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Preview

● Introduction & motivation

● Hydro from kinetic theory: Method of moments

● Divergence of the Gradient expansion in KT

● Generalized Gradient expansion

● Israel Stewart theory and gradient expansion
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Initial state
 relativistic fluid

Dilue hadron gas
fm/c

Theoretical description of HIC 
Empirical: Fluid-dynamical modeling of heavy ion 
collisions works well at RHIC and LHC energies

Main assumption: fluid dynamics can be applied
at the very early stages – Why?

MADAI collaboration

0 ~1 ~10 ~20



  

Validity of fluid dynamics

proximity to (local) equilibrium

Do these things occur early in HIC?

“small” gradients

macroscopic: microscopic:Separation of scales → 

Knudsen number:



  

Knudsen number

is not small at
early times

Can this system really be close to equilibrium? 

Are the gradients small? no.
Niemi&GSD,  arXiv:1404.7327 



  

Simple example: Bjorken scalling
Alqahtani et al, arXiv:1712.03282v1 

Approach to equilibrium is inconsistent with current 
“fluid-dynamical” theories



  

Simple example: Bjorken scalling

second-order fluid dynamics displays 
surprising accuracy

Alqahtani et al, arXiv:1712.03282v1 



  

2nd order hydro works too well ...
Solution of the (conformal) Boltzmann equation under 
the relaxation time approximation GSD et al, PRL 113 (2014) no.20, 202301 

GSD et al, PRD 90 (2014) no.12, 125026 



  

Validity of 2nd order 
fluid dynamics

Proximity to equilibrium,
small gradients

???

I will argue that our intuition about the validity of 
hydro comes mostly from the gradient expansion



  

Boltzmann eq.

2nd-order hydro
...

...

???

We can study this problem
 in Kinetic theory

Chapman-Enskog series

Method of moments
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Here, I will be
lazy.



  

Bjorken scalling + RTA

Knudsen number:

We can study this problem
 in Kinetic theory



  

Hydrodynamics
from kinetic theory:
method of moments
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Basics of fluid dynamics

Effective theory describing the dynamics 
of a system over long-times and long-distances

macroscopic: microscopic:Separation of scales → 

Knudsen number:

Conservation laws 
+

 simple constitutive relations



  15

Basics of fluid dynamics

Closing the equations ...

Bulk viscous
pressure

Shear stress
tensor

Energy-momentum 
conservation

tensor decomposition



  16

Basics of fluid dynamics

Energy-momentum 
conservation

tensor decomposition

...

...



  

f(x,p)

truncation leads to hydro – no small parameter

Expansion of f(x,p) using
a complete basis

H. Grad

Method of moments
H. Grad, Comm. Pure Appl. Math. 2, 331 (1949)
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Expansion of distribution function

Distribution function expressed in terms of its moments,

Orthogonality relations imply that,

GSD et al, PRD 85, 114047 (2012)
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Equations of motion for moments

Obtain the exact equations of motion for the moments,

They have the following form,

Collision 
terms

Contains the information 
of the microscopic theory

...



  

Moments of the distribution function: 

Bjorken scalling + RTA

Fluid-dynamical variables:



  

Lower rank moments always couple
to higher rank ones 

how can these equations be truncated?

Bjorken scalling + RTA

Moment equations: 

does the moment expansion converge?



  

Convergence of the
method of moments
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Bjorken scalling + RTA
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Divergence of the 
Gradient expansion



  

Chapman-Enskog theory
(1910-1920)

Chapman Enskog

Perturbative expansion

Result is an expansion in powers of gradients 
of m,T, and um (gradient expansion)

Knudsen number



  

Chapman-Enskog theory
(1910-1920)

Chapman Enskog

    Zeroth order truncation          Ideal hydrodynamics

        First order truncation          Navier-Stokes theory

Higher order truncations are unstable (Bobylev)

H. Grad: CE is an asymptotic series, Physics of Fluids 6, 147 (1963).

First example of divergence: Couette flow problem (RTA), 
Santos et al, PRL 56, 1571 (1986).

        Heller et al: Holography+Bjorken scaling, PRL 110, 
211602 (2013).



  

Chapman Enskog

1st order truncation: Navier-Stokes theory

2nd order truncation: Burnett theory

Chapman-Enskog theory
(1910-1920)



  

Chapman Enskog

Second-order truncation: Burnett theory

Hydrodynamical constitutive equations are usually 
derived by truncating this series.

Convergence is assumed!

Effective theory: can be systematically corrected

Chapman-Enskog theory
(1910-1920)



  

Bjorken scalling + RTA

Moment equations: 

Chapman-Enskog series: 

Taylor series in Knudsen number



  

Bjorken scalling + RTA

Series expansion: 

Zeroth and first order solution

Higher order solutions



  

Bjorken scalling + RTA
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Fluid-dynamical regime 
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transient part 

universal solution

Gradient expansion was 
expected to describe this

Late-time solution of the Boltzmann equation appears 
to be universal – constitutive relations?

What now?

M. Heller et al,
arxiv:1103.3452
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Generalized Chapman-Enskog series

Series expansion: 

Physics of Fluids 6, 147 (1963).

H. Grad

Non-perturbative dependence in Kn



  

Another Chapman-Enskog series

Series expansion: 

Zeroth order:

Higher orders:

Non-perturbative dependence in Kn



  

Solutions of the expansion: eq. initial state

New first order solution

transient partasymptotic part

New zeroth order solution

purely transient
It is not zero, but tends to zero



  

New second order solution

transient partasymptotic part

Transient terms appear naturally. Israel-Stewart theory arises 
as a natural consequence of this expansion scheme.

~ exp(-Kn-1)

Expansion in powers of Knudsen number impossible

Solutions of the expansion: eq. initial state
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Israel-Stewart theory 
and 

the gradient expansion



  

Attractor: Israel-Stewart theory

So we can study these expansions here as well

transient part 

asymptotic part 

Constitutive relation?

Gradient expansion?



  

Analytical Solution for constant 
relaxation times

First analytical expression for a hydrodynamic attractor



  

Analytical Solution for constant 
relaxation times

Trans-series can be easily generated (a=1)

non-perturbative

Ressumed
Gradient expansion (finite radius of convergence)



  

Analytical Solution for constant 
relaxation times

Trans-series can be easily generated (a=1)

non-perturbative

Ressumed
Gradient expansion (finite radius of convergence)

For physical case, gradient expansion does not converge 

a=16/45



  

Slow-Roll expansion

Solution of the form: 



  

Slow-Roll expansion



  

Slow-Roll expansion



  

Optimal truncation:



  

Generalized gradient expansion



  

Generalized gradient expansion



  

Conclusions

➔ CE series diverges, just like in holography. 

We studied the convergence of CE and 
method of moments

Assumptions: kinetic theory + RTA + Bjorken scaling

➔ Method of moments converges (fast) 
to exact solution 

➔ We proposed a new expansion that considers
non-perturbative corrections in Knudsen number



  

Conclusions

Assumptions: kinetic theory + RTA + Bjorken scaling

We studied the convergence of CE and
method of moments 

● Lack of convergence is not necessarily a problem – 
divergent series can capture some features of solution

● This is why NS and Burnett are not that bad

● How can the theory be systematically improved?
What is the domain of applicability? 
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