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1. Closed vs. Open Dynamical Systems 

Dynamics of Closed Systems 

 reversible dynamics conservation of energy 

Class:   Newton: 𝑥̈ +
1

𝑚

𝜕

𝜕𝑥
𝑉(𝑥) = 0   𝑥: class. trajectory

 Hamilton:  𝐻 =
1

2𝑚
𝑝2 + 𝑉(𝑥) = 𝑇 + 𝑉  

  𝑥̇ =
𝜕𝐻

𝜕𝑝
= 

𝑝

𝑚
, 𝑝̇ = −

𝜕𝐻

𝜕𝑥
= −

𝜕𝑉

𝜕𝑥
   

 Gibbs: 𝜚Γ(𝑥, 𝑝) :  phase space distribution fct.

 CE: 
𝜕

𝜕𝑡
𝜚Γ +

𝜕

𝜕𝑥
(
𝑝

𝑚
𝜚Γ) +

𝜕

𝜕𝑝
((−

𝜕𝑉

𝜕𝑥
) 𝜚Γ) =

𝜕

𝜕𝑡
𝜚Γ − {𝐻, 𝜚Γ}PB = 0  

 ⇑
𝑥̇
 ⇑

𝑝̇
 



Closed Quantum Systems  

Hamiltonian  

 canonical 
 quantization 

  SE  Ψ(𝑡) = |𝚿⟩ wave function 

 

 Liouville space  Wigner transform 

 

 von Neumann eq.  Wigner function   

 density operator 𝜚op = |𝚿⟩⟨𝚿| 𝑊(𝑥, 𝑝; 𝑡) = ∫ 𝑑𝑞 e
i

ℏ
𝑝𝑞|𝚿⟩⟨𝚿|

+∞

−∞
 

     (pure state)  



Qm:  position space, canon. quantization 𝑥 → 𝑥op = 𝑥 , 𝑝 → 𝑝op =
ℏ

i

𝜕

𝜕𝑥
 

 𝐻 → 𝐻op = −
ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)  

Schrödinger: iℏ
𝜕

𝜕𝑡
Ψ(𝑥, 𝑡) = 𝐻opΨ(𝑥, 𝑡)  

Probability density: 𝜚(𝑥, 𝑡) = Ψ∗(𝑥, 𝑡) Ψ(𝑥, 𝑡) 

CE: 
𝜕

𝜕𝑡
𝜚 +

𝜕

𝜕𝑥
(𝑣−𝜚) = 0   

 𝑣− =
ℏ

2𝑚i
(
𝜕

𝜕𝑥
Ψ

Ψ
−

𝜕

𝜕𝑥
Ψ∗

Ψ∗
) “drift” velocity 

 =
ℏ

2𝑚i

𝜕

𝜕𝑥
ln

Ψ

Ψ∗
 

 real, depending on phase of Ψ   



Density operator:  𝜚op = |Ψ〉〈Ψ|   pure state 

 𝜚op = ∑ 𝑤𝑖𝑖 |Ψ𝑖〉〈Ψ𝑖| mixture, 𝑤𝑖:  class. probab. 

 Dirac: Ψ(𝑥, 𝑡) ≙ |Ψ〉 , Ψ∗(𝑥, 𝑡) ≙ 〈Ψ| 

von Neumann: 
𝜕

𝜕𝑡
𝜚op +

i

ℏ
[𝐻op, 𝜚op]−

= 0  

 commutator  
1

iℏ
[ , ]− ≙ { , }PB  

Wigner: 𝑊(𝑥, 𝑝, 𝑡) =
1

2𝜋ℏ
∫ 𝑑𝑞
+∞

−∞
e
i

ℏ
𝑝𝑞 ⟨𝑥 +

𝑞

2
|𝜚op|𝑥 −

𝑞

2
⟩  “FT” of 𝝔op 

 𝜚̃op(𝑥, 𝑞) 

pure state:  𝑊(𝑥, 𝑝, 𝑡) =
1

2𝜋ℏ
∫ 𝑑𝑞
+∞

−∞
e
i
ℏ
𝑝𝑞 Ψ∗ (𝑥 +

𝑞

2
)Ψ (𝑥 −

𝑞

2
) 

CE:  
𝜕

𝜕𝑡
𝑊 +

𝜕

𝜕𝑥
(
𝑝

𝑚
𝑊) +

𝜕

𝜕𝑝
((−

𝜕𝑉

𝜕𝑥
)𝑊) = 0   

 ⇑
𝑥̇
 ⇑

𝑝̇
  



Dynamics of Open Systems 

 irreversible dynamics dissipation of energy 

Class:  Langevin: 𝑥̈ + 𝜸𝒙̇ +
1

𝑚

𝜕

𝜕𝑥
𝑉 = 𝑓(𝑡)  (phenomenological) 

 𝜸:  friction coefficient 

 𝑚𝑓(𝑡):  stochastic force,  〈𝑓〉 = 0 

 Hamilton: ? 𝐻 = 𝑇 + 𝑉 +𝑾 

   𝑊 = 𝛾𝑥𝑝 

  → 𝑥̇ =
𝑝

𝑚
+ 𝜸𝒙, 𝑝̇ = −

𝜕𝑉

𝜕𝑥
− 𝜸𝒑 

Fokker–Planck: 
𝜕

𝜕𝑡
𝜚Γ +

𝜕

𝜕𝑥
(
𝑝

𝑚
𝜚Γ) +

𝜕

𝜕𝑝
((−

𝜕𝑉

𝜕𝑥
− 𝜸𝒑)𝜚Γ) − 𝑫𝒙𝒙

𝜕2

𝜕𝑥2
𝜚Γ −𝑫𝒑𝒑

𝜕2

𝜕𝑝2
𝜚Γ = 0  

 ⇑
𝑥̇
 

𝑝̇
    

 𝑫𝒊𝒊: diffusion coefficients, 𝑖 = 𝑥, 𝑝   



factorization 

Open Quantum Systems  

Hamiltonian = ?  

 − (non) canonical transform (class.) 

