Critical fluctuations near the QCD critical point

Lijia Jiang

- I. Introduction
- II. critical fluctuations along the Freeze-out surface
- III. Dynamical critical fluctuations--- Langevin dynamics
- IV. Summary

Jiang, Li & Song, PRC, 94, 024918; Jiang, Wu, Song, in preparation

QCD phase transition & CP

Critical Point --- the landmark of the QCD phase diagram.

- Lattice simulation :
 - μ =0, finite T
 - crossover
- Effective theories:
 - (P)NJL, QM, FRG, DSE, RM)
 - finite T and $\boldsymbol{\mu}$
 - first order
 - CP is predicted.

The location of CP? The signals?

Theoretical predictions

M. Stephanov, PRL 102, 032301(2009)

$$P[\sigma] \sim \exp\{-\Omega[\sigma]/T\}, \quad \Omega = \int d^3x \left[\frac{1}{2}(\nabla\sigma)^2 + \frac{m_\sigma^2}{2}\sigma^2 + \frac{\lambda_3}{3}\sigma^3 + \frac{\lambda_4}{4}\sigma^4 + \cdots\right].$$
$$\langle \sigma_0^2 \rangle = \frac{T}{V}\xi^2 \qquad \langle \sigma_0^3 \rangle = \frac{2\lambda_3 T}{V}\xi^6; \qquad \langle \sigma_0^4 \rangle_c = \frac{6T}{V}[2(\lambda_3\xi)^2 - \lambda_4]\xi^8.$$

- Static and infinite system, on the critical point : $\xi \to \infty$
- Fireball, finite size & finite evolution time: $\xi \sim O (3 fm)$

B. Berdnikov and K. Rajagopal, Phys. Rev. D 61, 105017 (2000).

STAR BES: Cumulants ratios

Dynamical Model near the QCD critical point

Essential ingredients for dynamical models near critical point:

- 1. evolution of bulk matter with external field
- 2. EOS with CP
- 3. A proper treatment of freezeout scheme

Chiral Hydrodynamics

Chiral fluid dynamics with dissipation & noise Nahrga

Nahrgang,et al., PRC 84, 024912 (2011)

Chiral fluid dynamics with a Polyakov loop (PNJL) Herold, et al., PRC 87, 014907 (2013)

EOS with CP employed in hydrodynamics

Pure hydrodynamics, needs to be extended to chiral hydrodynamics.

7

dynamical models to experimental data

Essential ingredients for dynamical models:

- 1. Evolution of bulk matter with external field $\sqrt{}$
- 2. EOS with CP
- 3. A proper treatment of freezeout scheme

Jiang, Li & Song, PRC, 94, 024918

Freeze-out scheme near the critical point

Particles emission near Tc with external field

Jiang, Li & Song , PRC, 94, 024918

Particle emissions in HIC, Cooper-Frye formula:

 $E\frac{dN}{d^3p} = \int_{\Sigma} \frac{p_{\mu}d\sigma^{\mu}}{2\pi^3} f\left(x,p\right)$

Particle emissions with fluctuated external field:

 $M \to g\left(\bar{\sigma} + \sigma\left(x\right)\right)$

$$f(x,p) = f_0(x,p) [1 - g\sigma(x) / (\gamma T)]$$

= $f_0 + \delta f$

$$\begin{split} \langle \delta f_1 \delta f_2 \rangle_{\sigma} &= \frac{f_{01} f_{02}}{\gamma_1 \gamma_2} \frac{g^2}{T^2} \langle \sigma_1 \sigma_2 \rangle_c \,, \\ \langle \delta f_1 \delta f_2 \delta f_3 \rangle_{\sigma} &= -\frac{f_{01} f_{02} f_{03}}{\gamma_1 \gamma_2 \gamma_3} \frac{g^3}{T^3} \langle \sigma_1 \sigma_2 \sigma_3 \rangle_c \,, \\ \langle \delta f_1 \delta f_2 \delta f_3 \delta f_4 \rangle_{\sigma} &= \frac{f_{01} f_{02} f_{03} f_{04}}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \frac{g^4}{T^4} \langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \rangle_c \,. \end{split}$$

infinite volume

• For stationary & infinite medium, integrate over coordinate space, the results in Stephanov PRL09 are reproduced.

