Electric conductivity of hadronic matter

Jan Hammelmann

In collaboration with Juan M. Torres-Rincon, Jean-Bernard Rose, Moritz Greif and Hannah Elfner

Transport meeting 24.01.19

See also: arXiv:1810.12527

Introduction

- Studying heavy ion collisions in order to understand properties of QCD matter
- Transport models give unique insights on dynamical evolution of heavy ion collisions
- Characterize the interacting hadron gas by its linear transport coefficients

Pb-Pb collision with 17.3 GeV center-of-mass energy (by J. Mohs)

Definition: electric conductivity σ_{el}

Ohm's law:

$$\overrightarrow{J}_{Q}(t, \overrightarrow{x}) = \sigma_{el} \overrightarrow{E}(t, \overrightarrow{x})$$

- Electric current \vec{J}_{O}
- Electric conductivity σ_{el}
- Electric field \vec{E}

Conservation of *U(1)* electric charge leads to a transport of electric charge -> transport coefficient

Applications of σ_{el}

- High velocities of charged particle will lead to big electric and magnetic fields $\sim m_{\pi}^2$. -> Time evolution depends on σ_{el}
- Soft dilepton and photon rates are related to the electric conductivity
- Magneto-hydrodynamic description of the expanding plasma after the collision needs the values of transport coefficients

X-G Huang Rept. Prog. Phys. 79, 076302, [2016]

Model: SMASH

- Simulating Many Accelerated Strongly-interacting Hadrons
- Hadronic transport approach, effectively solving Boltzmann equation

$$p^{\mu}\partial_{\mu}f_{i}(x,p) + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i}(x,p) = C_{coll}^{i}$$

Uses a geometric collision criterion

$$d_{coll} < \sqrt{\frac{\sigma_{tot}}{\pi}}$$

 Good description of low energy heavy ion collisions and of late stages of high energy heavy ion collisions

smash

Model: SMASH

- SMASH contains all baryons and mesons with masses up to ~ 2GeV
- 2 ↔ 1 and 2 ↔ 2 collision modeled through resonance formation and decay
- Resonance properties obtained from experiment

Particle	Mass (MeV)	Decay width (MeV)
π	138	0
ho	776	149
K	494	0
K^{\star}	892	50.8
N	938	0
Δ	1232	117

Box setup

- Box with periodic boundary conditions, simulating infinite matter
- Initial momenta distribution:

$$\frac{d^3N}{dp^3} \sim exp\left(-\sqrt{\overrightarrow{p}^2 + m^2}/T\right)$$

 One has to check for thermal/ chemical equilibrium

Box filled with π , $m_{\pi} = 0.138 GeV$ interacting via constant elastic cross section $\sigma_{tot} = 30mb$

Electric current

- Pions interacting as hard spheres
- Since no electric field is applied, the current fluctuates around zero
- Strength of fluctuation

$$\sim \frac{1}{\sqrt{V}}$$

Calculation of the temperature

- Thermal equilibrium has to be reached in the box
- Calculate temperature by fitting the pion momenta spectrum

Jan Hammelmann

Green-Kubo formalism

- Well-known formalism to extract transport coefficients
- Based on linear response theory
- Possible to extract transport properties by looking at fluctuations of currents around equilibrium

$$\sigma_{el} = \frac{V}{3T} \int_0^\infty \langle \vec{j_Q}(t) \vec{j_Q}(0) \rangle dt$$

Correlation function

- How does $\langle \vec{j_Q}(t) \vec{j_Q}(0) \rangle$ look like?
- Since Ohm's law is inconsistent with causality it is modified to:

$$J_{Q}^{i}(t, \overrightarrow{x}) = \int_{V} d^{3} \overrightarrow{x'} \int_{t_{0}}^{t} dt' \Sigma^{ij}(t - t'; \overrightarrow{x} - \overrightarrow{x'}) E^{'i}(t', \overrightarrow{x'}) + \Xi_{Q}^{i}(t, \overrightarrow{x})$$

where \sum_{ij}^{ij} is the memory kernel of the electric conductivity and $\Xi_{O}^{i}(t, \vec{x})$ a fluctuation term

• With an exponential Ansatz for the memory kernel:

$$\Sigma^{ij}(t-t';\vec{x}-\vec{x}') = \frac{\sigma_{el}\delta^{ij}}{\tau_Q}\delta^{(3)}(\vec{x}-\vec{x}')exp\left(\frac{|t-t'|}{\tau_Q}\right)$$

It follows with the fluctuation dissipation theorem that the correlation function of the spatial average of the current-current correlator has an exponential decay

Jan Hammelmann

Correlation function

Correlation function:
$$C(t) \equiv \langle j_Q^i(t) j_Q^i(0) \rangle = \frac{1}{K-t} \sum_{s=0}^{K-t} j_Q^i(s\Delta t) j_Q^i(s\Delta t+t)$$

Where *K* is the total number of time steps

Correlation function of a box filled with pions interacting with a constant cross section $\sigma_{tot} = 30mb$ for different initialization temperatures.

