Entropy production in relativistic heavy ion collisions with use of quantum distribution functions

Hidekazu Tsukiji

Yukawa Institute for Theoretical Physics Kyoto University (Japan)

Collaborators

Hideaki Iida (Far Eastern Federal U) Teiji Kunihiro (Kyoto U) Akira Ohnishi (YITP) Toru T. Takahashi (Gumma Col.) Based on

PTEP, 083A01 (2015). PRD 94, 091502(R) (2016). PTEP, 013D02 (2017).

Contents

- Introduction
 Relativistic heavy ion collisions
 Thermalization and entropy production
- Numerical methods/Analysis in quantum mechanical system <u>H.T.</u>, H.lida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 083A01 (2015).
- Entropy production in Yang-Mills field theory <u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).
- Entropy production from glasma-like initial condition in static box <u>H.T.</u>, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

Contents

- Introduction
 Relativistic heavy ion collisions
 Thermalization and entropy production
- Numerical methods/Analysis in quantum mechanical system <u>H.T.</u>, H.lida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 083A01 (2015).
- Entropy production in Yang-Mills field theory
 <u>H.T.</u>, H.lida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).
- Entropy production from glasma-like initial condition in static box <u>H.T.</u>, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

Relativistic heavy ion collisions

[Baier-Mueller-Schiff-Son(2001)]

Relativistic heavy ion collisions

How to show "thermalization"?

(A) Isotropization of pressure: Setup of perfect fluid

[Arnold-Lenaghan-Moore-Yaffe(2004), Epelbaum-Gelis(2013)]

Energy-momentum tensor $T^{({\rm YM})}_{i\,i}\simeq p\delta_{ij}$

 $^{)}\simeq p\delta_{ij}$ ~~ Ideal hydro model

Isotropization of the pressure (SU(2)YM on $64 \times 64 \times 128$ lattice) [Epelbaum-Gelis(2013)] 2/20

How to show "thermalization"?

(A) Isotropization of pressure: Setup of perfect fluid

[Arnold-Lenaghan-Moore-Yaffe(2004), Epelbaum-Gelis(2013)]

Energy-momentum tensor $T_{ij}^{(YM)} \simeq p \delta_{ij}$

Ideal hydro model

(B) Justification of hydro model: Comparing with (viscus) fluid simulation [Kurkela-Zhu(2015)] [Keegan-Kurkela-Mazeliauskas-Teaney(2016)]

(C) Local thermal equilibrium

We should show entropy production. But there are few previous works.

Phenomenological estimate $\Delta S/\Delta Y \simeq 4500$ [Muller-Schafer(2011)] (per rapidity)

Theoretical calculation

1) Entropy production by decoherence,

[Muller-Schafer(2005), Fries-Muller-Schafer(2008)] [lida-Kunihiro-Ohnishi-Takahashi(2014)]

2) Entropy production rate expected by chaoticity

Review: [Biro-Matinyan-Muller(1994)]

Entropy production suggested by chaoticity

Classical YM field is a chaotic system.

[Matinyan-Savvidy-Ter-Arutunian-Savvidy(1981), Chirikov-Shepelyansky(1981), Nikolaevsky-Shchur(1982)] 3/20

Measure of chaoticity

 $\delta ec{X}$:Distance between two points in phase space

In the case of regular systems, $\lambda_i = 0$.

The sum of positive Lyapunov exponents

= Kolmogorov-Sinai(KS) entropy (KS rate)

$$\lambda_{\mathrm{KS}} = \sum_{\lambda_i > 0} \lambda_i \quad \text{[Pesin(1977)]}$$

It characterizes the growth rate of physical entropy.

[Latora-Baranger (1999), Baranger-Latora-Rapisarda (2002)]

Lyapunov exponents in classical YM field

Due to the scale invariance, $\lambda_i(\lambda_{\rm KS}) = c \times \varepsilon^{1/4}$ ε : energy density

Numerical calculation of Lyapunov exponents

Time evolution operator of $\delta \vec{X}$

 $U(t,t+\tau) = \mathcal{T}[\exp(\int_{t}^{t+\tau} \mathcal{H}(t')dt')]$ \mathcal{H} : Hessian

 τ is finite in numerical calculation.