Freeze-out scheme near the CP

$$\left\langle (\delta N)^2 \right\rangle_c = \left(\frac{g_i}{(2\pi)^3} \right)^2 \left(\prod_{i=1,2} \left(\frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^{\mu} d\eta_i \right) \right) \frac{f_{01} f_{02}}{\gamma_1 \gamma_2} \frac{g^2}{T^2} \langle \sigma_1 \sigma_2 \rangle_c,$$

$$\left\langle (\delta N)^3 \right\rangle_c = \left(\frac{g_i}{(2\pi)^3} \right)^3 \left(\prod_{i=1,2,3} \left(\frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^{\mu} d\eta_i \right) \right) \frac{f_{01} f_{02} f_{03}}{\gamma_1 \gamma_2 \gamma_3} \left(-\frac{g^3}{T^3} \langle \sigma_1 \sigma_2 \sigma_3 \rangle_c \right),$$

$$\left\langle (\delta N)^4 \right\rangle_c = \left(\frac{g_i}{(2\pi)^3} \right)^4 \left(\prod_{i=1,2,3,4} \left(\frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^{\mu} d\eta_i \right) \right) \frac{f_{01} f_{02} f_{03}}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \frac{g^4}{T^4} \langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \rangle_c$$

$$\begin{split} \langle \sigma_1 \sigma_2 \rangle_c &= TD(x_1 - x_2), \\ \langle \sigma_1 \sigma_2 \sigma_3 \rangle_c &= -2T^2 \lambda_3 \int d^3 z D(x_1 - z) D(x_2 - z) D(x_3 - z), \\ \langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \rangle_c &= -6T^3 \lambda_4 \int d^3 z D(x_1 - z) D(x_2 - z) D(x_3 - z) D(x_4 - z) \\ &+ 12T^3 \lambda_3^2 \int d^3 u \int d^3 v D(x_1 - u) D(x_2 - u) D(x_3 - v) D(x_4 - v) D(u - v). \end{split}$$

- no evolution effects.
- The evolution of bulk matter is not affected.

The input parameters

≻ g ~ (0, 10)

phenomenological model in vacuum: $m_p \sim$ 900 MeV -> g ~ 10; large T: non-interacting, g ~ 0

 \succ *ξ*∼ (0.5, 4)fm

volume effects, critical slowing down ξ increases when the CEP is approaching. (maximum ξ at 27 GeV)

 $\lambda_3 \sim (0, 8), \ \lambda_4 \sim (4, 20)$

lattice simulation of the effective potential around critical point. increase from the crossover side to the 1st order phase transition side

A. Andronic, et al. NPA (2006); M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009); S. P. Klevansky, Rev. Mod. Phys, Vol, 64, No.3 (1992); W. Fu, Y-x, Liu, Phys. Rev. D 79, 074011(2009); M. M. Tsypin, Phys. Rev. Lett. 73, 2015 (1994); M. M. Tsypin, Phys. Rev. B 55, 8911 (1997).; B. Berdnikov and K. Rajagopal, Phys. Rev. D 61, 105017 (2000).

The input parameters

$\langle \sigma_1 \sigma_2 angle_c$		$\langle \sigma_1 \sigma_2 \sigma_3 angle_c$				$\left<\sigma_1\sigma_2\sigma_3\sigma_4\right>_c$					
	\geqslant		×	æ		3×			B		
g ξ	TAI	g BLE I.	ξ Param	λ_3 eter sets	for the c	ritical f	luctuat	g tions.	ξ	λ_3 λ_4	
	$\sqrt{s_{NN}}$ (Ge	V)	7.7	11.5	19.6	27	39	62.4	200		
×	Para-I	$g \\ \tilde{\lambda}_3 \\ \tilde{\lambda}_4 \\ \xi$	3.2 6 14 1	2.5 4 13 2	2.3 3 12 3	2.2 2 11 3	2 0 10 2	1.8 0 9 1	1 0 8 0.5	~ 0	
	Para-II	$g \over { ilde \lambda}_3 \ { ilde \lambda}_4 \ \xi$	3.2 6 14 1.1	2.5 4 13 2.5	2.3 3 12 4	2.2 2 11 4	2 2 10 3	1.8 1.5 9 2	1 1 8 1	()	
A. Andronic, et al. Nł Vol, 64, No.3 (1992); Tsypin, Phys. Rev. B 5	Para-III	$egin{array}{c} g \ ilde{\lambda}_3 \ ilde{\lambda}_4 \ \xi \end{array}$	2.8 6 14 1	1.8 4 13 2	1.7 3 12 3	1.6 2 11 3	1 2 10 2	0.5 1.5 9 1	0.1 1 8 0.5	n side ransky, Rev. Mod. Phys, 73, 2015 (1994); M. M. 00).	