   − (non) unitary transform (qm) 

  modified (NL)SEs  𝚿(𝒕) = |Ψ⟩  

     

Caldeira– Leggett  GKSL    

 bath of HOs positivity &  
  trace preserv. 

modified von Neumann eq.  Wigner function   

   𝝔𝒐𝒑 = |Ψ⟩⟨Ψ| − modified eq. of motion  

 − additional irrev. diffusion terms 

  

? 

? 



Qm:  a)  Modified Schrödinger equations  

− canonical Hamiltonians, e.g., explicitly TD (Caldirola–Kanai) 

− NLSEs, also with non-Hermitian Hamiltonians 
 (e.g.: Kostin, Hasse, Gisin, S.C.H., …) 

 iℏ
𝜕

𝜕𝑡
Ψ(𝑡) = (𝐻op +𝑾)Ψ(𝑡)   different 𝑾 

b)  S+R-approach 

→ generalized master eq. for reduced density op. 𝝔op (for S) 

 
𝜕

𝜕𝑡
𝜚op =

i

ℏ
[𝜚op, 𝐻op]−

+𝓓[𝝔op]   

with different versions of 𝓓[𝝔op], representing  

the influence of the reservoir R on the system S 
introducing irreversibility and, (but not necessarily), dissipation 
(Caldeira–Leggett, Dekker, Diosi, Sandulescu, Gao, GKSL, Redfield, …) 

c)  Modified Wigner eq.  (including diffusion terms)  



 

Caldeira‒Leggett:  𝒟CL[𝜚] = −
i

ℏ
(
𝛾

2
[𝒙, {𝒑, 𝝔}+]−) −

𝛾

2ℏ
(
2𝑚kT

ℏ
[𝒙, [𝒙, 𝝔]−]−)   𝜚 = 𝜚op 

Gao: 
𝒟Gao[𝜚] = −i2𝜇𝜈([𝒙, {𝒑, 𝝔}+]− − [𝑥𝑝, 𝜚]−)

− 𝜇2[𝒙, [𝒙, 𝝔]−]− − 𝜈
2[𝒑, [𝒑, 𝝔]−]−

  

Dekker: 
𝒟Dek[𝜚]=−

i

ℏ
(
𝛾

2
[𝒙,{𝒑,𝝔}+]−)+ 

1

ℏ2
(𝐷𝑝𝑥+𝐷𝑥𝑝)[𝒑,[𝒙,𝝔]−]−

− 
1

ℏ2
𝐷𝑝𝑝[𝒙,[𝒙,𝝔]−]−− 

1

ℏ2
𝐷𝑥𝑥[𝒑,[𝒑,𝝔]−]−

 

GKSL:  𝒟GKSL[𝜚] = −
1

2ℏ
({𝐿+𝐿, 𝜚}+ − 2𝐿𝜚𝐿

+)   →  

 Physical meaning of 𝐿+𝐿 ? 

 Gao, Dekker: 𝐿+𝐿 prop.to annihilation/creation operators 𝐚, 𝐚+and modifications 

Dynamics: trace-preserving 
and completely  positive 



CLOSED:  TDSE  

  Gaussian WPs  

 Max. Newton eq.  Width Complex Riccati eq.  

  Dynamical Invariant   

 Factorization 
Wigner transform

“FT” of  𝜚op
  

 a(𝑡), a+(𝑡)  Wigner function   

generalized creation/annihilation ops  

  Wigner eq.   

   
eqs. of motion for 

mean (≙ max)and variance (≙ width)
  

  



OPEN:  modified TDSE  

  Gaussian WPs  

 Max. Newton eq.  Width Complex Riccati eq.  

  Dynamical Invariant   

 Factorization 
Wigner transform

“FT” of  𝜚op
  

 a(𝑡), a+(𝑡)  Wigner function   

generalized creation/annihilation ops  

 
Modifications 

(Gao, Dekker, S–K)
 Wigner eq.   

  GKSL-operators   
eqs. of motion for 

mean (≙ max)and variance (≙ width)
  



2. TDSE for Closed Systems, WP Solutions 

TDSE:  iℏ
𝜕

𝜕𝑡
Ψ(𝑡) = 𝐻opΨ(𝑡)   𝐻op = −

ℏ2

2𝑚

𝜕2

𝜕𝑥2
+
𝑚

2
𝜔2𝑥2   

Analytical solutions: Gaussian WPs  

 ΨWP(𝑥, 𝑡) = 𝑁(𝑡)exp {
i

ℏ
[
𝑚

2
𝓒(𝒕)𝑥̃2 + 〈𝑝〉𝑥̃ + 𝐾(𝑡)]}   

 
𝑥̃ = 𝑥 − 〈𝒙〉 = 𝑥 − 𝜼(𝒕)

𝓒(𝒕) = 𝒞R + i𝒞I
 

𝓒I =
ℏ

2𝑚〈𝒙̃𝟐〉

〈𝒙̃𝟐〉 = 〈𝑥2〉 − 〈𝑥〉2 = 𝝈𝒙𝒙

 

   max
width

 
𝜂̈ + 𝝎𝟐𝜂 = 0

𝒞̇ + 𝒞2 + 𝜔2 = 0
  

Newton
Complex Riccati

  

 𝓒I =
1

𝜶𝟐
, 𝒞R =

𝜶̇

𝛼
  ⇒ 𝛼̈ + 𝝎𝟐𝛼 =

1

𝛼3
 Ermakov 

 ⇒ IL =
1

2
[(𝜂̇𝛼 − 𝛼̇𝜂)2 + (

𝜂

𝛼
)
2
] = const    Dynamical invariant    𝑚I𝐿:  action  

                   𝜼(𝒕) 
~𝜶(𝒕) 

 

𝑥 



Dynamical (Ermakov) Invariant and  

generalized Creation/Annihilation Operators 

𝐻op = ℏ𝝎𝟎 (a
+a +

1

2
)   HO  

a = i√
𝑚

2ℏ𝜔0
(
𝑝op

𝑚
− i𝝎𝟎𝑥) , a+ = −i√

𝑚

2ℏ𝜔0
(
𝑝op

𝑚
+ i𝝎𝟎𝑥)   

Connection with Riccati variable: 

𝒞 = 𝓒̃ + 𝕍(𝑡) , 𝒞̃:  particular solution , 𝕍(𝑡):  solution of Bernoulli eq. 