τ is finite in numerical calculation.
(a) Local Lyapunov exponent(LLE): τ is infinitesimal It depends on the initial condition.
(b)Intermediate Lyapunov exponent(ILE): τ is finite T

It characterizes chaoticity of the system.

$$\lambda_{\rm KS}^{\rm LLE}/L^3 = 1.9 \times \varepsilon^{1/4},$$
$$\lambda_{\rm KS}^{\rm ILE}/L^3 = 1.0 \times \varepsilon^{1/4}.$$

Lyapunov exponents in SU(2)YM [H.T. et al.(2016)] 10^{4} LLE(sum) 10^{3} LLE(max) ILE(sum) 10^{2} ILE(max) 10^{1} 10^{0} 10^{-1} 10⁻² 10⁻³ 10⁻² 10^{-1} 10^{2} Energy density

Review: [Biro-Matinyan-Muller(1994)] [Kunihiro et al. (2010), lida et al. (2013)]

4/20

Contents

- Introduction
 Relativistic heavy ion collisions
 Thermalization and entropy production
- Numerical methods/Analysis in quantum mechanical system <u>H.T.</u>, H.lida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 083A01 (2015).
- Entropy production in Yang-Mills field theory
 <u>H.T.</u>, H.lida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).
- Entropy production from glasma-like initial condition in static box <u>H.T.</u>, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

Husimi-Wehrl entropy

It is defined in "phase space" in quantum mechanics.

• Wigner function : Weyl-Wigner transformation of density matrix [Wigner(1932)]

$$f_{\rm W}(q,p) = \int_{-\infty}^{\infty} d\eta \mathrm{e}^{-ip\eta/\hbar} \langle q + \frac{\eta}{2} |\hat{\rho}| q - \frac{\eta}{2} \rangle$$

It is a quasi-distribution function, because it is not semi-positive definite.

$$\langle \hat{A} \rangle = \text{Tr}[\hat{A}\hat{\rho}] = \int dq dp A_{W}(q,p) f_{W}(q,p)$$

Husimi-Wehrl entropy

It is defined in "phase space" in quantum mechanics.

<u>Wigner function</u>: Weyl-Wigner transformation of density matrix [Wigner(1932)]

$$f_{\rm W}(q,p) = \int_{-\infty}^{\infty} d\eta \mathrm{e}^{-ip\eta/\hbar} \langle q + \frac{\eta}{2} |\hat{\rho}| q - \frac{\eta}{2} \rangle$$

• <u>Husimi function</u> : Semi-positive definite function [Husimi(1940)]

$$f_{\rm H}(q,p;t) = \int \frac{dq'dp'}{\pi\hbar} \exp(-\frac{\Delta}{\hbar}(q-q')^2 - \frac{1}{\Delta\hbar}(p-p')^2) f_{\rm W}(q',p';t)$$

= $\langle \alpha | \hat{\rho} | \alpha \rangle = \sum_i \omega_i |\langle \alpha | \psi_i \rangle|^2 \ge 0. \quad |\alpha\rangle$: coherent state
 $\hat{\rho} = \sum_i \omega_i |\psi_i \rangle \langle \psi_i |$

Husimi-Wehrl entropy

It is defined in "phase space" in quantum mechanics.

<u>Wigner function</u>: Weyl-Wigner transformation of density matrix [Wigner(1932)]

$$f_{\rm W}(q,p) = \int_{-\infty}^{\infty} d\eta \mathrm{e}^{-ip\eta/\hbar} \langle q + \frac{\eta}{2} |\hat{\rho}| q - \frac{\eta}{2} \rangle$$

• <u>Husimi function</u> : Semi-positive definite function [Husimi(1940)]

$$f_{\rm H}(q,p;t) = \int \frac{dq'dp'}{\pi\hbar} \exp(-\frac{\Delta}{\hbar}(q-q')^2 - \frac{1}{\Delta\hbar}(p-p')^2) f_{\rm W}(q',p';t)$$

• <u>Husimi-Wehrl (HW) entropy</u> [Wehrl(1978)] $S_{\rm HW}(t) = -\int dq dp f_{\rm H}(q,p;t) \log f_{\rm H}(q,p;t)$

The growth rate at large times in inverse harmonic oscillator agrees with a Lyapunov exponent.

The HW entropy shows similar behavior with von Neumann entropy in the case of a harmonic oscillator at finite temperature.

