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• Lattice simulation :

- μ=0, finite T
- crossover

• Effective theories:

- (P)NJL, QM, FRG, DSE, RM) 
- finite T and μ
- first order
- CP is predicted.

 The location of CP? The signals?

QCD phase transition & CP

Critical Point --- the landmark of 
the QCD phase diagram.
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Fluctuations of  particles:

• Static and infinite system, on the critical point :   𝝃 → ∞

• Fireball, finite size & finite evolution time:  𝝃 ~ 𝑶 (𝟑 𝒇𝒎)
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~ 

7~ 

Theoretical predictions

M. Stephanov, PRL 102, 032301(2009)

B. Berdnikov and K. Rajagopal, Phys. Rev. D 61, 105017 (2000).
3



STAR BES:  Cumulants ratios

STAR Collaboration, PRL, 112, 032302 (2013)

Xiaofeng Luo(for the STAR Collaboration), PoS(CPOD2014)019
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Static -->   dynamical??
It is important to address the effects 

from dynamical evolutions!  4



Dynamical Model near the QCD critical point 

Essential ingredients for dynamical models near critical point:

1. evolution of bulk matter with external field  
2. EOS with CP                                                         
3. A proper treatment of freezeout scheme        
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

fluid
g=3.7

fluid
g=5.5

• Chiral fluid dynamics with dissipation & noise Nahrgang,et al.,  PRC 84, 024912 (2011)

• Chiral fluid dynamics with a Polyakov loop (PNJL) Herold, et al., PRC 87, 014907 (2013)

K. Paech, H. Stoecker and A. Dumitru, PRC 68, 044907 (2003)

Chiral Hydrodynamics  

( order parameter )

( heat bath )
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g=3.7

g=5.5

g=3.3



EOS with CP employed in hydrodynamics 

C.Nonaka, M. Asakawa, PRC 71, 044904 (2005)

• Pure hydrodynamics, needs to be extended to chiral hydrodynamics.
7



Essential ingredients for dynamical models:

1. Evolution of bulk matter with external field  √

2. EOS with CP                                                           √
3. A proper treatment of freezeout scheme        ?

dynamical models to experimental data
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Freeze-out scheme near the critical point
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Jiang, Li & Song, PRC, 94, 024918



Particles emission near Tc with external field 

Hydro freeze-out surface
Particle emissions in HIC, Cooper-Frye formula:

Particle emissions with fluctuated external field: 

Jiang, Li & Song , PRC, 94, 024918
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• For stationary & infinite medium, integrate over coordinate space,   the 
results in Stephanov PRL09 are reproduced. 

[M. Stephanov, PRD (1999) & PRL (2009).]

infinite volume
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• no evolution effects.

• The evolution of bulk matter is not affected.

Freeze-out scheme near the CP

Jiang, Li & Song , PRC, 94, 024918
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A. Andronic, et al.  NPA (2006);      M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009);  S. P. Klevansky, Rev. Mod. Phys, 
Vol, 64, No.3 (1992); W. Fu, Y-x, Liu, Phys. Rev. D 79, 074011(2009);  M. M. Tsypin, Phys. Rev. Lett. 73, 2015 (1994); M. M. 
Tsypin, Phys. Rev. B 55, 8911 (1997).;  B. Berdnikov and K. Rajagopal, Phys. Rev. D 61, 105017 (2000).

g 3g
43 g

 𝜉~ (0.5, 4)fm

volume effects, critical slowing down
𝜉 increases when the CEP is approaching. (maximum 𝜉 at  27 GeV)

 g ~ (0, 10) 

phenomenological model 
in vacuum: 𝑚𝑝~ 900 MeV -> g ~ 10;  large T: non-interacting, g ~ 0 

 𝜆3 ~ (0, 8), 𝜆4 ~ (4, 20)   

lattice simulation of the effective potential around critical point.
increase from the crossover side to the 1st order phase transition side

The input parameters
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A. Andronic, et al.  NPA (2006);      M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009);  S. P. Klevansky, Rev. Mod. Phys, 
Vol, 64, No.3 (1992); W. Fu, Y-x, Liu, Phys. Rev. D 79, 074011(2009);  M. M. Tsypin, Phys. Rev. Lett. 73, 2015 (1994); M. M. 
Tsypin, Phys. Rev. B 55, 8911 (1997).;  B. Berdnikov and K. Rajagopal, Phys. Rev. D 61, 105017 (2000).

g 3g 43 g

 𝜉~ (0.5, 5)fm

volume effects, critical slowing down
𝜉 increases when the CEP is approaching. (maximum 𝜉 at  27 GeV)

 g ~ (0, 10) 

phenomenological model 
in vacuum: 𝑚𝑝~ 900 MeV -> g ~ 10;  large T: non-interacting, g ~ 0 

 𝜆3 ~ (0, 8), 𝜆4 ~ (4, 20)   

lattice simulation of the effective potential around critical point.
increase from the crossover side to the 1st order phase transition side

The input parameters
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critical fluctuations along the freeze-out surface

---- comparison with the experimental data  
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STAR BES:  Acceptance dependence

Pt dependence: 

y dependence: 
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Xiaofeng Luo(for the STAR Collaboration), PoS(CPOD2014)019

• The signals are significantly enhanced when the pt and y acceptance are increased.