critical fluctuations along the freeze-out surface

---- comparison with the experimental data

STAR BES: Acceptance dependence

Xiaofeng Luo(for the STAR Collaboration), PoS(CPOD2014)019

• The signals are significantly enhanced when the pt and y acceptance are increased.

STAR data -- statistical baselines -- critical fluctuations

Note from Jiang

Jiang, Li & Song , PRC, 94, 024918

- The critical fluctuations are largely enhanced as the increasing of pt acceptance at small collision energies, even xi is very small.
- The critical fluctuations saturate at larger pt acceptance.
- The critical fluctuations are determined by both N_p and xi.

y acceptance dependence

Ling & Stephanov PRC2016

Simplified correlators for sigma field:

$$\begin{aligned} &\langle \sigma(\boldsymbol{x})\sigma(\boldsymbol{y})\rangle \to T\xi^2 \delta^3(\boldsymbol{x}-\boldsymbol{y}) \\ &\langle \sigma(\boldsymbol{x})\sigma(\boldsymbol{y})\sigma(\boldsymbol{z})\rangle \to -2\tilde{\lambda}_3 T^{3/2}\xi^{9/2}\delta^6(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \end{aligned}$$
 Freeze
$$\langle \sigma(\boldsymbol{x})\sigma(\boldsymbol{y})\sigma(\boldsymbol{z})\sigma(\boldsymbol{w})\rangle_c \to 6(2\tilde{\lambda}_3^2 - \tilde{\lambda}_4)T^2\xi^7\delta^9(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z},\boldsymbol{w}) \end{aligned}$$

Freeze-out surface: Blast wave model.

- larger acceptance leads to significantly larger critical point signal
- saturation at large acceptance.

STAR data VS statistical baselines

Xiaofeng Luo(for the STAR Collaboration), PoS(CPOD2014)019

Fluctuations measured in Experiment: critical fluc. + statistical fluc. + ...

Cumulants ratios

Net Protons 0-5%

Jiang, Li & Song , PRC, 94, 024918

• The cumulants ratios are better described within both pt ranges with different statistical baselines, except S σ at low collision energies.

Net Protons 0-5%

Jiang, Li & Song , PRC, 94, 024918

- C4 can be roughly described
- critical fluctuations of C2 and C3 are positive, above the statistical baselines

Net Protons 0-5%

Jiang, Li & Song , PRC, 94, 024918

For static fluctuations, C4 can be described

 critical fluctuations of C2 and C3 are positive, above the statistical baselines, cannot explain the experimental data.

Results -- non-central collisions

Net Protons 30-40%

Jiang, Li & Song , PRC, 94, 024918

• With the same set of parameters, C4 and $\kappa\sigma^2$ at non-central collisions can be described, but C2 and C3 above the baselines, cannot describe the experimental data. 24

Summary-critical fluctuations on freezeout surface

- larger acceptance leads to significantly larger critical fluctuations, which are qualitatively in accord with the experimental measurements
- C4 and $\kappa\sigma^2$ can be reproduced through tuning the parameters of the model, at both central and non-central collisions
- C2, C3 are well above the statistical baselines, which can NOT explain/describe the experimental data

Summary-critical fluctuations on freezeout surface

- larger acceptance leads to significantly larger critical fluctuations, which are qualitatively in accord with the experimental measurements
- C4 and $\kappa\sigma^2$ can be reproduced through tuning the parameters of the model, at both central and non-central collisions
- C2, C3 are well above the statistical baselines, which can NOT explain/describe the experimental data

What can we obtain from dynamical evolution?