𝓒̃ = i𝒞̃I = i𝝎𝟎 = i
𝟏

𝜶𝟎
𝟐   Generalization: 𝓒R =

𝜶̇

𝛼
≠ 𝟎   ⇒ 𝛼 = 𝜶(𝒕) , i.e., TD width 

a(𝑡) = i√
𝑚

2ℏ
𝛼(𝑡) (

𝑝op

𝑚
− 𝓒(𝒕)𝑥) , a+(𝑡) = −i√

𝑚

2ℏ
𝛼(𝑡) (

𝑝op

𝑚
− 𝓒∗(𝒕)𝑥)   

Iop =
ℏ

𝑚
(a+(𝑡)a(𝑡) +

1

2
)   Invariant also for 𝜔 = 𝝎(𝒕), where 𝐻 = 𝑯(𝒕) ≠  const.  



Connections between 𝓒(𝒕) and Uncertainties 

 𝓒I =
ℏ

2𝑚〈𝑥̃2〉
=

ℏ

2𝑚 𝝈𝒙𝒙
  〈𝑥̃2〉 = 〈𝑥2〉 − 〈𝑥〉2 = 𝜎𝑥𝑥 

 𝓒R =
1

2𝑚

〈{𝑥̃,𝑝̃}+〉

〈𝑥̃2〉
=

1

2𝑚 

(𝝈𝒙𝒑+𝝈𝒑𝒙)

𝝈𝒙𝒙
  𝜎𝑥𝑝 = 𝜎𝑝𝑥 =

1

2
〈{𝑥̃, 𝑝̃}+〉 

⇒ 
a(𝑡) =

1

ℏ
√𝝈𝒙𝒙 [i 𝑝op + (

ℏ

2

1

𝝈𝒙𝒙
− i

𝝈𝒙𝒑

𝝈𝒙𝒙
) 𝑥] 

a+(𝑡) =
1

ℏ
√𝝈𝒙𝒙 [−i 𝑝op + (

ℏ

2

1

𝝈𝒙𝒙
+ i

𝝈𝒙𝒑

𝝈𝒙𝒙
) 𝑥]

 

 Coefficients of 𝑝op and 𝑥 NOT just “numbers” but TD functions 𝜎𝑖𝑗(𝑡)! 

⇒ Ermakov invariant rewritten in terms of uncertainties: 

 IL =
1

𝑚ℏ
[𝝈𝒑𝒑〈𝑥〉

2 − 2𝝈𝒙𝒑〈𝑥〉〈𝑝〉 + 𝝈𝒙𝒙〈𝑝〉
2]  𝜎𝑝𝑝 = 〈𝑝̃

2〉  

 Combination of mean values and uncertainties 



Ermakov Invariant, Wigner Function and  

Equation of Motion (closed Systems) 

Wigner fct.: 
𝑊(𝑥, 𝑝, 𝑡) =

1

𝜋ℏ
exp {−

2

ℏ2
[𝝈𝒑𝒑𝑥̃

2 − 2𝝈𝒙𝒑𝑥̃𝑝̃ + 𝝈𝒙𝒙𝑝̃
2]}

                    =
1

𝜋ℏ
exp {−

𝑚

ℏ
[(𝛼̇𝑥̃ − 𝛼

𝑝̃

𝑚
)
2
+ (

𝑥̃

𝛼
)
2
]} =

1

𝜋ℏ
exp {−

2𝑚

𝜋ℏ
I(𝜶, 𝒙̃)}

 

Wigner eq.: 
𝜕

𝜕𝑡
𝑊 +

𝜕

𝜕𝑥
(
𝑝

𝑚
𝑊) +

𝜕

𝜕𝑝
((−

𝜕𝑉

𝜕𝑥
)𝑊) = 0     

Insert Wigner fct. ⇒ 
𝜕2

𝜕𝑡2
〈𝑥〉 + 𝜔2〈𝑥〉 = 0  mean value 

  

𝜎̇𝑥𝑥 =
2

𝑚
𝜎𝑥𝑝

𝜎̇𝑝𝑝 = −2𝑚 𝜔
2𝜎𝑥𝑝

𝜎̇𝑥𝑝 = 𝜎̇𝑝𝑥 = 2 (
1

2𝑚
𝜎𝑝𝑝 −

𝑚

2
𝜔2𝜎𝑥𝑥)

 uncertainties  



3. Modifications for Open Systems 

3.1 Effective Hamiltonians via non-canonical transformations 

a) Caldirola/Kanai: 𝐿̂𝐶𝐾 = (𝑇 − 𝑉)e
𝜸𝒕 = (

𝑚

2
𝑥̇2 −

𝑚

2
𝜔2𝑥2) e𝜸𝒕 

𝑝̂𝐶𝐾 =
𝜕𝐿̂𝐶𝐾
𝜕𝑥̇

= 𝑚𝑥̇e𝛾𝑡 = 𝑝e𝜸𝒕, 𝑥̂ = 𝑥  

 𝐻̂𝐶𝐾 =
1

2𝑚
𝑝̂𝐶𝐾
2  e−𝜸𝒕 + 𝑉(𝑥)e𝜸𝒕 NO const. of motion 

 (𝑥, 𝑝) → (𝑥̂ = 𝑥, 𝑝̂𝐶𝐾 = 𝑝e
𝜸𝒕)  non-canonical 

 Quantisation: 𝑝̂𝐶𝐾 →
ℏ

𝑖

𝜕

𝜕𝑥
 ⇒ 𝑖ℏ

𝜕

𝜕𝑡
Ψ̂𝐶𝐾(𝑥, 𝑡) = 𝐻̂𝐶𝐾,opΨ̂𝐶𝐾(𝑥, 𝑡)  

 Note: canonical WF  Ψ̂𝐶𝐾(𝒙, 𝑡) ≠ “physical” WF  Ψ(𝒙, 𝑡) 

