

Heavy quark and quarkonium evolutions in

heavy ion collisions

Baoyi Chen

Tianjin University & Goethe University

Main Collaborators:

Pengfei Zhuang, Ralf Rapp, Yunpeng Liu, Xiaojian Du, Wangmei Zha, Carsten Greiner

Topics

1) Heavy quarkonium production mechanisms in the Quark Gluon Plasma

primordial production, regeneration, photoproduction, transitions,...

- 2) Charm diffusions in the QGP Langevin + Wigner function for single charm evolutions and recombination large v_2 "puzzle" of J/ψ , v_2 between J/ψ and $\psi(2S)$
- 3) Quantum effects inside ccbar dipole by color screening QGP screened heavy quark potential → transitions between different bound states, wave function evolutions (depend on T)
- 4) Charmonium photoproduction from EB fields, even at $b < 2R_A$ important at extremely low $p_T < 0.1$ GeV/c J/ψ , $\psi(2S)$

5) pA collisions (still QGP existence ?)

Phys.Lett. B 765, 323(2017)

 $\psi(2S)$

6) Ds/D0 enhancement: strange enhancement and charm conservation

background

Baoyi Chen

Frankfurt transport meeting

background

Baoyi Chen

Frankfurt transport meeting

Heavy quarkonium as a probe of QGP

J/ψ as a probe of QGP:

 J/ψ suffer color screening end inelastic collisions of partons in QGP

1. Charmonium production mechanisms in HIC

Heavy quarkonium as a probe of QGP

Transport model

$$\frac{\partial f_{\psi}}{\partial t} + \frac{\vec{p}_{\psi}}{E} \cdot \vec{\nabla}_{x} f_{\psi} = -\alpha_{\psi} f_{\psi} + \beta_{\psi}$$

$$J/\psi + g \rightarrow c + \bar{c}$$

$$c + \bar{c} \rightarrow J/\psi + g$$

$$\alpha_{\psi}(\vec{p}_{t}, \vec{x}_{t}, \tau, \vec{b}) = \frac{1}{2E_{t}} \int \frac{d^{3}\vec{k}}{(2\pi)^{3}2E_{g}} \sigma_{g\psi}(\vec{p}, \vec{k}, T) 4F_{g\psi}(\vec{p}, \vec{k})f_{g}(\vec{k}, T)$$

$$\beta_{\psi}(\vec{p}_{t}, \vec{x}_{t}, \tau, \vec{b}) = \frac{1}{2^{4}(2\pi)^{9}E_{t}} \int \frac{d^{3}\vec{k}}{E_{g}} \frac{d^{3}\vec{q}_{c}}{E_{c}} \frac{d^{3}\vec{q}_{c}}{E_{c}} \frac{d^{3}\vec{q}_{c}}{E_{c}} \frac{d^{3}\vec{q}_{c}}{E_{c}} \eta_{c}^{2} (\vec{q}_{c}, \vec{q}_{c}) f_{c}(\vec{q}_{c}, T) f_{c}(\vec{q}_{c}, T) f_{c}(\vec{q}_{c}, T)$$

$$(2\pi)^{4} \delta^{(4)}(p + k - q_{c} - q_{c})$$

$$N(q\bar{q}) \text{ per central AA (b=0)}$$

$$N(q\bar{q}) \text{ per central AA (b=0)}$$

$$(2\pi)^{4} \delta^{(4)}(p + k - q_{c} - q_{c})$$

$$N(c\bar{c} \rightarrow J/\psi \sim (N^{c\bar{c}})^{2})$$

$$(1 + 1) f_{c}(1 + 1) f_{c}($$

Initially produced ψ : from parton hard scatterings, carry large p_T **Regenerated**: charm interact with QGP, loss energy, carry QGP collective flow

Baoyi Chen

Frankfurt transport meeting

Charmonium in QGP

2. Charm diffusion in the expanding QGP

Charm diffusion

D mesons obtain the similar collective flows like light hadrons
→ indicate the momentum thermalization of charm quarks at the QGP hadronization.

How does charm diffusion **Suppress** the Ψ regeneration process?

