Diffusion of conserved charges in relativistic heavy ion collisions

Presented by Jan Fotakis
With Moritz Greif, Gabriel Denicol and Carsten Greiner

arXiv:1711.08680
Why is Diffusion Important?

High Baryon Density → BARYON DIFFUSION

Low Baryon Density

Baryon Density Gradient

HIC
The Evolution in (3+1)-Viscous Hydro

0-5% Au-Au collision at 19.7 GeV

Hydrodynamical evolution after 7.5 fm

Hadronization on next slide
Why is Diffusion Important

- At Low-Energy Heavy Ion Collisions (e.g. RHIC BES): diffusion could have great impact on dynamical evolution

Vanishing baryon diffusion coefficient

Large baryon diffusion coefficient

Description of Diffusion

- Early dynamical evolution of HIC modeled in Relativistic Dissipative Fluid-Dynamics
- For large evolution times: Navier-Stokes Theory applicable
- One conserved charge (q):

Particle 4-current: \(N_q^\mu = n_0 u^\mu + \kappa_q \nabla^\mu \left(\mu_q / T \right) \)

\(j_q^\mu \): Net-charge diffusion current

Net-charge diffusion coefficient

Gradient in thermal potential
\sim \text{Gradient in net-charge density}
Description of Diffusion

• In multi-component system with multiple conserved charges: particles can have any combination of charges (e.g. proton: electric and baryon charge)

• Net-charge diffusion currents effect each other

\[
\begin{pmatrix}
 j^\mu_B \\
 j^\mu_Q \\
 j^\mu_S
\end{pmatrix} =
\begin{pmatrix}
 \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\
 \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\
 \kappa_{SB} & \kappa_{SQ} & \kappa_{SS}
\end{pmatrix} \cdot
\begin{pmatrix}
 \nabla^\mu \alpha_B \\
 \nabla^\mu \alpha_Q \\
 \nabla^\mu \alpha_S
\end{pmatrix}
\]

Are the off-diagonal coefficients important?

Off-diagonal coefficients: Gradients of given charge can effect diffusion currents of other charges
The Chapman-Enskog Expansion

- Assume dilute Boltzmann gas with N_s particle species and conserved baryon, strangeness and electric charge close to local equilibrium \rightarrow describe with kinetic theory

\[f^i_k = f^i_{0,k} + \epsilon f^i_{1,k} + O(\epsilon^2) \]

- Local equilibrium term
- Book-keeping parameter counts gradients

- Neglect non-linear contributions \rightarrow Navier-Stokes limit
The Chapman-Enskog Expansion

- Relativistic Boltzmann equation determines evolution of system

\[k_i^\mu \partial_\mu f^i_k = - \sum_{j=1}^{N_s} C_{ij} [f^i_k] \]

Chapman-Enskog expansion

\[\varepsilon k_i^\mu \partial_\mu (f^i_{0k} + \varepsilon f^i_{0k}) \approx \varepsilon k_i^\mu \partial_\mu f^i_{0k} = -\varepsilon \sum_{j=1}^{N_s} C_{ij} [f^i_{1k}] \]

With linearized collision term:

\[\sum_{j=1}^{N_s} C_{ij} [f^i_{1k}] = \sum_{j=1}^{N_s} \gamma_{ij} \int dK'_j dP_i dP_j W_{kk' \rightarrow pp'}^{ij} f^i_{0k} f^j_{0k'} \left(\frac{f^i_{1k}}{f^i_{0k}} + \frac{f^j_{1k'}}{f^j_{0k'}} - \frac{f^i_{1p}}{f^i_{0p}} - \frac{f^i_{1p'}}{f^i_{0p'}} \right) \]

Transition rate: contains (isotropic) cross sections = information of microscopic interactions
The Chapman-Enskog Expansion

Evaluating derivatives leads to source equation for deviation f_{1k}^i

$$k_i^\mu \partial_\mu f_{0k}^i = - \sum_{j=1}^{N_s} C_{ij} [f_{1k}^i]$$

Sum over all conserved charges \rightarrow coupling of diffusion currents

Gradient in thermal potential

L.H.S. of eq. \sim force term due to gradients in particle density \rightarrow Navier Stokes currents
The Chapman-Enskog Expansion