Difficulties in numerical calculation

1. A lot of degrees of freedom

Field theory has a lot of degrees of freedom(DOF).

2. Time evolution

The time evolution of the Husimi function is cumbersome. [Tsai-Muller(2010)]

Difficulties in numerical calculation

1. A lot of degrees of freedom

Field theory has a lot of degrees of freedom(DOF).

Our numerical method is based on Monte-Carlo method, which is applicable in a system with large DOF.

2. Time evolution

The time evolution of the Husimi function is cumbersome. [Tsai-Muller(2010)]

We calculate the time evolution of the Wigner function in the semiclassical approximation.

$$\frac{\partial}{\partial t} f_{\rm W}(q,p) = \frac{\partial H_{\rm W}}{\partial q} \frac{\partial f_{\rm W}}{\partial p} - \frac{\partial H_{\rm W}}{\partial p} \frac{\partial f_{\rm W}}{\partial q} + \mathcal{O}(\hbar^2)$$

This means that the Wigner function is constant along classical trajectories.

The approximation is valid in the early stage of the heavy ion collisions.

Test particle methods

<u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 083A01 (2015). <u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).

Husimi-Wehrl entropy : Written by Wigner function explicitly

$$S_{HW}(t) = -\int \frac{d\vec{p}d\vec{q}}{(2\pi\hbar)^{n}} \exp(-\frac{1}{\Delta\hbar}\vec{p}^{2} - \frac{\Delta}{\hbar}\vec{q}^{2}) \int \frac{d\vec{p'}d\vec{q'}}{(\pi\hbar)^{n}} f_{W}(\vec{p'},\vec{q'};t) \\ \times \log \int \frac{d\vec{p''}d\vec{q''}}{(\pi\hbar)^{n}} \exp(-\frac{1}{\Delta\hbar}(\vec{p}+\vec{p'}-\vec{p''})^{2} - \frac{\Delta}{\hbar}(\vec{q}+\vec{q'}-\vec{q''})^{2}) f_{W}(\vec{p''},\vec{q''};t)$$

Test particle method

We assume that the Wigner function is written by the sum of delta functions.

$$f_W(\vec{p}, \vec{q}; t) = \frac{(2\pi\hbar)^n}{N} \sum_{i}^{N} \delta^{(n)}(\vec{p} - \vec{p}^i(t))\delta^{(n)}(\vec{q} - \vec{q}^i(t)))$$

According to the initial Wigner function, an ensemble of test particles is generated.

Each test particle obeys classical EOM.

$$\dot{q}_i = \frac{p_i}{m}, \dot{p}_i = -\frac{\partial V}{\partial q_i}$$

Test particle methods

H.T., H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 083A01 (2015). H.T., H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).

Husimi-Wehrl entropy : Written by Wigner function explicitly

$$S_{HW}(t) = -\int \frac{d\vec{p}d\vec{q}}{(2\pi\hbar)^n} \exp(-\frac{1}{\Delta\hbar}\vec{p}^2 - \frac{\Delta}{\hbar}\vec{q}^2) \int \frac{d\vec{p'}d\vec{q'}}{(\pi\hbar)^n} f_W(\vec{p'},\vec{q'};t)$$

$$\times \log \int \frac{d\vec{p''}d\vec{q''}}{(\pi\hbar)^n} \exp(-\frac{1}{\Delta\hbar}(\vec{p}+\vec{p'}-\vec{p''})^2 - \frac{\Delta}{\hbar}(\vec{q}+\vec{q'}-\vec{q''})^2) f_W(\vec{p''},\vec{q''};t)$$

$$\underbrace{\text{Test particle method}}_{\text{We assume that the Wigner function is written}} \begin{cases} \Gamma_i' \end{cases}^{particles} \left\{ \Gamma_i'' \right\} \end{cases}$$

Test particle method

We assume that the Wigner function is written by the sum of delta functions.

$$f_W(\vec{p}, \vec{q}; t) = \frac{(2\pi\hbar)^n}{N} \sum_{i}^{N} \delta^{(n)}(\vec{p} - \vec{p}^i(t))\delta^{(n)}(\vec{q} - \vec{q}^i(t)))$$

According to the initial Wigner function, an ensemble of test particles is generated.