Charm diffusion

First, Let's assume an instant charm thermalization

1) Local momentum distribution

$$f_c(p) = \frac{N^{norm}}{e^{p^{\mu}u_{\mu}/T} + 1}$$

in local fliud cell u_{μ} : velocity of QGP cell

2) Charm distribution in coordinate space

 $\partial_{\mu}(\rho_{c}(r)u^{\mu}) = 0 \qquad \frac{\text{Conservation of charm quark number;}}{\text{Strong diffusion (controlled by } u^{\mu})}$

Large mass of charm quark: Not chemical equilibrium

Full distribution in phase space $f_c(r, p) = \rho_c(r)f_c(p)$

• Wigner function describes the recombination probability of one c and \overline{c} :

$$W(\vec{r},\vec{p}) = \int d^3y e^{-i\vec{p}\cdot\vec{y}}\psi(\vec{r}+\frac{\vec{y}}{2})\psi^*(\vec{r}-\frac{\vec{y}}{2})$$

 $\psi(\vec{r})$: wavefunction of charmonium eigenstate. (from time-independent Schrodinger equation)

charm number enhanced by more than 50%

→ Accelerating expansion makes $V_{QGP}(T = T_c, 5.02)$ larger

 $\rightarrow N_{J/\psi}(5.02)$ does not become ~ 1.5² times, (see exp. Data later)

Experimental data gives:

$$R_{AA} = \frac{N_{AA}^{c+\bar{c}\to J/\psi+g}}{N_{pp}^{J/\psi}N_{coll}}$$

The ratio of charm quark number at 5.02 and 2.76 TeV is around 1.7 with large uncertainty,

- (1) with the same QGP, we expect R_{AA} ratio \approx charm ratio \approx 1.7
- (2) with different QGP, R_{AA} ratio \approx 1.1
- → Strong diffusion of charm suppress J/ψ regeneration.

$J/\psi R_{AA}$ at 2.76 and 5.02 TeV

$J/\psi R_{AA}$ at 2.76 and 5.02 TeV

• Can we define an observable to measure the charm diffusion effect ?

independent of charm cross section, shadowing effect, etc

Baoyi Chen

Frankfurt transport meeting

$N_{\rm J/\psi}/N_D^2$

 $\frac{N_{J/\psi}}{(N_{\rm D})^2} \sim \int dV f_c^{norm} f_{\bar{c}}^{norm} W_{combine}$

This ratio in AA collisions:
1 eliminate the shadowing effect.
2 Does NOT depend on dσ^{cc̄}_{pp}/dη
3 Contains hot medium effects on charm (collective flows of QGP change f^{norm})

$N_{\rm J/\psi}/N_D^2$

 $\frac{N_{J/\psi}}{(N_{\rm D})^2} \sim \int dV f_c^{norm} f_{\bar{c}}^{norm} W_{combine}$

This ratio in AA collisions:1eliminate the shadowing effect.2Does NOT depend on $\frac{d\sigma_{pp}^{c\bar{c}}}{d\eta}$ 3Contains hot medium effects on charm

(collective flows of QGP change f_c^{norm})

Centrality dependence

from semi-central to central collisions: larger T_0^{QGP} , stronger QGP expansion, recombination probability of ONE c and \overline{c} decreases.

 $\sqrt{s_{NN}}$ Dependence: higher $\sqrt{s_{NN}}$, QGP expansion also stronger.

Frankfurt transport meeting

Frankfurt transport meeting

Nov. 2 2017

 $\frac{\psi(2S)}{\psi(2S)} \text{ V.S. } J/\psi$ $\frac{d\vec{p}}{dt} = -\eta_D(p)\vec{p} + \vec{\xi}$ $\eta_D = \frac{T}{DE_c} D: \text{ spatial diffusion coeff.}$

 $\psi(2S)$ will be regenerated in the later stage of QGP expansion,

 \rightarrow ψ (2S) Carry relatively larger collective flows

independent of c coupling strength

$\psi(2S)$ production

3. Internal evolutions of $c\overline{c}$ dipole wave function

Frankfurt transport meeting

21

Time-dependent Schrodinger equation

by dilepton decay.