Diffusion currents in kinetic theory:

\[j^\mu_q = \sum_{i=1}^{N_s} q_i \int dK \ k_i^{\langle \mu \rangle} f_{1k}^i = \sum_{q'} \kappa_{qq'} \nabla^\mu \left(\frac{\mu q'}{T} \right) \]

We want to calculate THIS

Navier-Stokes limit

In order to do so, we need to solve:

\[\sum_{q \in \{B, S, Q\}} f_{0k}^i k_i^{\mu} \left(\frac{E_{ik} n_q}{\epsilon_0 + P_0} - q_i \right) \nabla^\mu \left(\frac{\mu q}{T} \right) = -\sum_{j=1}^{N_s} C_{ij} [f_{1k}^i] \]
The Chapman-Enskog Expansion

\[\sum_{q \in \{B,S,Q\}} f_{0k}^i k_i^\mu \left(\frac{E_{ik} n_q}{\epsilon_0 + P_0} - q_i \right) \nabla \mu \left(\frac{\mu q}{T} \right) = - \sum_{j=1}^{N_s} C_{ij} [f_{1k}^i] \]

Since collision term is linear in \(f_{1k}^i \) the solutions have the general form:

Scalar function in energy

\[f_{1k}^i = \sum_q a_q^i k_i^\mu \nabla \mu \left(\frac{\mu q}{T} \right) \]

Expand coefficients in power series in energy:

\[a_q^i = \sum_{m=0}^{\infty} a_{q,m}^i E_{ik}^m \]
The Chapman-Enskog Expansion

\[\sum_{q \in \{B, S, Q\}} f_{0k}^{i} k_{i}^{\mu} \left(\frac{E_{ik} n_{q}}{\epsilon_{0} + P_{0}} - q_{i} \right) \nabla_{\mu} \left(\frac{\mu_{q}}{T} \right) = - \sum_{j=1}^{N_{s}} C_{ij} \left[f_{1k}^{i} \right] \]

Truncate series at finite integer M and calculate n-th moment of source equation \rightarrow set of linear equations for expansion

Coefficients

Solutions of matrix equation \rightarrow gives us f_{1k}^{i}

\[\sum_{m=0}^{M} \sum_{j=1}^{N_{s}} \left(A_{nm}^{i} \delta^{ij} + C_{nm}^{ij} \right) a_{q,m}^{j} = b_{q,n}^{i} \]

moments of collision term \rightarrow complicated integrals with information about microscopic interactions

Source term for diffusion
The Chapman-Enskog Expansion

\[j_q^\mu = \sum_{i=1}^{N_s} q_i \int dK \ k_i^{(\mu)} f_{1k}^i = \sum_{q'} \kappa_{qq'} \nabla^\mu \left(\frac{\mu q'}{T} \right) \]

By comparing both sides we find:

\[\kappa_{qq'} = \frac{1}{3} \sum_{i=1}^{N_s} q_i \sum_{m=0}^{M} a_{q',m}^i \int dK_i E_{ik}^m (m^2 - E_{ik}^2) f_{0k}^i \]

In our most detailed calculation: \(M = 1 \) and \(N_s = 19 \)
The Relaxation Time Approximation

Calculated for \(p, n, \bar{p}, \bar{n}, K, \pi \) gas (11 hadron species)

\[
\sum_{j=1}^{N_s} C_{ij} [f^i_{1k}] = -\frac{E_{ik}}{\tau} f^i_{1k}
\]

Relaxation time:

\[\tau^{-1} = \frac{2}{3} n_{B,\text{tot}} \sigma_0 \]

Total baryon density

Constant cross section
Results

Hadronic resonance gas...

- Use 19 different, massive species: $\pi^{0,\pm}, K^{\pm,0,\bar{0}}, p, \bar{p}, n, \bar{n}, \Sigma^{0,\pm}, \bar{\Sigma}^{0,\pm}, \Lambda, \bar{\Lambda}$
- Isotropic cross sections

![Graph showing cross sections as a function of \sqrt{s}]

- Use PDG data
- Other cross sections: GiBUU, UrQMD or constant
Results

Simplified (conformal) QGP model...

