Why we still need GiBUU

K. Gallmeister for the GiBUU group Goethe-Universität, Frankfurt

CRC-TR 211 Transport Meeting Frankfurt, 15.11.2018

BUU@Gießen and GiBUU

Electron and neutrino induced reactions on the nucleus

K. Gallmeister for the GiBUU group Goethe-Universität, Frankfurt

recent improvements

neutrino nucleus interactions

hadronization in nuclear matter

CRC-TR 211 Transport Meeting Frankfurt, 15.11.2018

example: eC, E_e =0.56 GeV, θ =60°

before 2016: since 2016: 6 6 data data tot tot 5 5 do/dΩ dE' [μb/sr/GeV] do/dΩ dE' [μb/sr/GeV] 4 4 3 3 QE QE 2 2 Δ 2p2h 1 1 1π π 0 0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0 0 v [GeV] v [GeV]

Delta: medium modification à la Oset et al. invalid
 QE: new ground state prescription
 2p2h: very important contribution

nuclear ground state

local Thomas-Fermi: $|\vec{p}| \leq p_F(\vec{r}) = [3\pi^2 \rho(\vec{r})]^{1/3}$ constant Fermi-energy readjust $\rho(r)$

non-mom.dep potential, asymmetry-term, Coulomb

 $E = \sqrt{m_N^2 + p^2 + U(\vec{r}, \vec{p}\,)}$

needs iteration for mom.dep potential

(long baseline) neutrino experiments

T2K, HyperK:

NOvA:

DUNE (2027):

neutrino-nucleon cross section

neutrino-nucleon cross section

from: PDG, 2018

problem 1: the beam

broad energy spectrum:

cf. LHC: $\Delta E/E = 0.1\%$

energy of incident neutrino has to be **reconstructed** from:

- scattered lepton (QE-like)
- final state particles

accelerator based neutrino experiments

- problem 1: the beam
- problem 2: the target

experiments use nuclear targets:

- ∎ H₂**O** (T2K)
- CH (NOvA)

....

40Ar (DUNE)

increase the rate
true QE: νn → μ⁻p
security (cf. 'Die Hindenburg')
costs (eg. standard baby oil)
target material needed for detector

description of nucleus ?

(binding effects, Fermi motion, Pauli blocking, ...)

final state interactions ?

accelerator based neutrino experiments

- problem 1: the beam
- problem 2: the target
- problem 3: the final state

all particles observed? no detector is a 4π detector

final state interactions:

detected: e.g. scattered lepton, no pion questions:

- was it QE?
- was it Δ or 1-pion event, but pion was absorbed?
- was it something else?

accelerator based neutrino experiments

- problem 1: the beam
- problem 2: the target
- problem 3: the final state

problem X: the community relies on "generators"

- GENIE (10-15 experimentalists, no theory)
- NEUT
- NuWro

outdated nuclear physics:

- Fermi-gas, no binding
- crude FSI

improves slowly

no predictive power !!!

- only vA, no eA
- fitted to data to describe
- data 'massaged' by generator

"GiBUU is nature, but too slow"

"The MiniBooNE QE Puzzle"

possible explanations:

- larger axial mass $M_A \simeq 1.3 \,\mathrm{GeV}$
- change of axial FF
- change of vector FF
- 2p2h

[exp, generator: NUANCE] [Hill] [Bodek] [Ericsson, Martini, GiBUU]

problem:

data was 'massaged' by generator!

inclusive cross section (MiniBooNE)

neutrino

anti-neutrino

theory describes data perfectly

curves show actual GiBUU calculations

MiniBooNE (2011) MINERvA (2015) CH_2 $\langle E_{\nu} \rangle \sim 0.6 \,\mathrm{GeV}$ CH $\langle E_{\nu} \rangle \sim 4.0 \,\mathrm{GeV}$ 1.4 d σ/dT_{π} /A (10⁻³⁸ cm²/GeV) do/dT $_{\pi}$ /A (10⁻³⁸ cm²/GeV) 0.8 1.2 1 0.6 0.8 0.4 0.6 0.4 0.2 0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0 T_{π} (GeV) T_{π} (GeV)

(all theories are too low)

data are incompatibel

curves show actual GiBUU calculations

0.4

1-pion data "The MiniBooNE 1pi Puzzle"

(all theories are too low)

theory describes simultanously MINERvA and T2K, but not MiniBooNE

curves show actual GiBUU calculations

Oscillation experiments

necessary accuracy: energy: 100 MeV (DUNE), 50 MeV (T2K) rates: 10%

energy reconstruction @ MiniBooNE

Cerenkov detector: only 1 ring (muon, no pion) = "QE-like"

reconstructed energy:

- nucleon at rest
- fixed removal energy

curves show actual GiBUU calculations

energy reconstruction @ T2K

same technique as MiniBooNE

appearance probability

curves show actual GiBUU calculations

oscillation signal @ T2K

same technique as MiniBooNE

I uncertainty in E_v = uncertainty in Δm^2 : cancels nearly

but: uncertainty in height nearly as big as effect of δ_{CP} curves show actual GiBUU calculations

oscillation signal @ T2K

same technique as MiniBooNE

I uncertainty in E_v = uncertainty in Δm^2 : shift by 50 MeV

curves show actual GiBUU calculations

oscillation signal @ DUNE

appearance probability

survival probability

tracking detector is essential

Essential References

O.Buss et al., *Phys. Rept.* 512 (2012) 1

THE GiBUU paper: contains both theory and practical implementation of transport theory