- Correlation function follows an exponential decay -> extract values of τ_Q and C(0) by fitting an exponential function $C(t) = C(0)e^{-\frac{t}{\tau_Q}}$ $\sigma_{el} = \frac{C(0)V\tau_Q}{T}$
- Error grows for later times
 -> find cut-off criterion

Jan Hammelmann

Correlation function at t=0

- Can be computed analytically
- Well defined in thermal equilibrium
- Good cross check if calculation is done correctly

For a massless gas:

$$C(0) = \frac{2(qe)^2 n}{3V}$$

C(0)V of massless gas with three species $q_a = \pm 1,0$ constant cross section $\sigma_{tot} = 30mb$

Jan Hammelmann

Test Case: Massless gas

• Drude Formula (classical kinetic theory)

$$\sigma_{el}^{Drude} = \frac{1}{2} \frac{2e^2}{3\sigma T} = \frac{3.9686 \cdot 10^{-4}}{T} (GeV^2)$$

Greif et al. Phys. Rev. D90, 094014 (2014)

• Kinetic theory

$$\sigma_{el}^{Drude} = \frac{2/3}{3/13} \frac{3}{30} \frac{0.000832737}{T} = \frac{3.5967 \cdot 10^{-4}}{T} (GeV^2) \qquad \begin{array}{l} \text{Greif et al. Phys. Rev.} \\ \text{D93, 096012 (2016)} \end{array}$$

Jan Hammelmann

Test case: Hadron mixture

Test case: $\pi \rho$ - gas

- Pions interacting via energy dependent elastic cross section by forming a ρ meson.
- Analytic calculation only models the interaction with an energy dependent cross section, ρ does not propagate.
- How is the transport coefficient affected by resonance lifetime?

Test case: $\pi\rho$ - gas

Excellent agreement between analytic calculation and SMASH

- Resonance lifetime does not affect significantly the relaxation time τ_Q
- Difference in the electric conductivity comes from C(0)

Greif et al. : Phys. Rev. D **93**, 096012 (2016)

Jan Hammelmann

Hadron gas

- Relatively simple hadron gas model with pions, kaons and nucleons, which represents a physical hadron gas below T_c .
- Both thermal and chemical equilibrium has to be reached for Green-Kubo method to be valid

Multiplicities of individual species in the hadron gas at T = 140 MeV and $\mu_B = 300 MeV$

Jan Hammelmann

Hadron gas

- Slightly different result since the analytic calculation includes constant cross section + zero resonance lifetime
- Similar to the shear viscosity, baryochemical potential does not affect the electric conductivity as long as $\mu_B < < m_N$

Greif et al.: Phys. Rev. D 96, 059902 Rose et al. Phys. Rev. C 97, 055204

Shear viscosity

- Linear transport coefficient which measures how momentum is transferred in transverse direction
- Same methodology as for the electric conductivity with different current
- Shear viscosity is calculated with $\eta = \frac{V}{T} \int_0^\infty \langle T^{xy}(t) T^{xy}(0) \rangle$

with the energy-momentum tensor

$$T^{\mu\nu} = \frac{1}{V} \sum_{i}^{N_{part}} \frac{p_{i}^{\mu} p_{i}^{nu}}{p_{i}^{0}}$$

and by fitting the correlation function with

$$C^{xy} \equiv \langle T^{xy}(t)T^{xy}(0) \rangle = C^{xy}(0)e^{-t/\tau}$$

Rose et al. Phys. Rev. C 97, 055204

Shear viscosity of a π - gas

Test case: simple π - gas interacting with a constant cross section

Similarly to the electric conductivity there is a perfect agreement between SMASH and analytic calculations for the simple test cases!

Rose et al. Phys. Rev. C 97, 055204

Jan Hammelmann

Shear viscosity of a $\pi\rho$ - gas

- Perfect agreement between SMASH with zero lifetime and analytic calculation
- Difference in au between the zero and normal resonance lifetime cases

Rose et al. Phys. Rev. C 97, 055204

Jan Hammelmann

Impact of lifetime of the resonance: Shear viscosity

Jan Hammelmann

Impact of lifetime of the resonance: electric conductivity

- There are several processes in which the equilibration has already happened at the first interaction
- Since $m_{\rho} > > m_{\pi}$, the contribution of ρ mesons to current is small compared to that of pions
- Rate of formation/decays is not affected, when changing the resonance lifetime

Take for example the following reaction:

- Rho does not contribute to the electric current
- Flux already disappears in the first interaction
- value of resonance life time does not play a significant role

Conclusions and Outlook

- Conclusion
 - Computed the electric conductivity of a hadron gas using the Green-Kubo formalism
 - Found excellent agreement with analytic calculation
 - Resonance lifetimes have to be taken into account when comparing transport coefficients from analytic and numerical calculations
- Outlook
 - Add more species to the calculation
 - Go to higher values of μ_B
 - Compute diffusion coefficient matrix of conserved charges (S,Q,B) numerically within SMASH, as in [Greif et al. Phys. Rev. Lett. 120, 242301]

Backup slides

Hadron gas

Interaction channels from Greif et al.: Phys. Rev. D 96, 059902

	π^+	π^{-}	π^0	K^+	K^{-}	K^0	\bar{K}^0	p	n	\bar{p}	\bar{n}
<u> </u>											
π^+	10	ρ	ρ	10	10	$ K^{\star} $	10	Δ	10	10	Δ
π^{-}		10	ρ	K^{\star}	10	10	K^{\star}	10	Δ	Δ	10
π^0			5	K^{\star}	10	K^{\star}	K^{\star}	Δ	Δ	Δ	Δ
K^+				10	10	10	50	6	10	20	10
K^{-}					10	50	10	20	10	6	10
K^0						10	50	6	6	20	20
\bar{K}^0							10	8	20	6	6
p								20	20	100	20
n									20	20	100
\bar{p}										10	10
\bar{n}											10

Electric conductivity

C(0) πρ - gas