 Connection via non-unitary transformation 

 otherwise:  violation of uncertainty relation 



b) Expanding CS: (𝑥, 𝑝) → (𝑄̂ = 𝑥e
𝜸

𝟐
𝒕, 𝒫̂ = 𝑚 (𝑥̇ +

𝛾

2
𝑥) e

𝜸

𝟐
𝒕)   non-canonical 

 
  𝐻̂exp =

1

2𝑚
𝒫̂2 +

𝑚

2
(𝜔2 −

𝛾2

4
) 𝑄̂2            

            ≙ (
1

2𝑚
𝑝2 +

𝜸

𝟐
𝒙 𝒑 +

𝑚

2
𝜔2 𝑥2) e𝜸𝒕  

  constant of motion 

a) and b) both lead to 𝑚(𝑥̈ + 𝜸 𝒙̇ + 𝜔2 𝑥) = 0  (averaged) Langevin eq. 

 both connected via canonical transformation 

 𝑄̂ = 𝑥̂ e
𝛾

2
𝑡 , 𝒫̂ = 𝑝̂𝐶𝐾 e

−
𝛾

2
𝑡 +𝑚

𝛾

2
𝑥̂ e

𝛾

2
𝑡 

 𝐻̂exp = 𝐻̂𝐶𝐾 +
𝜕

𝜕𝑡
𝐹2(𝑥̂, 𝑝̂, 𝑡)⏟        

≠0

 

  



Canonical quantization: 𝒫̂ →
ℏ

𝑖

𝜕

𝜕𝑄̂
 , 𝐻̂exp,op(𝑄̂, 𝒫̂op) , Ψ̂exp(𝑄̂, 𝑡) 

Canonical WF Ψ̂exp: Gaussian WP 

Maximum:  class. (averaged) Langevin eq. 

Width  complex Riccati:   𝒞̇̂exp + 𝒞̂exp
2 + (𝜔2 −

𝛾2

4
) = 0  like HO, only 

 Ermakov eq.: 𝛼̈exp + (𝜔
2 −

𝛾2

4
) 𝛼exp =

1

𝛼exp
3   𝜔 → (𝜔2 −

𝛾2

4
)

1

2
= Ω 

 Ermakov Invariant:   

  𝐼exp =
1

2
{(⟨𝑄̇̂⟩

exp
𝛼exp − ⟨𝑄̂⟩exp 𝛼̇exp)

2

+ (
〈𝑄̂〉exp

𝛼exp
)
2

}       

            ≙
1

2
e𝜸𝒕 {(𝜂̇ 𝛼exp − (𝛼̇exp −

𝜸

𝟐
𝜶exp) 𝜂)

2
+ (

𝜂

𝛼exp
)
2

}  

 



3.2 Nonlinear Modifications of Hamiltonian OPERATOR 

By adding “friction potential” W, 

𝐻NL = 𝐻0 +𝑾  

based on: dissipative friction force in EOM (→ real part) 

 irreversible diffusion terms in CE → FPE (→ imag. part) 

To include both aspects → complex addition necessary! 

Resulting effective NLSEs have analytical Gaussian WP solutions 

Maximum: classical EOM including friction force 

Width: modified Riccati eq. 

 modified Ermakov eq. 

 → modified Ermakov Invariant INL  



I. Approaches based on Dissipative Friction Force 

According to Ehrenfest: 
𝜕

𝜕𝑡
〈𝑝〉 + 𝜸〈𝒑〉 + 〈

𝜕

𝜕𝑥
𝑉〉 = 0 

Necessary cond. for W 〈
𝜕

𝜕𝑥
𝑊〉 = 𝛾〈𝑝〉  

a) Kostin 𝑊K = 𝛾
ℏ

2i
(ln

Ψ

Ψ∗
− 〈ln

Ψ

Ψ∗
〉)   real 

 as 
𝜕

𝜕𝑥
𝑊K = 𝛾

ℏ

2i

𝜕

𝜕𝑥
ln

Ψ

Ψ∗
= 𝛾𝑚𝜐−  (see CE for 𝜚) 

 with 〈𝜐−〉 = 〈𝜐〉 =
1

𝑚
〈𝑝〉 

 Problems: 1) unshifted freq. 𝜔 instead of Ω = (𝜔2 −
𝛾2

4
)

1

2
 for damped HO 

 2) solutions of undamped HO (real) solve NLSE 

 3) Eq. for 𝜚 still reversible CE  



b) General “friction potential”: 

 𝑊G = 𝛾〈𝑝〉(𝑥 − 〈𝑥〉) +
𝛾

2
𝑲{(𝑥 − 〈𝑥〉), (𝑝 − 〈𝑝〉)}+   

For ANY K , 〈
𝜕

𝜕𝑥
𝑊G〉 = 𝛾〈𝑝〉  fulfilled 

Süssmann 𝐾 = 1  𝑊Sü =
𝛾

2
{(𝑥 − 〈𝑥〉), 𝑝}+  

 damped HO: ΩSü = (𝝎𝟎
𝟐 − 𝜸𝟐)

𝟏 𝟐⁄
 wrong 

Albrecht 𝐾 = 0  𝑊Al = 𝛾〈𝑝〉(𝑥 − 〈𝑥〉)   

 ΩAl = 𝝎𝟎 wrong 

 General: ΩG = (𝜔0
2 − 𝐾2𝛾2)1 2⁄  → 𝐾 = ±

1

2
 

Hasse 𝐾 =
1

2
 

𝑊Has =
𝛾

4
{(𝑥 − 〈𝑥〉), (𝑝 + 〈𝑝〉)}+

=
𝟏

𝟐
(𝑾Sü +𝑾Al)         

 

 ΩHas = (𝝎𝟎
𝟐 −

𝜸𝟐

𝟒
)
𝟏 𝟐⁄

 correct 

 but 〈𝑊Has〉 ≠ 0 → 〈𝐻〉 ≠ 〈𝑇〉 + 〈𝑉〉  



II. Approach based on irreversible Diffusion Term 

NLSE: iℏ
𝜕

𝜕𝑡
Ψ(𝑥, 𝑡) = (𝐻𝑜𝑝 + 𝑾̃)Ψ(𝑥, 𝑡)   

 Breaking time-reversal symmetry via  
diffusion term for probability density:  