 $c\overline{c}$ dipole potential in QGP is COLOR SCREENED. transitions

Time-dependent Schrodinger equation

$\tau = < 0.1 fm$	Tab	$< \tau_0 (\sim 0.6 \ fm)$		
Pre-ec	quilibriu	m	QGP evolution (hydro)	me
$\tau = 0$ (Pb-Pb)	Cornell	↓ pp data τ_0 $c\bar{c}$ dipole	$V_{c\bar{c}}(r,T) = Lattice (F,U)$ Time-dependent Schrodinger equation	1

 $r_{c-\bar{c}} \sim 1/(2m_c) \sim 0.07 \ fm$

Radii of J/ψ and $\psi(2S)$: **0.5 fm and 0.9 fm**

It takes some time to evolve into a charmonium, **Shorter for ground state, longer for 2S**

Color screening change ccbar dipole wave function evolutions, Change fractions of 1S and 2S in the dipole.

Time-dependent Schrodinger equation

$\tau = < 0.1 fm \qquad \tau_{1/2} < \tau_{1}$	$(\sim 0.6 \ fm)$	_	-
Pre-equilibrium	J(,	QGP evolution (hydro)	time
$\tau = 0 \qquad \tau_{c\bar{c}}(r) = Cornell \qquad \tau_{0}$ $\tau = 0 \qquad \tau_{0}$ (Pb-Pb) $c\bar{c} = 0$	pp data) dipole	$V_{c\bar{c}}(r,T) = Lattice(F,U)$ Time-dependent Schro	dinger equation
$i\hbar \frac{\partial}{\partial t}\psi(r,t) = [-$	$-rac{\hbar^2}{2m_\mu}igvee^2$	$[+V(r,t)]\psi(r,t)$	<u>R. Katz, P. B. Gossiaux</u> , 16' <u>B.Z. Kopeliovich</u> , et al, PRC, 15' <u>Taesoo Song, et al, PRC, 15'</u>
r: relative distance betw	veen c and \overline{c}	Wave	function of eigenstates:
$m_{\mu} = m_c/2$: scaling ma	ass	Ψ_{klm}	$(\vec{r}) = R_{kl}(r)Y_{lm}(\theta,\varphi)$
• Numerical form: $\begin{pmatrix} \mathbf{T}_{0,0}^{n+1} & \mathbf{T}_{1,0}^{n+1} & \mathbf{T}_{1,0}$	$\begin{array}{cccc} \mathbf{T}_{0,1}^{n+1} & 0 \\ \mathbf{T}_{1,1}^{n+1} & \mathbf{T}_{1,2}^{n+1} \\ \mathbf{T}_{2,1}^{n+1} & \mathbf{T}_{2,2}^{n+1} \\ \cdots & \cdots \\ \cdots & \cdots \end{array}$	$ \begin{array}{ccc} 0 & \cdots \\ 0 & \cdots \\ \mathbf{T}_{2,3}^{n+1} & \cdots \\ \cdots & \cdots \\ \cdots & \cdots \\ \end{array} \left(\begin{array}{c} \psi_0^{n+1} \\ \psi_1^{n+1} \\ \psi_2^{n+1} \\ \psi_3^{n+1} \\ \cdots \end{array}\right) $	$= \begin{pmatrix} \Gamma_0^n \\ \Gamma_1^n \\ \Gamma_2^n \\ \Gamma_3^n \\ \cdots \end{pmatrix}$
Matrix elements: $\mathbf{T}_{j,j}^{n+1}$ $\mathbf{T}_{j,j+1}^{n+1}$	$\mathbf{T}^{-1} = 2 + 2a$ $\mathbf{L}_{-1} = \mathbf{T}_{j+1,j}^{n+1}$	$a + bV_j^{n+1}$ $a = i\Delta$ $b_j = -a$ $b = i\Delta$	$t/(2m_{\mu}(\Delta r)^2)$

Heavy quark potential at finite temperature

• mS eigenstate components in one dipole:

$$c_{mS}(t) = \langle R_{mS}(r) | \frac{\psi(r,t)}{r} \rangle = \int R_{mS}(r)\psi(r,t) \cdot rdr$$

