement with Gao’s approach.
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Thank you for your attention!
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