 
𝜕

𝜕𝑡
ϱ(𝑥, 𝑡) +

𝜕

𝜕𝑥
(𝜐−𝜚) − 𝑫

𝝏𝟐

𝝏𝒙𝟐
𝝔 = 0   Fokker–Planck-type 

 not separable in general but via separation condition 

 −𝐷 
𝜕2

𝜕𝑥2
𝜚

𝜚
= 𝛾 (ln 𝜚 − 〈ln 𝜚〉)    

 with 𝐷 =
𝛾

2
〈𝑥̃2〉 =

𝛾

2
𝜎𝑥𝑥 

 ⇒ 𝑊̃ = 𝛾
ℏ

𝑖
(lnΨ − 〈lnΨ〉)  complex log NL  



Connection with other NLSEs  

 𝑊̃ = 𝛾
ℏ

i
(lnΨ − 〈lnΨ〉)  

 = 𝛾
ℏ

2i
(ln

Ψ

Ψ∗
− 〈ln

Ψ

Ψ∗
〉) + 𝛾

ℏ

2i
(ln ϱ − 〈ln ϱ〉)  

 

 real ≙ Kostin imag. i
ℏ

2
𝐷

𝜕2

𝜕𝑥2
𝜚

𝜚
 ≙ Doebner−Goldin 

 ⇓ ⇓ 

 −〈
𝜕

𝜕𝑥
𝑊̃〉 = −𝛾𝑚〈𝜐〉 FPE 

 dissipation irreversibility 

 

 𝑊̃ΨWP = (𝑊Has − 〈𝑊Has〉)ΨWP = 𝑊̃HasΨWP Hasse 

  



Connection with Canonical Approaches  

Hamilton−Jacobi  
𝜕

𝜕𝑡
𝑆 + 𝐻 (𝑥,

𝜕

𝜕𝑥
𝑆, 𝑡) = 0  

Schrödinger Def.: 𝑆𝑐 =
ℏ

i
lnΨ   complex! 

log NLSE written with 𝑆𝑐:  (
𝜕

𝜕𝑡
+ 𝛾) 𝑆𝑐 +𝐻 = 𝛾〈𝑆𝑐〉 

 ↖ for normalization → neglect 

 Define: 𝑆̂𝑐 = e
𝜸𝒕𝑆𝑐 , 𝐻̂ = e𝜸𝒕𝐻  ≙  Caldirola/Kanai 

 log NLSE → 
𝜕

𝜕𝑡
𝑆̂𝑐 + 𝐻̂ = 0  

 and  ln Ψ̂ = e𝜸𝒕 lnΨNL  

Non-unitary connection between canonical WF Ψ̂(𝑥̂, 𝑝) and physical WF ΨNL(𝑥, 𝑝)! 

  



Properties of the log NLSE 

NLSE with complex logarithmic nonlinearity: 

iℏ
𝜕

𝜕𝑡
Ψ = {𝐻op + 𝜸

ℏ

i
(𝐥𝐧𝚿 − 〈𝐥𝐧𝚿〉)}Ψ   

  𝑾̃SCH 
Gaussian WP-solutions like for isolated systems (𝛾 = 0) 

modified eqs. of motion: 
max

width
 

𝜂̈ + 𝜸𝜼̇ + 𝜔2𝜂 = 0

𝒞̇NL + 𝜸𝓒NL + 𝒞NL
2 +𝜔2 = 0

  
  𝜂 = 〈𝑥〉
𝒞NL: complex

 

 𝒞NL,I =
1

𝛼2
 , 𝒞NL,R =

𝜶̇

𝛼
−
𝜸

𝟐
   ⇒ 𝛼̈NL + (𝜔

2 −
𝜸𝟐

𝟒
) 𝛼NL =

1

𝛼NL
3   

modified Ermakov invariant: 

INL =
1

2
e𝜸𝒕 [(𝜂̇𝛼NL − (𝛼̇NL −

𝛾

2
𝛼NL) 𝜂)

2
+ (

𝜂

𝛼NL
)
2
] = const   ≙ Îexp  



Modified Creation/Annihilation Operators 

aNL(𝑡) = i√
𝑚

2ℏ
𝛂NL(𝒕) (

𝑝op

𝑚
− 𝓒NL𝑥) e

𝜸

𝟐
𝒕

aNL
+ (𝑡) = −i√

𝑚

2ℏ
𝛂NL(𝒕) (

𝑝op

𝑚
− 𝓒NL

∗ 𝑥) e
𝜸

𝟐
𝒕

  

− Apart from factor e
𝜸

𝟐
𝒕, same form as in isolated system, 

only 𝓒(𝒕) → 𝓒NL(𝒕), fulfilling Riccati equation 

with additional linear term 𝜸𝓒NL. 

− In terms of 𝝈𝒊𝒋, 𝓒NL same form as in isolated system, 

i.e.,  𝓒I =
ℏ

2𝑚

1

𝜎𝑥𝑥
 , 𝓒R =

1

𝑚

𝜎𝑥𝑝

𝜎𝑥𝑥
 , 

only 𝝈𝒊𝒋 obey different eoms than in isolated system. 

  



Wigner Function 

In terms of 𝑥̃, 𝑝̃ and 𝜎𝑖𝑗, same form as in isolated system, apart from factor e𝜸𝒕, 

𝑊NL(𝑥, 𝑝, 𝑡) =
e−𝛾𝑡

𝜋ℏ
exp {−

2

ℏ2
e𝜸𝒕[𝜎𝑝𝑝𝑥̃

2 − 2𝜎𝑥𝑝𝑥̃𝑝̃ + 𝜎𝑥𝑥𝑝̃
2]}   

This leads to the modified equation of motion 

𝜕

𝜕𝑡
𝑊NL +

𝜕

𝜕𝑥
(
𝑝

𝑚
𝑊NL) −

𝜕

𝜕𝑝
((𝑚𝜔2𝑥 + 𝜸𝒑) 𝑊NL) + 𝜸(𝐥𝐧𝑾NL − 〈𝐥𝐧𝑾NL〉)𝑾NL = 0   

 with 𝑝̇ = −𝜸𝒑 −𝑚𝜔2𝑥 and 〈ln𝑊〉 =
ℏ2

2
   



 

Inserting 𝑊NL leads to an equation of motion for the mean value 

(from terms linear in 𝑥̃, 𝑝̃): 

𝜕

𝜕𝑡
〈𝑝〉 + 𝜸〈𝒑〉 + 𝑚𝜔2〈𝑥〉 = 0   

and equations of motion for the 𝜎𝑖𝑗  

(from terms quadratic or bilinear in 𝑥̃, 𝑝̃):  

  

𝜎̇𝑥𝑥 =
2

𝑚
𝜎𝑥𝑝 + 𝜸 𝝈𝒙𝒙

𝜎̇𝑝𝑝 = −2 𝑚 𝜔
2𝜎𝑥𝑝 − 𝜸 𝝈𝒑𝒑

𝜎̇𝑥𝑝 = 𝜎̇𝑝𝑥 = 2 (
1

2𝑚
𝜎𝑝𝑝 −

𝑚

2
𝜔2𝜎𝑥𝑥)

  

These equations are consistent with expressions for 𝜎̇𝑖𝑗  in terms of 𝛼, 𝛼̇ 

corresponding to the log NLSE and the respective Ermakov eq.  