Each test particle obeys classical EOM.

$$\dot{q}_i = \frac{p_i}{m}, \dot{p}_i = -\frac{\partial V}{\partial q_i}$$

When we prepares same sets: $\{\Gamma'_i\} = \{\Gamma''_i\}$ Test particle(TP) method

7/20

When we prepare different sets: $\{\Gamma'_i\} \neq \{\Gamma''_i\}$ Parallel test particle(pTP) method

8/20

Entropy production in quantum mechanics

<u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 083A01 (2015). <u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).

With increasing the number of test particles, the HW entropy converges from below (above) in the TP (pTP) method.

Difficulties in numerical calculation

1. A lot of degrees of freedom

Field theory has a lot of degrees of freedom.

Our numerical method is based on Monte-Carlo method, which is applicable in the system with large DOF.

2. Time evolution

The time evolution of the Husimi function is cumbersome. [Tsai-Muller(2010)]

We calculate the time evolution of the Wigner function in the semiclassical approximation.

The approximation is valid in the early stage of the heavy ion collisions.

3. Small overlap between f_H and $-\log f_H$

The importance sampling for the both $-\log f_H$ and f_H is difficult.

> We use an additional approximation called "product ansatz" in a system with large DOF.

Calculation with product ansatz

H.T., H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).

 $N_{MC} = 500$

Product ansatz

We assume Husimi function is written by10the sum of Husimi function in 1 DOF.8

$$f_{\rm H}(\vec{q},\vec{p};t) = \prod_{i}^{D} h_{i}(q_{i},p_{i};t)$$

$$S_{HW}^{(PA)} = -\sum_{i}^{D} \int \frac{dq_{i}dp_{i}}{2\pi\hbar} h(q_{i},p_{i};t) \log h(q_{i},p_{i};t)$$

$$\geq S_{HW} \quad \because \text{ Subadditivity of entropy}$$

$$0$$

$$M_{\rm TP}^{(PA)} = -\sum_{i}^{D} \int \frac{dq_{i}dp_{i}}{2\pi\hbar} h(q_{i},p_{i};t) \log h(q_{i},p_{i};t)$$

$$\geq S_{HW} \quad \because \text{ Subadditivity of entropy}$$

$$0$$

$$M_{\rm TP}^{(PA)} = -\sum_{i}^{D} \int \frac{dq_{i}dp_{i}}{2\pi\hbar} h(q_{i},p_{i};t) \log h(q_{i},p_{i};t)$$

$$\geq S_{HW} \quad \because \text{ Subadditivity of entropy}$$

$$0$$

$$M_{\rm TP}^{(PA)} = -\sum_{i}^{D} \int \frac{dq_{i}dp_{i}}{2\pi\hbar} h(q_{i},p_{i};t) \log h(q_{i},p_{i};t)$$

$$= \sum_{i}^{D} \int \frac{dq_{i}dp_{i}}{2\pi\hbar} h(q_{i},p_{i};t) \log h(q_{i},p_{i};t)$$

Product ansatz gives the upper bound of the entropy.

The HW entropy in product ansatz agrees with the results without the ansatz within 10-20% error.

It is efficient from the view point of the numerical cost reduction.

<u>Time evolution of HW entropy</u>

Contents

- Introduction
 Relativistic heavy ion collisions
 Thermalization and entropy production
- Numerical methods/Analysis in quantum mechanical system <u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 083A01 (2015).
- Entropy production in Yang-Mills field theory <u>H.T.</u>, H.lida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).
- Entropy production from glasma-like initial condition in static box <u>H.T.</u>, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

Schrodinger picture in Yang-Mills theory

<u>Hamiltonian</u> in temporal gauge, $A_0^a = 0$

$$H = \frac{1}{2} \sum_{x,a,i} E_i^a(x)^2 + \frac{1}{4} \sum_{x,a,i,j} F_{ij}^a(x)^2$$
$$F_{ij}^a = \partial_i A_j^a(x) - \partial_j A_i^a(x) + g \sum_{b,c} f^{abc} A_i^b(x) A_j^c(x)$$

Canonical variables $(A_i^a(x), E_i^a(x))$

$$[\hat{E}_i^a(t,\mathbf{x}), \hat{A}_j^b(t,\mathbf{y})] = \delta^{ab} \delta_{ij} \delta^{(3)}(\mathbf{x} - \mathbf{y}) i\hbar.$$