Real time evolution of Sigma's cumulants

Mukherjee, Venugopalan & Yin PRC 2015

The relaxation of critical mode are described by Fokker-Plank equation

$$\partial_{\tau} P(\sigma;\tau) = \frac{1}{(m_{\sigma}^2 \tau_{\text{eff}})} \left\{ \partial_{\sigma} \left[\partial_{\sigma} \Omega_0(\sigma) + V_4^{-1} \partial_{\sigma} \right] P(\sigma;\tau) \right\},\,$$

The higher order cumulants in ϵ expansion can be written as

$$\begin{split} \partial_{\tau}\kappa_{2}(\tau) &= -2\,\tau_{\rm eff}^{-1}\left(b^{2}\right)\left[\left(\frac{\kappa_{2}}{b^{2}}\right)F_{2}(M) - 1\right]\left[1 + \mathcal{O}(\epsilon^{2})\right]\,,\\ \partial_{\tau}\kappa_{3}(\tau) &= -3\,\tau_{\rm eff}^{-1}\left(\epsilon\,b^{3}\right)\left[\left(\frac{\kappa_{3}}{\epsilon\,b^{3}}\right)F_{2}(M) + \left(\frac{\kappa_{2}}{b^{2}}\right)^{2}F_{3}(M)\right] \times \left[1 + \mathcal{O}(\epsilon^{2})\right]\,,\\ \partial_{\tau}\kappa_{4}(\tau) &= -4\,\tau_{\rm eff}^{-1}\left(\epsilon^{2}\,b^{4}\right)\left\{\left(\frac{\kappa_{4}}{\epsilon^{2}\,b^{4}}\right)F_{2}(M) + 3\left(\frac{\kappa_{2}}{b^{2}}\right)\left(\frac{\kappa_{3}}{\epsilon\,b^{3}}\right)F_{3}(M) + \left(\frac{\kappa_{2}}{b^{2}}\right)^{3}F_{4}\right\} \times \left[1 + \mathcal{O}(\epsilon^{2})\right]\,.\\ \\ \int_{0}^{30} \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{1}^{1} \int_{0}^{0} \int_{0}$$

Zero mode only, could not combined with the freeze-out scheme.

Jiang, Wu, Song, in preparation

Dynamical evolution of Sigma's cumulants

-- Langevin dynamics

e-b-e Langevin dynamics

• 10^5 events

Jiang, Wu, Song, in preparation

- uniform and finite volume n = 1 fm 200 90 η = 3 fm⁻́ = 10 fm effective potential at different T ບິ₁₀₀ δ 60 -0.4 30 -0.6 140 130 120 110 100 140 130 120 110 100 T = 135 MeV -0.8^0.8 Art/1/4 T [MeV] eimer T [MeV] 3.0x10⁴ T = 140 MeV 2000 -1.20.0 T = 145 MeV ပိ -1.4 \mathbf{Q} 0 50 100 0 -3.0x10⁴ decreasing Temperature 140 130 120 110 140 120 130 110 100 100 T [MeV] $\frac{T\left(t\right)}{T_{0}} = \left(\frac{t}{t_{0}}\right)^{-0.45}$ (Hubble like) T [MeV]
 - The correlation of sigma field automatically increase.
 - Memory effects
 - The sign and value of C3, C4 different from the equilibrium ones

30

Summary and Outlook

- > STAR BES provides exciting new measurements on cumulants for net protons.
- Critical fluctuations on the freeze-out surface
 - The acceptance dependence can be qualitatively explained
 - C4 and $\kappa\sigma^2$ can be roughly reproduced through tuning the parameters of the model
 - C₂ , C₃ are well above the statistical baselines, which CANNOT explain/describe the experimental data
- critical fluctuations from dynamical evolution
 - the correlation length automatically increase as the system evolves near the critical point.
 - both Fokker-Plank and e-b-e Langevin dynamics present memory effects, thus the value and the sign can be different from the equilibrium ones for S and K.
- > Future works:
 - construction of e-b-e critical fluctuations in a non-uniform system
 - micro/macroscopic evolution with external chiral field
 - statistical baselines