- Use 7 massless species $u, \bar{u}, d, \bar{d}, s, \bar{s}, g$

- Simplified approach: Fix shear viscosity to express isotropic cross section in terms of temperature

$$\frac{\eta}{s} = \frac{1}{4\pi} \quad \Rightarrow \quad \sigma_{tot} = \frac{0.716}{T^2}$$

Calculate diffusion coefficients for the hadron gas for $T < 160$ MeV and for higher temperatures in the simplified QGP model → phase transition area is **NOT** covered by our calculations
The diffusion matrix

\[
\begin{pmatrix}
\tilde{j}_B^\mu \\
\tilde{j}_Q^\mu \\
\tilde{j}_S^\mu
\end{pmatrix}
=
\begin{pmatrix}
\kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\
\kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\
\kappa_{SB} & \kappa_{SQ} & \kappa_{SS}
\end{pmatrix}
\cdot
\begin{pmatrix}
\nabla^\mu \alpha_B \\
\nabla^\mu \alpha_Q \\
\nabla^\mu \alpha_S
\end{pmatrix}
\]

Diffusion matrix is symmetric! \(\Rightarrow\) Onsager Theorem holds
Baryon current

\[
\begin{pmatrix}
 \dot{j}_B^\mu \\
 \dot{j}_Q^\mu \\
 \dot{j}_S^\mu \\
\end{pmatrix}
= \begin{pmatrix}
 \kappa_{BB} & \kappa_{BQ} & \kappa_{BS} \\
 \kappa_{QB} & \kappa_{QQ} & \kappa_{QS} \\
 \kappa_{SB} & \kappa_{SQ} & \kappa_{SS} \\
\end{pmatrix} \cdot
\begin{pmatrix}
 \nabla^\mu \alpha_B \\
 \nabla^\mu \alpha_Q \\
 \nabla^\mu \alpha_S \\
\end{pmatrix}
\]

- Largest contribution
- Nearly constant at \(\mu_B = 600 \text{ MeV} \)
- So far only used coefficient

- Much smaller than others
- QGP-part vanishes at \(\mu_B = 0 \)
- Strong \(\mu_B \) dependence

- Negative contribution!
- Similar strength as \(\kappa_{BB} \)
- Could drastically reduce baryon current

\(\mu_B = 600 \text{ MeV} \)
\(\mu_B = 0 \)
Electric current

\[j_\mu^Q = \kappa_{QB} \nabla_\mu \alpha_B + \kappa_{QQ} \nabla_\mu \alpha_Q + \kappa_{QS} \nabla_\mu \alpha_S \]

- Smaller than others
- QGP-part vanishes at \(\mu_B = 0 \)
- Strong \(\mu_B \) dependence
- \(\mu_B = 0 \) same as electric conductivity
- Only decreasing behavior in \(T \)
- QGP: strongest contribution
Strangeness current

\[j_S^\mu = \kappa_{SB} \nabla^\mu \alpha_B + \kappa_{SQ} \nabla^\mu \alpha_Q + \kappa_{SS} \nabla^\mu \alpha_S \]

- **Negative contribution**
- Could also drastically reduce strange currents

- 1 Magnitude smaller than \(\kappa_{SS} \)
- Charged Kaons contribute to electric currents (see \(\kappa_{QQ} \))

- By far most important contribution
Conclusion

• First calculation of complete diffusion matrix of baryon, electric and strangeness charges in Navier-Stokes limit with first order Chapman-Enskog expansion
• Classical hadron gas with realistic isotropic cross sections and simple conformal QGP model were used

• HRG: dependence of coefficients on temperature and baryo-chemical potential
• Strong coupling of all gradients to (almost) all currents → large off-diagonal coefficients
• Suggestion: Off-diagonal terms should not be neglected!
• Can be used in (hydro) models
Outlook

• Calculation scheme can be used to calculate other Navier-Stokes coefficients

• Investigate effects in viscous hydro simulations → Observables?

• Compare to other models: SMASH? BAMPS? lQCD?