 Wave functional
 [Tomonaga(1946)]

 [Symanzik(1981),Luscher(1985)][Cooper-Mottola(1987),Pi-Samiullah(1987)]

$$i\frac{\partial}{\partial t}|\Psi\rangle = H[\hat{A},\hat{E}]|\Psi\rangle,$$

 T^{a} :generator of SU(N) $A = A^{a}T^{a}, E = E^{a}T^{a}$

10/20

Condition of physical state (Gauss law)

$$[\hat{D}_i, \hat{E}_i] |\Psi\rangle = 0$$
 $\hat{D}_i = \partial_i - ig\hat{A}_i$

11/20

Quantum distribution functional

• <u>Wigner functional</u>[Mrowczynski-Muller(1994)][BialynickiBirula(2000)] (A

 $(A \to g^{-1}A, E \to g^{-1}E)$

Density matrix $\hat{\rho} = |\Psi(t)\rangle \langle \Psi(t)|$ $f_{W}[A, E; t] = \int \frac{DA'}{g} e^{iE \cdot A'/\hbar g^{2}} \langle A + A'/2 | \hat{\rho}(t) | A - A'/2 \rangle$

Initial condition: Gaussian packet (physical state)

$$\Psi[A; t=0] = \langle A | \Psi(t=0) \rangle = \mathcal{N} \exp\left[-\frac{\omega}{2\hbar g^2} (A-\bar{A})^2 - \frac{i}{\hbar g^2} \bar{E} \cdot (A-\bar{A})\right],$$

$$f_W[A, E; t=0] = 2^{N_D} \exp(-\frac{\omega (A-\bar{A})^2}{\hbar g^2} - \frac{(E-\bar{E})^2}{\omega \hbar g^2}),$$

Husimi functional & HW entropy

$$f_{\rm H}[A, E; t] = \int \frac{DA'DE'}{(\pi\hbar g^2)^{N_{\rm D}}} \exp(-\frac{\Delta(A-A')^2}{\hbar g^2} - \frac{(E-E')^2}{\Delta\hbar g^2}) f_{\rm W}[A', E'; t],$$

$$S_{\rm HW}(t) = -\int D\Gamma f_{\rm H}[A, E; t] \log f_{\rm H}[A, E; t]. \qquad D\Gamma = \frac{DADE}{(2\pi\hbar g^2)^{N_{\rm D}}}$$

The HW entropy is invariant under the residual gauge freedom of the temporal gauge.

Entropy production with random initial condition

<u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016). <u>H.T.</u>, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2017).

12/20

Initial condition : $(\overline{A}, \overline{E} = 0)$ <u>Time evolution of HW entropy per DOF</u> 1.6 $f_{\rm W}[A, E; t=0]$ SU(2)YM 1.5 N_{TP}=100, N_{MC}=10 $= 2^{N_D} \exp(-\omega A^2/\hbar g^2 - E^2/\omega \hbar g^2)$ 1.4 SHW/ND 1.3 The results do not have the lattice 1.2 size dependence. 1.1 The numerical behavior is same as 0.9 0.5 1.5 2 2.5 3 0 1 that of quantum mechanics. ωt

By using the product ansatz, we can calculate the entropy production in Yang-Mills field theory.

Entropy production with random initial condition

<u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016). <u>H.T.</u>, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2017).

Comparing with Lyapunov exponents

The LLE (ILE) characterizes the growth rate of the HW entropy in the early (intermediate) time.

Comment on the gauge invariance

The HW entropy with the product ansatz is not gauge invariant. Nevertheless we might expect that the

gauge dependence is not serious.

Because

Growth rate of the HW entropy \simeq Sum of positive Lyapunov exponents

Gauge DOF dose not significantly contribute to chaoticity and instability. [lida et al. (2013)] [Tsutsui et al. (2015)]

12/20

Contents

- Introduction
 Relativistic heavy ion collisions
 Thermalization and entropy production
- Numerical methods/Analysis in quantum mechanical system <u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 083A01 (2015).
- Entropy production in Yang-Mills field theory <u>H.T.</u>, H.Iida, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PRD 94, 091502(R) (2016).
- Entropy production from glasma-like initial condition in static box <u>H.T.</u>, T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

13/20

Phenomenological initial condition

H.T., T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2017).