 

Comparison: additional ln-terms vs. diffusion terms 

𝜸(ln𝑊 − 〈ln𝑊〉)𝑊 = −𝑫𝒙𝒙
𝜕2

𝜕𝑥2
𝑊 −𝑫𝒑𝒑

𝜕2

𝜕𝑝2
𝑊 + (𝑫𝒙𝒑 +𝑫𝒑𝒙)

𝜕2

𝜕𝑝𝜕𝑥
𝑊   

if  𝐷𝑥𝑥 =
𝛾

2
𝝈𝒙𝒙   ,   𝐷𝑝𝑝 =

𝛾

2
𝝈𝒑𝒑   ,   𝐷𝑥𝑝 = 𝐷𝑝𝑥 =

𝛾

2
𝝈𝒙𝒑 =

𝛾

2
𝝈𝒑𝒙   

In this case, our Wigner eq. turns into the one by Dekker! 

(N.B.:  Compare with separation condition leading to our log NLSE) 

Mean values:  Dekker obtains the same eom including friction force. 

  



Dekker Condition for Diffusion Coefficients and Uncertainties 

Initially, Dekker used 𝑫𝒊𝒋 corresponding to particular solution of Riccati eq.,  

i.e. without TD of WP width: 𝜎𝑥𝑥 =
ℏ

2𝑚Ω
   ,   𝜎𝑝𝑝 =

𝑚ℏ

2

𝜔2

Ω
   ,   𝜎𝑝𝑥 = 𝜎𝑥𝑝 =

−
𝜸

𝟐

Ω
  

He obtains a more general form of 𝑫𝒊𝒋  in terms of 𝝈𝒊𝒋 from the Wigner equation, 

whereby 𝑫𝒊𝒋 must fulfil a relation corresponding to the 

Schrödinger–Robertson uncertainty relation: 𝜎𝑥𝑥𝜎𝑝𝑝 − 𝜎𝑥𝑝
2 ≥

ℏ2

4
 

also valid for the general solution corresponding to the TD 𝝈𝒊𝒋. 

The equations of motion for his 𝜎𝑖𝑗 are 

𝜎̇𝑥𝑥 =
2

𝑚
𝜎𝑥𝑝 + 𝟐 𝑫𝒙𝒙

𝜎̇𝑝𝑝 = −2 𝑚 𝜔
2𝜎𝑥𝑝 − 𝟐 𝜸 𝝈𝒑𝒑 + 𝟐 𝑫𝒑𝒑

𝜎̇𝑥𝑝 = 𝜎̇𝑝𝑥 = 2(
1

2𝑚
𝜎𝑝𝑝 −

𝑚

2
𝜔2𝜎𝑥𝑥) − 𝛾 𝝈𝒑𝒙 +𝑫𝒑𝒙 +𝑫𝒙𝒑 

  

which turn into our equations if 𝐷𝑖𝑗 is replaced by 𝑫𝒊𝒋 =
𝜸

𝟐
𝝈𝒊𝒋    



Comparison of different GKSL Approaches and Physical Meaning 

Connection between 𝐿, 𝐿+ and a, a+ 

a(𝑡) =
1

ℏ
√𝝈𝒙𝒙 [i 𝑝 + (

ℏ

2𝝈𝒙𝒙
− i

𝝈𝒙𝒑

𝝈𝒙𝒙
) 𝑥]   

𝓒R =
𝛂̇

𝛼
−
𝜸

𝟐
  

α : WP width → 𝜶̇ = 𝟎 , i.e. const. width → 𝜎𝑥𝑝 = −
𝛾

2
 Dekker 

 𝜶̇ = 𝟎 and 𝜸 = 𝟎 → 𝜎𝑥𝑝 = 0  Gao 

Uncertainty product 𝝈𝒙𝒙 𝜎𝑝𝑝 =
ℏ2

4
+ 𝝈𝒙𝒑

𝟐   

Minimum uncertainty WP 𝝈𝒙𝒙 𝜎𝑝𝑝 =
ℏ2

4
 , i.e. 𝜎𝑥𝑝 = 0 

At least for 𝒕 = 𝟎:  𝝈𝒙𝒑 = 𝟎 possible, even for 𝛼̇ ≠ 0 



Gao 

𝓒R =
𝛂̇

𝛼
= 0   aGao =

1

ℏ
√𝝈𝒙𝒙 [i 𝑝 +

ℏ

𝟐𝝈𝒙𝒙
𝑥]  

𝐿Gao = 𝜇 𝑥 + i 𝜈 𝑝   𝜇, 𝜈:  real , TI 

𝜇2 =
𝛾

2

1

4𝜎𝑥𝑥
=
𝛾

2

𝝈𝒑𝒑

ℏ2
=
𝛾

2

2𝑚kT

ℏ2

𝝂𝟐 =
𝛾

2

𝜎𝑥𝑥

ℏ2
=
𝛾

2

1

4𝝈𝒑𝒑
=
𝛾

2

1

8𝑚kT

 
with       

𝝈𝒑𝒑

2𝑚
= kT

Gao: kT by comparison with C‒L
 

⇒ 𝜇𝜈 =
𝜸

4ℏ
 and 𝐿Gao = √

γ

2
 aGao  

𝐿Gao
+ 𝐿Gao =

γ

2
 aGao
+ aGao   

  



 