Heavy quark potential :

0.5 potential (GeV) V= U $(R,T)/\sigma^{1/2}$ 3 V= F 1.1T_c 0.3 2.5 0.2 $1.5T_{c}$ 0.1 2.0T 0.0 1.5 1.36 -0.11.65 -0.21.98 0.5 $\left< \mathbf{r} \right>_{\mathbf{J}/\psi}$ $\left< \, {f r} \right>_{\Psi (2{f S})}$ 2.0 0 J/w-0.5 $|\mathbf{rR}_{n|}(\mathbf{r})|^{2}$ 1.5 $B \sigma^{1/2}$ Ψ**(2S)** -1 3.5 4.5 0.5 1.5 2 2.5 3 5 1.0 S.Digal, et al, EPJ, 05' 0.5 0.2 0.4 0.6 1.2 1.4 0.8 1.6 1.8 0 1

- At ~2Tc, Strong color screenin for 1S and 2S
- At ~1Tc, potential recover at <r(1S)>

radius (fm)

2

BC, Du, Rapp, arXiv:1612.02089

Initialization of $c\bar{c}$ wavefunction

With weak potential, the $c\bar{c}$ dipole becomes a loosely bound dipole, its wavefunction expands outside.

the overlap between $oldsymbol{\psi}_{car{c}}({
m r},{
m t})$ and $\Psi(2S)$ increase at first, then decrease

Frankfurt transport meeting

Heavy quark dipole in Static Medium

With real part of heavy quark potential (color screening)

Additional parton inelastic scatterings may change the game.

Baoyi Chen

Frankfurt transport meeting

4. Photoproduction from electromagnetic fields at $b < 2R_A$

28

Equivalent Photon Approximation

Prog.Part.Nucl.Phys. 39,503-564, 1997

charges moves at nearly speed of light → produce E-B fields

Strong Lorentz-contracted Electromagnetic field (transverse) approximated as longitudinally moving photons

Equivalent-Photon-Approximation Fermi, 1924'

Equivalent Photon Approximation

charges moves at nearly speed of light → produce E-B fields

Strong Lorentz-contracted Electromagnetic field (transverse) approximated as longitudinally moving photons

p_T and b dependence

Compare the p_T and b dependence of coherent photoproduction and hadroproduction

Charmonium hadro-production (**initial distributions**) in Pb-Pb collisions, can be extracted from the **scaling with pp collisions**.

p_T and b dependence

Fractions of hadronic cross sections in different pT region

\mathbf{p}_{T} range (GeV/c)	$\sigma_{p_{T1}-p_{T2}}/\sigma_{total}$	Rapidity differential cross		
0 - 0.01	$1.9 imes 10^{-5}$	section at 2.76 TeV 2.5 <y<4< th=""></y<4<>		
0-0.05	4.8×10^{-4}	$\frac{u\sigma_{pp}}{dy} = 2.3 \ \mu b$		
0-0.1	0.19 %	$\frac{d^2\sigma_{pp}^{\mathrm{J/\psi}}}{d\sigma_{pp}^{\mathrm{J/\psi}}} = \frac{\mathrm{d}\sigma_{pp}^{\mathrm{J/\psi}}}{d\sigma_{pp}^{\mathrm{J/\psi}}}$		
0-0.5	4.5%	$2\pi p_T dp_T dy = 2\pi p_T dp_T dy$		
0 - 1	15 %	ⓐ ⁸		
		Image: Second state Image: Second state<		
Coherent photoproduc Photons interact with e	entire Collisions			
$p_T \sim 1/R_A \sim 0.0$	3 GeV/c	$\begin{array}{c} 11) & 2 \\ 1 \\ 0 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$		
Exp. $< p_T >= 0.055$ Ge	V/c PRL 116,, 222301 (20	16) ^y		
Baoyi Chen	Frankfurt transport m	neeting Nov. 2 2017		

pT and b dependence

Hadonic **initial** yield $N_{AA}^{J/\psi} = \sigma_{pp}^{J/\psi} \int d^2 x_T T_A(x_T) T_B(x_T - b)$