Initial condition in heavy ion collision [Kovner-McLerran-Weigert(1995)]

$$[D_{\nu}, F^{\nu\mu}] = J^{\mu}, J^{\mu} = \delta^{\mu+} \delta(x^{-}) \rho_1(x_{\perp}) + \delta^{\mu-} \delta(x^{+}) \rho_2(x_{\perp}),$$

In McLerran-Venugopalan(MV) model,

$$\langle \rho(\mathbf{x}_{\perp})\rho(\mathbf{y}_{\perp})\rangle = g^4 \mu_{\rm phys}^2 \delta^{(2)}(\mathbf{x}_{\perp} - \mathbf{y}_{\perp}),$$
 [McLerran-Venugopalan(1993,1994,1994)]

MV configuration $\tau = \sqrt{t^2 - z^2}, \ \eta = \frac{1}{2} \ln \frac{t+z}{t-z}.$ (expanding geometry, τ - η coordinate)

$$A_{\rm MV}^i, A_{\rm MV}^\eta, E_{\rm MV}^i, E_{\rm MV}^\eta$$

<u>Physical scale</u> *a*: lattice spacing, *L*: lattice size, *R*_A:radius of nucleus

 $\mu = Q_s = 2 {
m GeV}$ (Gluon saturation scale) [Krasnitz-Nara-Venugopalan(2003)] $aL \simeq \sqrt{\pi} R_A \simeq 7 \sqrt{\pi} \ [{
m fm}]$ $g = 1(lpha_s = 0.08)$

13/20

Phenomenological initial condition

H.T., T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2017).

Initial condition in heavy ion collision [Kovner-McLerran-Weigert(1995)]

$$[D_{\nu}, F^{\nu\mu}] = J^{\mu}, J^{\mu} = \delta^{\mu+} \delta(x^{-}) \rho_1(x_{\perp}) + \delta^{\mu-} \delta(x^{+}) \rho_2(x_{\perp}),$$

In McLerran-Venugopalan(MV) model,

$$\langle \rho(\mathbf{x}_{\perp})\rho(\mathbf{y}_{\perp})\rangle = g^4 \mu_{\rm phys}^2 \delta^{(2)}(\mathbf{x}_{\perp} - \mathbf{y}_{\perp}),$$
[McLerran-Venugopalan(1993,1994,1994)]

MV configuration

(expanding geometry, τ - η coordinate)(static geometry, xyz coordinate) $A_{MV}^{i}, A_{MV}^{i}, E_{MV}^{i}, E_{MV}^{i}$ We mimic the MV configuration in the static box. It is uniform in the z direction. [lida et al(2014)]

<u>Physical scale</u> *a*: lattice spacing, *L*: lattice size, *R*_A:radius of nucleus

 $\mu = Q_s = 2 \text{GeV} \quad \text{(Gluon saturation scale)} \quad \text{[Krasnitz-Nara-Venugopalan(2003)]}$ $aL \simeq \sqrt{\pi} R_A \simeq 7\sqrt{\pi} \quad \text{[fm]} \quad g = 1(\alpha_s = 0.08)$

HW entropy production

H.T., T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

Initial condition:

Gaussian around MV configuration

 $f_{\rm W}[A, E; t = 0]$ = 2^{N_D} exp(-\omega(A - A_{\rm MV})^2/\bar{h}g^2 - (E - E_{\rm MV})^2/\omega hg^2),

In the 64^3 lattice, the lattice spacing $a \simeq 2Q_s^{-1}$, which is about cutoff scale of semiclassical Yang-Mills field.

The entropy increases linearly in the early time.

The growth rates are same in the both 32^3 and 64^3 lattice.

Time evolution of HW entropy per DOF $t [\mathrm{fm}/c]$ 0.5 1.5 2 0 2.2 2 32^3 lattice pTP 1.8 TP S_{HW}/N_D 1.6 pTP 64³ lattice 1.4 ТР 1.2 N_{TP}=100, N_{MC}=10 0.8 SU(2)YM5 $\frac{10}{g^2 \mu t}$ 0 15 20

The HW entropy is saturated around $g^2 \mu t \sim 5(t \sim 0.5 \text{ fm}/c)$ on the 64³ lattice.