Dekker 

𝓒R =
𝛂̇

𝛼
−
𝜸

𝟐
 for 𝛼̇ = 0  const. width 

  from particular solution 𝒞̃ = −
𝜸

𝟐
± i Ω  ,  Ω2 = ω2 −

𝛾2

4
 

 →  complex coeff. of 𝑥 

 aDek =
1

ℏ
√𝝈𝒙𝒙 [i 𝑝 + (

ℏ

2𝝈𝒙𝒙
+ i m

𝜸

𝟐
) 𝑥]   

 𝐷𝑖𝑗 =
𝛾

2
𝜎𝑖𝑗  and 𝐿Dek = √

γ

2
 aDek  

 TD in 𝜎𝑥𝑝 later via Wigner eq. and equations of motion for 𝜎𝑖𝑗  

  



S‒K 

𝓒R =
𝜶̇

𝛼
−
𝜸

𝟐
 for 𝛼̇ ≠ 0  TD width 

  from general solution 𝒞 = 𝒞̃ + 𝕍(𝑡)   

 →  complex TD coeff. of 𝑥 

 aSK(𝑡) =
1

ℏ
√𝝈𝒙𝒙(𝒕) [i 𝑝 + (

ℏ

2𝝈𝒙𝒙(𝒕)
− i

𝝈𝒙𝒑(𝒕)

𝝈𝒙𝒙(𝒕)
) 𝑥]   

 𝐿SK = 𝜆𝑥 𝑥 + i 𝜆𝑝 𝑝   
𝜆𝑝 : real , TD

𝜆𝑥 = 𝜆𝑥
R + i 𝜆𝑥

I  : complex , TD
 

 |𝜆𝑥 |
2 =

γ

ℏ
𝝈𝒑𝒑 , 𝜆𝑝

2 =
γ

ℏ
𝝈𝒙𝒙 , 𝜆𝑝𝜆𝑥

I = −
𝛾

ℏ
𝝈𝒑𝒙 , 𝜆𝑝 𝜆𝑥

R = 𝛾 

 𝐿SK = √
γ

2
 aSK(𝑡)    𝐿SK

+  𝐿SK =
γ

2
 aSK
+  aSK ≙

𝛾

2

𝑚

ℏ
e−𝜸𝒕INL   



Comparison of 𝒟[𝜚] 

Gao: 
𝒟Gao = −

𝜸

2
{i

1

2ℏ
([𝒙, {𝒑, 𝝔}+]− − [𝒙𝒑, 𝝔]−)

               +
𝜎̃𝑝𝑝,0

ℏ2
[𝒙, [𝒙, 𝝔]−]− +

𝜎̃𝑥𝑥,0

ℏ2
[𝒑, [𝒑, 𝝔]−]−}

  

Dekker: 
𝒟Dek = −

𝜸

2
{i

1

2ℏ
([𝒙, {𝒑, 𝝔}+]− − [𝒙𝒑, 𝝔]−) −

𝟏

ℏ𝟐
(𝝈̃𝒙𝒑 + 𝝈̃𝒑𝒙)[𝒑, [𝒙, 𝝔]−]−

               +
𝜎̃𝑝𝑝

ℏ2
[𝒙, [𝒙, 𝝔]−]− +

𝜎̃𝑥𝑥

ℏ2
[𝒑, [𝒑, 𝝔]−]−}

 

S‒K: 
𝒟SK = −

𝜸

2
{i
1

2ℏ
([𝒙, {𝒑,𝝔}+]− − [𝒙𝒑, 𝝔]−) −

𝟏

ℏ𝟐
(𝝈𝒙𝒑[𝒙, [𝒑, 𝝔]−]− + 𝝈𝒑𝒙[𝒑, [𝒙, 𝝔]−]−)

               +
𝜎𝑝𝑝

ℏ2
[𝒙, [𝒙, 𝝔]−]− +

𝜎𝑥𝑥

ℏ2
[𝒑, [𝒑, 𝝔]−]−}

 

use: a) [𝒑, [𝒙, 𝝔]−]− = [𝒙, [𝒑, 𝝔]−]−  

 b) [𝒙, {𝒑, 𝝔}+]− − [𝒙𝒑, 𝝔]− =
1

𝟐
([𝒙, {𝒑, 𝝔}+]− − [𝒑, {𝒙, 𝝔}+]−) 

  



Solution of the Riccati Equation 

 𝒞(𝑡) = 𝓒̃ + 𝕍(𝑡)   
      𝓒̃:  particular solution
𝕍(𝑡):  solution of (homog.) Bernoulli eq.

 

 Bernoulli eq. 𝕍̇ + 2𝓒̃𝕍 + 𝕍2 = 0   

⇒ general solution: 𝒞(𝑡) = 𝓒̃ +
e−2𝓒̃𝑡

1

2𝓒̃
(1−e−2𝓒̃𝑡)+

1

𝕍0

 

  𝝈𝒙𝒑 =
ℏ

2
𝛼2𝒞R   

 𝛾 = 0 𝓒R =
𝛼̇

𝛼
 , 𝛼̇ = 0 → 𝓒R = 𝟎 → 𝝈̃𝒙𝒑,𝟎 = 0 

 𝛾 ≠ 0 𝓒R =
𝛼̇

𝛼
−
𝜸

𝟐
 

  𝛼̇ = 0 → 𝓒̃R = −
𝜸

𝟐
→ 𝝈̃𝒙𝒑 = −

𝛾

2
𝛼0
2 ℏ

2
= 𝑐𝑜𝑛𝑠𝑡. ≠ 0 

 𝛼̇ ≠ 0 → 𝓒R = −
𝛾

2
+ 𝕍R(𝒕) → 𝝈𝒙𝒑 = (−

𝛾

2
+
𝛼̇

𝛼
) 𝛼2

ℏ

2
= 𝜎𝑥𝑝(𝑡)  



Critical comment on Gao’s approach: 

Wrong Ehrenfest eqs. of motion 

 
𝜕

𝜕𝑡
〈𝑥〉 =

〈𝑝〉

𝑚
−
𝜸

𝟐
〈𝒙〉  ,

𝜕

𝜕𝑡
〈𝑝〉 = − 〈

𝜕

𝜕𝑥
𝑉〉 −

𝜸

𝟐
 〈𝑝〉   

instead of correct dynamics of Brownian motion  

 
𝜕

𝜕𝑡
〈𝑥〉 =

〈𝑝〉

𝑚
                ,

𝜕

𝜕𝑡
〈𝑝〉 = − 〈

𝜕

𝜕𝑥
𝑉〉 − 𝜸 〈𝑝〉   

Similar to “friction potentials” 

 𝑊Has =
1

2
𝑊Sü +

1

2
𝑊Al =

𝛾

4
{(𝑥 − 〈𝑥〉, 𝑝)}+ +

𝛾

2
〈𝑝〉(𝑥 − 〈𝑥〉)   

 complex real 

 → 
𝜸

𝟐
〈𝒑〉 → 

𝜸

𝟐
〈𝒑〉 

 + non-unit. contrib. + only unit. contrib.   