		= 30	$0 fm^{-2}(b = 10.2)$
b=10.2 fm	Hadroproduction $2.5 < y < 4$	photoproduction	
$0 < p_T < 0.04$ GeV/c	0.47×10^{-5}	5.54×10^{-5}	
$0 < p_T < 0.1$	2.4×10^{-5}	$15.7 imes 10^{-5}$	
$0 < p_T < 0.5$	$50 imes 10^{-5}$	$\mathbf{^{\sim}16 \times 10^{-5}}$	
$0 < p_T < 1$	$179\times\mathbf{10^{-5}}$		
$0 < p_T < 3$	$772 imes 10^{-5}$		

$$c + \overline{c} \rightarrow J/\psi + g$$
regeneration
$$\leq 0.3 \qquad 3 \sim 5$$

$$\gamma A \rightarrow J/\psi A \qquad gg(q\overline{q}) \rightarrow J/\psi g$$
Photoproduction
$$p_T \text{ (GeV/c)}$$

pT and b dependence

Photoproduction contribution

• Significant enhancement of J/ψ yield in low $p_T < 0.1$ GeV/c, and peripheral and semi-central collisions

• At Np=100,
$$T_0^{QGP} = 2T_c$$

Similar with maximum T at RHIC Au-Au

QGP effect important ! Photoproduction important ! TABLE I: Information of QGP based on (2+1)D ideal hydrodynamics

Hydro in LHC $\sqrt{s_{NN}} = 2.76$ TeV Pb-Pb, $2.5 < y < 4$				
b(fm)	N_p	$T_0^{ m QGP}/T_c$	$\tau_{\rm f}^{\rm QGP} ~({\rm fm/c})$	
0	406	2.6	7.3	
9	124	2.1	4.2	
9.6	103	2.06	3.9	
10.2	83	1.95	3.5	
10.8	64	1.84	3.1	

I/ψ from hadro-production and EB field

 $\mathbf{b} < 2R_{A}$

Heavy quarks (and quarkonium) + light partons (QGP)

Produced in the *overlap area*.

 $gg(q\overline{q}) \rightarrow I/\psi + g$ $\rightarrow c + \overline{c}$

Transport model (heavy quarkonium) $\frac{\partial f_{\psi}}{\partial t} + \frac{\vec{p}_{\psi}}{E} \cdot \vec{\nabla}_{x} f_{\psi} = -\alpha_{\psi} f_{\psi} + \beta_{\psi}$ Hydrodynamics (light partons) $\partial_{\mu}T^{\mu\nu}=0$

 $\mathbf{b} < 2R_A \text{ or } \mathbf{b} \geq 2R_A$

Produced in the entire nucleus surface

$$\gamma A \rightarrow J/\psi A$$

$$N_{\psi}^{\gamma A} \propto \int dw \frac{dN_{\gamma}}{dw} \sigma_{\gamma A \to J/\psi A} \Gamma_{QGP}^{decay}$$

 $R_{AA} = \frac{N^{\gamma A} + N^{hadro}}{N^{hadro}}$ 36

J/ψ from electromagnetic field

Mainly three ingredients:

$$N_{\psi}^{\gamma A} \propto \int dw \frac{dN_{\gamma}}{dw} \sigma_{\gamma A \to J/\psi A} \Gamma_{QGP}^{decay}$$
 Already Given before

Poynting vector
$$\vec{S}(\vec{r},t) = \vec{E}(\vec{r},t) \times \vec{B}(\vec{r},t) \xrightarrow{v \to c} |\vec{E}(\vec{r},t)|^2 \vec{v}$$

Energy flux of the fields

Energy flux of equivalent photons

$$\frac{dN_{\gamma}}{dw} = n(w) = \frac{1}{\pi w} \int d\vec{x}_T |\vec{E}_T(\vec{r}, w)|^2$$
Photon density
$$= \underbrace{\frac{(Ze)^2}{\pi w}}_{\pi w} \int_0^\infty \frac{d^2 \vec{k}_T}{(2\pi)^2} [\frac{F((\frac{w}{v\gamma})^2 + k_T^2)}{(\frac{w}{v\gamma})^2 + k_T^2}]^2 \frac{k_T^2}{v^2}$$