HW entropy production

H.T., T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

We cannot explain the entropy production only by intrinsic chaoticity. It suggests that another possible machanism exists to create the HW entropy such as the initial instability.

Local energy distribution

H.T., T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

15/20

The magnetic and electric temperatures are different each other. It might suggest the system reaches the quasi-equilibrium state.

Since the classical statistic distribution in field theory dose not have a welldefined continuum limit, it is reasonable to find the lattice size dependence of the saturation time and the saturation value of the HW entropy.

Pressure isotropization

H.T., T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

Vacuum subtraction

$$\langle X(t) \rangle = \langle X(t) \rangle_{\rm MV} - \langle X(t=0) \rangle_{\rm vac}$$

(Vacuum state is a Gaussian around the origin $\overline{A}, \overline{E} = 0$)

The isotropization of the pressure occurs. The isotropization time converges $g^2\mu t \simeq 10$ for larger lattices ($L \ge 32$).

Time evolution of the pressure $t [\mathrm{fm}/c]$ 0.5 1.5 2 0 L=160.8 PT 0.6 0.40.2 0 -0.2 -0.4 -0.6 $N_{TP} = 100$ -0.8 SU(2)YM -1 5 10 15 20g²μt

The isotropization time roughly agrees with the time of the HW entropy saturation. It also happens to agree with the isotropization time obtained in the expanding geometry. [Epelbaum-Gelis(2013)]

Discussion 1

H.T., T.Kunihiro, A.Ohnishi, and T.T.Takahashi, PTEP, 013D02 (2018).

The amount of the produced HW entropy

$$\frac{\Delta S}{N_D} \simeq 0.4$$

 $\Delta S/\Delta Y \simeq 4500$

<u>Comparing with the phenomenological estimate</u>

The longitudinal thickness of glasma at initial time is Q_s^{-1} . The present calculation in the static box corresponds to a very thick nuclei, $aL = 120Q_s^{-1}$.

The produced entropy per unit rapidity for color SU(3)

$$\frac{\Delta S_{\rm HW}}{120\Delta Y} = \frac{0.4 \times 3(N_c^2 - 1)L^3}{1200} \simeq 2000,$$

This value is the same order as the phenomenological entropy production.

[Muller-Schafer(2011)]

Calculation of the entropy production in an expanding geometry is desired.

Discussion 2

Comparing with thermal entropy

Thermodynamic relation : $E - TS_{\text{thermal}} + PV = 0$,

Energy: $E = \varepsilon V$ Temperature: $T = T_E$ Pressure per energy density: $\frac{P}{\varepsilon} \simeq 1/3$ \int $\frac{S_{\text{thermal}}}{N_D} \simeq 0.32$,

It is the almost same as the amount of the increase of the HW entropy.

 $\frac{\Delta S}{N_D} \simeq 0.4$

It seems that the slightly overestimate is due to the product ansatz.

When the HW entropy saturates, the system nearly reaches the thermal equilibrium.

Discussion 3

Discussion on the saturation time of the HW entropy

The Boltzmann time $\frac{2\pi\hbar}{k_BT_E} = 0.54 \text{ fm}/c$ is typical time scale of the system.

In the present calculation, it is accidentally the same as the saturation time of the HW entropy.

Relations with other contexts

• Isolated quantum systems

The relaxation in Boltzmann time is shown in the discussion of the "typicality". It is pointed out that itself is a very early time scale. [Tasaki(2016)]

• Information paradox of a black hole

The upper bound of the Lyapunov exponents, which characterizes the information loss, is predicted to be $2\pi k_B T$. [Maldacena-Shenker-Stanford(2016)]

Ex.) Sachdev-Ye-Kitaev model Refs. are included in [Polchinski-Rosenhaus(2016)].

Summary

- To understand the thermalization in heavy ion collisions, we have analyzed Husimi-Wehrl(HW) entropy, which defined by quantum distribution function, in Yang-Mills field theory.
- We show the entropy production from the phenomenological initial condition, which mimics glasma in static box.
- We show that the saturation time of the HW entropy is around 1fm/c and it agrees with the equilibrium times of the local energy distributions and isotropization time of the pressure.
- The production rate of the HW entropy is significantly larger than the growth rate expected by the chaoticity.
- The amount of the produced entropy is around half of the expected entropy, $\frac{\Delta S}{\Delta Y} \simeq 4500$.