General Formalism 

𝜕

𝜕𝑡
𝜚 = ℒ[𝜚] = −

i

ℏ
[𝑯′, 𝜚]− +𝓓 [𝝔]   

 unitary contrib. non-unitary contrib. 

𝑯′: in general NOT identical with  

unperturbed Hamiltonian 𝐻0 = 𝑇op + 𝑉  

of system (due to environment)  

→ “renormalization” of energy levels 

Gao: 𝐻′ = 𝐻0 𝓓 [𝝔] all fulfill 

Dekker:  𝑯′ = 𝐻0 +
𝛾

4
{𝑥, 𝑝}+ GKSL-condition, 

DS: 𝑯′ =  ? but different 𝜎𝑥𝑝   

  



Canonical: 𝐻̂exp =
1

2𝑚
𝒫̂2 +

𝑚

2
(𝜔2 −

𝛾2

4
) 𝑄̂2  

 ≙ (
𝑝2

2𝑚
+
𝜸

𝟐
𝒙𝒑 +

𝑚

2
𝜔2𝑥2) e𝜸𝒕 = const  

 𝐼exp =
1

2
{(〈𝑄̇̂〉 𝛼̂ − 〈𝑄̂〉𝛼̇̂)

2
+ (

〈𝑄̂〉

𝛼̂
)
2

}  

 ≙
1

2
{(𝜂̇𝛼 − (𝛼̇ −

𝛾

2
𝛼) 𝜂)

2
+ (

𝜂

𝛼
)
2
} e𝜸𝒕 = 𝐼NL  

 𝐻̂ = 𝐻e𝜸𝒕  non-canonical ln Ψ̂ = e𝜸𝒕 lnΨNL  non-unitary  

 ln 𝑊̂ = e𝜸𝒕 ln𝑊 , ln 𝑊̂ ~𝐼(𝑄̂, 𝛼̂)  

Physical: Factorization of 𝐼e−𝜸𝒕 → 𝑎(𝑡) , 𝑎+(𝑡) → 𝓓[𝝔] 

 Hamiltonian: 𝐻̂exp e
−𝜸𝒕 → 𝑯′ = 𝐻0 +

𝜸

𝟒
{𝒙, 𝒑}+ ≙ Dekker   



  



  



 

 constraints 

 

non-unitary non-unitary 

unitary 

unitary 

𝑆̂ 𝑆̂′  

𝑆 𝑆′  

Caldeira 
Leggett Bateman 

Caldirola 
Kanai 

Expanding 
coordinates 

log NLSE 

Kostin Doebner–Goldin 
Beretta 

Süssmann 
Albrecht 

Hasse 

CANONICAL 

PHYSICAL 

non-canonical 



4. Conclusions 

I. Closed TD Quantum Systems 

 TDSE → Gaussian WP solutions |Ψ⟩ 

Dynamics of Maximum: Newton eq. → class. trajectory 

 Width: Riccati/Ermakov eq. → position uncertainty 

Combined eqs. of motion →  Dynamical invariant  (action) 

 factorization 

  TD creation/annihilation ops   

Liouville eq. for 𝜚op = |Ψ⟩⟨Ψ|  Wigner function   

  “FT” 



II. Open TD Quantum Systems 

 Modified TDSEs − canonical  (𝐻̂exp) 

 ↕ non-canonical / non-unitary 

 − physical  (𝐻NL) , nonlinear 
→ Gaussian WP solutions |Ψ⟩ 
→ modified eqs. of motion for Maximum (Langevin) and Width 

→ modified  Dynamical invariant  (action) 

 factorization 

 generalized TD creat./annihil. ops   

 (3 models: Gao, Dekker, S-K) 

 ⇓ 

−  generalized GKSL ops  𝓓[𝝔]  Wigner function   

     physical meaning in terms of 𝜎𝑖𝑗   − generalized eq. of motion with 

− 𝐻̂exp → modified Hamiltonian 𝑯′   friction force (dissipative) 

 → missing part of friction force diffusion terms (irreversible) 



 



  



− Application of 𝓓[𝝔] on pure state |𝚿⟩ and subtracting mean value 

 → NLSE equivalent to log NLSE 

 → Same WP solutions, so-called robust states 

− To avoid possible problems with superluminal info transfer 

 → Classical statistical element via Wiener process etc. 

 → Stochastic SE 

______________ 

− Classical statistical element via inclusion  of heat bath  

using Wick transform to imaginary time 𝜏 = i
ℏ

kT
 

  



Applying Wick-Transform to General Solution of Riccati Eq. 

𝒞(𝑡) → 𝒞 (
ℏ

kT
)  with i𝜔0𝑡 → −

ℏ𝜔0

kT
 

 𝒞 (
ℏ

kT
) =

ℏ

2
𝜔0 +

ℏ𝜔0

𝑒
ℏ𝜔0
kT −1

=
ℏ

2
𝜔0 𝐜𝐨𝐭𝐡 (

ℏ𝜔0

2kT
)   hyperbolic fct. 

 Bose–Einstein distrib. (solution of Bernoulli eq.) 

In momentum space, essentially the inverse quantity  

fulfils also a Riccati eq. with the general solution 

 𝒞̂−1 (
ℏ

kT
) =

ℏ

2
𝜔0 −

ℏ𝜔0

𝑒
ℏ𝜔0
kT +1

=
ℏ

2
𝜔0 𝐭𝐚𝐧𝐡 (

ℏ𝜔0

2kT
)   

 Fermi–Dirac distrib. 

In agreement with Gao’s approach. 



 

 

Thank you for your attention!   
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