U.Mosel, O.Lalakulich, K.G., PRC 86 (2012) 054606, PRL 112 (2014) 151802

energy reconstruction for MiniBooNE, T2K and DUNE

K.G., U.Mosel, J.Weil, *PRC 94 (2016) 035502*

contains the latest changes in GiBUU2016

U.Mosel, K.G., PRC 94 (2016) 034610

A-dependence of 2p2h

U.Mosel, Ann. Rev. Nucl. Part. Sci. 66 (2016) 171

review, contains some discussion of generators

U.Mosel, K.G., PRC 96 (2017) 015503 + arXiv:1708.04528

pion production comparison of MiniBooNE, T2K and MINERvA

U.Mosel, K.G., PRC 97 (2018) 045501

zero pion T2K

S.Dolan, U.Mosel, K.G., L.Pickering, S.Bolognesi, *PRC* 98 (2018) 045502 2p2h: T=1 or 2

see also:

PDG: 42. Monte Carlo Neutrino Generators

elementary reactions (eN, γN) on nucleon:

nuclear reactions (eA, $\gamma A @ GeV$ energies) :

interactions with nuclear medium during formation

space-time picture of hadronization

 $\sigma^*/\sigma_H~\sim~t^{0,1,2,...}$

development of wave function

Observables, Experiments

$$R^{h}(z_{h},\ldots) = \frac{\frac{N_{h}(z_{h},\ldots)}{N_{e}(\ldots)}\Big|_{A}}{\frac{N_{h}(z_{h},\ldots)}{N_{e}(\ldots)}\Big|_{D}}$$

$$\Delta p_T^2 = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

And the hadronic:
$$z_h = \frac{E_h}{\nu}$$
, p_T , \cdots

Photonic:
$$\nu, Q^2, W, x_B, \ldots$$

Model: Hadronization in String Model (PYTHIA/JETSET)

3 times/points per particle:

- "Production 1"
- "Production 2"
- "Formation"

- String-Breaking
- String-Breaking
- Line-Meeting

Leading vs. Non-leading

Connection to interaction vertex

EMC & Hermes

describe simultanously: • EMC@100...280 GeV • Hermes@27 GeV

Hermes@27: A.Airapetian et al., NPB780(2007)1

CLAS@5, π^+ : selected (v,Q²) bins

 $Q^2 = 1.85 \dots 2.4 \, \mathrm{GeV}^2$ $Q^2 = 1.0 \dots 1.25 \, \mathrm{GeV}^2$ С 1.2 1.2 Fe Pb Fe Pb data data 1 0.8 0.8 ц 0.6 0.6 0.4 0.4 0.2 0.2 $Q^2 = 1.0..1.25 \text{ GeV}^2$, $v = 3.5..4.0 \text{ GeV}^2$ $Q^2 = 1.0..1.25 \text{ GeV}^2$, $v = 2.2..3.0 \text{ GeV}^2$ 0 0 0.8 0.2 0.8 0 0.2 0.4 0.6 0 0.4 0.6 Zh z_h С С 1.2 Fe Pb 1.2 Fe Pb data – data 1 1 0.8 0.8 щ 0.6 0.6 0.4 0.4 0.2 0.2 $Q^2 = 1.85..2.4 \text{ GeV}^2$, v = 2.2..3.0 GeV $Q^2 = 1.85..2.4 \text{ GeV}^2$, v = 3.5..4.0 GeV 0 0 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 z_h z_h

 $3.5 \dots 4 \text{ GeV}$

7 ||

 $2.2 \dots 3 \, \mathrm{GeV}$

 $\|$

2

Data:

- CLAS preliminary
- no error bars shown

Calculations:

- not tuned !!!
- no Fermi Motion (W<2 GeV possible)
- no potentials

As good as at higher energies !

EIC@3+30: π° vs. η

5

Conclusions

GiBUU is not dead yet!

- UMO and K.G. are the leftovers
- external users really work with the code
- email support costs a lot of time
- hepforge modifications in 2018 were a big pain in the ...

GiBUU is still needed!

- neutrino community uses special tuned `generators`
- "GiBUU is nature" (but too slow)
- JLAB@5 & 12 GeV: no other code available
- EIC@low energy modes: important for hadronization studies
- ultraperipherical UrHICs: simply replace photon flux

Gibuu well prepared for future projects like DUNE and EIC

People

- Oliver Buss
- Theo Gaitanos, Thessaloniki
- Kai Gallmeister, Frankfurt
- Hendrik van Hees, Frankfurt
- Olga Lalakulich
- Alexei Larionov, free lancer
- Tina Leitner
- Ulrich Mosel, Gießen
- Janus Weil

~5-10 active external users

2p2h (since 2016)

electrons

$$\frac{\mathrm{d}^2 \sigma^{2p2h}}{\mathrm{d}\Omega \mathrm{d}E'} = \frac{8\alpha^2}{Q^4} E'^2 \cos^2 \frac{\theta}{2} \left(\frac{Q^2}{2\mathbf{q}^2} + \tan^2 \frac{\theta}{2}\right) W_1^e(Q^2, \omega)$$

neutrinos

$$\frac{\mathrm{d}^2 \sigma^{2p2h}}{\mathrm{d}\Omega \mathrm{d}E'} = \frac{G^2}{2\pi^2} E'^2 \cos^2 \frac{\theta}{2} \left[2W_1^{\nu} \left(\frac{Q^2}{2\mathbf{q}^2} + \tan^2 \frac{\theta}{2} \right) \mp W_3^{\nu} \frac{E + E'}{M} \tan^2 \frac{\theta}{2} \right]$$

$$W_{1}^{\nu} = \left(G_{M}^{2}\frac{\omega^{2}}{\mathbf{q}^{2}} + G_{A}^{2}\right)\frac{1}{2G_{A}G_{M}}W_{3}^{\nu}$$

• $W_1^{\mathrm{MEC}}(Q^2,\omega)$ from Bosted/Christy

Hermes@27: A.Airapetian et al., NPB780(2007)1

kaons

Times