STAR data -- statistical baselines -- critical fluctuations
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Experimental data：

Poisson expectations: 

Critical fluctuations: 

Note from Jiang



Pt acceptance dependent critical fluctuations

Jiang, Li & Song , PRC, 94, 024918
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• The critical fluctuations are largely enhanced as the increasing of pt acceptance at small 

collision energies, even xi is very small.

• The critical fluctuations saturate at larger pt acceptance.

• The critical fluctuations are determined by both N_p and xi.



y acceptance dependence

Ling & Stephanov PRC2016
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• larger acceptance leads to significantly larger critical point signal

• saturation at large acceptance.

Simplified correlators for sigma field:

Freeze-out surface: Blast wave model.



STAR data VS statistical baselines  

• Fluctuations measured in Experiment:  critical fluc. + statistical fluc. +  …

Xiaofeng Luo(for the STAR Collaboration), PoS(CPOD2014)019
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Cumulants ratios

Net Protons   0-5% Jiang, Li & Song , PRC, 94, 024918
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• The cumulants ratios are better described within both pt ranges with different statistical 
baselines, except S𝝈 at low collision energies.



Cumulants (Model + Poisson baselines)

Net Protons   0-5% Jiang, Li & Song , PRC, 94, 024918
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• C4 can be roughly described 

• critical fluctuations of C2 and C3 are positive, above the statistical baselines



Cumulants (Model + Binomial baseline)

Net Protons   0-5% Jiang, Li & Song , PRC, 94, 024918
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• For static fluctuations, C4 can be described 

• critical fluctuations of C2 and C3 are positive, above the statistical baselines, cannot 
explain the experimental data.



Results -- non-central collisions

Net Protons   30-40% 
Jiang, Li & Song , PRC, 94, 024918
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• With the same set of parameters, C4 and 𝜿𝝈𝟐 at non-central collisions can be described,
but C2 and C3 above the baselines, cannot describe the experimental data.



Summary-critical fluctuations on freezeout surface

• C2 , C3 are well  above the statistical baselines,  which can NOT explain/describe   
the experimental data      

• C4  and 𝜿𝝈2 can be reproduced through tuning the parameters of the model, 
at both central and non-central collisions 
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• larger acceptance leads to significantly larger critical fluctuations, which are
qualitatively in accord with the experimental measurements



• C2 , C3 are well  above the statistical baselines,  which can NOT explain/describe   
the experimental data      
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• larger acceptance leads to significantly larger critical fluctuations, which are
qualitatively in accord with the experimental measurements

What can we obtain from dynamical evolution？

• C4  and 𝜿𝝈2 can be reproduced through tuning the parameters of the model, 
at both central and non-central collisions 

Summary-critical fluctuations on freezeout surface



Real time evolution of Sigma’s cumulants
Mukherjee, Venugopalan & Yin PRC 2015

The relaxation of critical mode are described by Fokker-Plank equation

The higher order cumulants  in 𝝐 expansion can be written as

27• Zero mode only, could not combined with the freeze-out scheme.



Dynamical evolution of Sigma’s cumulants

-- Langevin dynamics
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Jiang, Wu, Song,  in preparation



e-b-e Langevin dynamics

…...

e-b-e initial conditions  
( constructed based on partition function)

Langevin equation 
(with damping and noise)

Evolving cumulants
(record cumulants at each time)

Cumulants and cumulants ratios:
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Jiang, Wu, Song,  in preparation

𝜎1(𝑡0, 𝑥) 𝜎2(𝑡0, 𝑥) 𝜎𝑁(𝑡0, 𝑥)

𝜎1(𝑡𝑁, 𝑥) 𝜎2(𝑡𝑁, 𝑥) 𝜎𝑁(𝑡𝑁, 𝑥)

with nonzero modes

C1  M1,

C2  M2  M1
2,

C3  M3  3M2M1  2M1
3,

C4  M4  4M3M1  3M2
2  12M2M1

2  6M1
4.

S 
C3

C2

, 2 
C4

C2

…...



Sigma’s cumulants from Langevin dynamics

• effective potential at different T  

• 10^5 events

• uniform and finite volume 
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(Hubble like)

prelimenary

• The correlation of sigma field automatically increase.

• Memory effects

• The sign and value of C3, C4 different from the equilibrium ones

• decreasing Temperature  

Jiang, Wu, Song,  in preparation



Summary and Outlook

 critical fluctuations from dynamical evolution

 Critical fluctuations on the freeze-out surface

- C2 , C3 are well above the statistical baselines,  which CANNOT explain/describe 
the experimental data 

- C4 and 𝜿𝝈2 can be roughly reproduced through tuning the parameters of the model 

 STAR BES provides exciting new measurements on cumulants for net protons.

 Future works:
- construction of e-b-e critical fluctuations in a non-uniform system
- micro/macroscopic evolution with external chiral field
- statistical baselines
- … 31

- The acceptance dependence can be qualitatively explained 

- both Fokker-Plank and e-b-e Langevin dynamics present memory effects, thus the
value and the sign can be different from the equilibrium ones for S and K.

- the correlation length automatically increase as the system evolves near
the critical point.

Thank you!