Nuclear charge form factor is the Fourier transform of Woods-Saxon distribution

#

J/ψ from electromagnetic field

• Photon-nucleus cross section $\sigma_{\gamma A \to J/\psi A}$ Start from photon-proton $\sigma_{\gamma p}$

$$\sigma(\gamma A \to J/\psi A) = \frac{d\sigma(\gamma A \to J/\psi A)}{dt}|_{t=0} \int_{-t_{min}}^{\infty} |F(t)|^2 dt$$

Widely studied in UPC

<u>S.R.Klein, J. Nystrand, PRC, 1999</u> <u>Physics Roports, G.Baur, et al, 2002</u>

With the optical theorem, above cross section can be written as $J/\psi - A$ total cross section. With Geometry scale,

$$\sigma_{tot}(J/\psi A) = \int d^2 \vec{x}_T (1 - e^{-\sigma_{tot}(J/\psi p)T_A(\vec{x}_T)})$$

Using optical theorem again, and finally

$$\frac{d\sigma_{\gamma p \to J/\psi p}}{dt}|_{t=0} = B_{J/\psi} X_{J/\psi} W_{\gamma p}^{\epsilon_{J/\psi}}$$

Measured by HERA data. (main input of photo-production) Center of mass energy of photon and proton

J/ψ from EB field + QGP

Our formula for J/ψ photo-production with QGP effect

Baoyi Chen

Frankfurt transport meeting

Total J/ψ from EB field + QGP

> Also significant enhancement at $N_p \approx 100$, where $T_0^{QGP} = 2T_c$, similar with RHIC 200 GeV Au-Au (most central)

> When $N_{part} \rightarrow 0$ (b > 2R_A), hadroproduction $\rightarrow 0$, photoproduction \rightarrow nonzero, $R_{AA} \rightarrow$ infinity

Baoyi Chen

Frankfurt transport meeting

Total J/ψ from EB field + QGP

LHC • pT<0.05, $\gamma A \rightarrow J/\psi A$ important

• 0.1<pT<2-4, $c + \overline{c} \rightarrow J/\psi + g$

pT>4 primordial production

 R_{AA} decreases, then increases with pT

photoproduction \rightarrow rege. \rightarrow init.

41

Photoproduced 2S/1S

 Photoproduction is usually studied in Ultra-peripheral Collisions, absent of hadronic collisions and QGP

Can photoproduction and QGP be BOTH important ?

Photoproduced 2S/1S

 Photoproduction is usually studied in Ultra-peripheral Collisions, absent of hadronic collisions and QGP

Can photoproduction and QGP be BOTH important ?

Photoproduced 2S/1S

Spatial distribution of hadroproduction and coherent photoproduction

> Hadroproduction: in the overlap area of two nuclei, where QGP are also produced.

Photoproduction: over the entire nucleare surface photons interact with entire nucleus

2S/1S shape needs 3 factors:

- 1) QGP existence,
- 2) abundant photoproduction,
- 3) different spatial distributions

Photoproduction at RHIC

At RHIC, photoproduction from $\gamma + A \rightarrow \rho + A$, $\gamma \gamma \rightarrow e^+ e^-$?

Baoyi Chen

Frankfurt transport meeting

Summary

- We study the charmonium production in the heavy ion collisions with QGP.
 When most of final charmonia are from c and c combination, charmonia behavior is closely connected with charm diffusions in the expanding QGP.
- $\psi(2S)$ production is an interesting topic, and internal evolutions (transitions between 1S and 2S) should be crucial for 2S/1S obvervables
- In the extremely low p_T regions, even at b < 2R_A, photoproduction from strong electromagnetic fields can be larger than the hadroproduction in certain centralities.
- We also propose the strong enhancement at $p_T < 0.1$ GeV/c and suppression at high p_T of 2S/1S, to be an probe for both photoproduction and QGP effects

Future interests:

electromagnetic fields induced particle production, EB-QGP, particle correlations, etc