<u>Strangeness production in heavy-ion collisions at</u> <u> $E_{kin} = 1-2 \text{ AGeV}$ </u>

Ömür Erkiner

In collaboration with Hannah Petersen and Vinzent Steinberg

Motivation

- Nuclear matter under extreme conditions
 - State of the universe microseconds after the Big Bang
 - Hot and dense matter
 → Quark-Gluon-Plasma (QGP)
 - Quarks and gluons are deconfined
 - At high temperatures and densities hadronic matter forms QGP

Goal: Understand phase transition

Source: teilchen.at

Motivation

Heavy-ion collisions

- At low energies, unique possibility to study nuclear matter at high densities
- Created particles give information about conditions inside reaction zone
- Sensitive probe \rightarrow strange particles
- Specific production mechanism and long mean free path
 - \rightarrow ideal probes for exploring high density phase in heavy-ion reactions

Strangeness production

- Strange particles contain an s- or s-quark
- Strange quarks have higher masses (95 MeV) than up and down quarks (2-5 MeV)
- Created by strong interaction and decay via weak interaction \rightarrow long lifetime $1,238\cdot 10^{-8}~{\rm s}$
- Examples: $K^+(u\overline{s})$, $K^-(\overline{u}s)$, $K^0(d\overline{s})$, $\overline{K}^0(\overline{d}s)$, $\Lambda^0(uds)$, $\Sigma(uus)$
- Production channels at low energies:

 $\begin{array}{rcl} \mathrm{NN} & \rightarrow & \mathrm{N}\Lambda\mathrm{K}^{+} \\ \pi\mathrm{Y} & \leftrightarrow & \mathrm{K}^{-}\mathrm{N} & \mathrm{Y} = \Lambda, \Sigma \end{array}$

- Strangeness exchange suggested as an important production channel in nucleus – nucleus collisions
 - Responsible for appearance and disappearance of K⁻

Transport models

- Offer deeper understanding of the dynamics of heavy-ion collisions
- Simulate whole reaction
- Based on microscopic theory (transport theory)
- Whole information of particles is available in phase space
- Effectively solve relativistic Boltzmann equation:

$$p^{\mu}\partial_{\mu}f_{i}(x,p) + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i}(x,p) = C_{coll}^{i}$$

SMASH

- Simulating Many Accelerated Strongly-interacting Hadrons
- C++ based hadronic transport code
- Simulation of nucleus-nucleus collisions at low energies
- Geometric collision criterion:

$$d_{trans} < d_{int} = \sqrt{\frac{\sigma_{tot}}{\pi}}$$

Strangeness production in SMASH

• Strange particles: K , K^{*} (11), Λ , $\Lambda^{*}(13)$, Σ , $\Sigma^{*}(9)$, Ξ , $\Xi^{*}(5)$, Ω , $\Omega^{*}(1)$

• Production via:

(1) $NN \rightarrow NN^*, N\Delta^*$ (2) $N^*, \Delta^* \rightarrow YK$ $Y = \Lambda, \Sigma$ (3) $\pi Y \leftrightarrow K^- N$

(Gräf, Steinheimer et al. Phys.Rev. C90 (2014) 064909)

→ Only produced in secondary processes via resonances

Calculation specifics

- With Fermi motion
- No potentials
- No Pauli-blocking
- No string fragmentation necessary because E_{kin} = 1-2 AGeV
- Results compared to measurements by KaoS (Kaon Spectrometer) HADES (High Acceptance Dielectron Spectrometer)

System	Observable
HADES: p+p at E _{kin} = 3.5 GeV	Rapidity spectra y Transverse momentum spectra p _T
SMASH: Au+Au, π^- + C, π^- + W at E _{kin} = 1.7 AGeV	Multiplicities N
KaoS: Au+Au, Ni+Ni at E _{kin} = 1.5 AGeV	Centrality dependence A _{part}
HADES: Ar+KCl at E _{kin} = 1.76 AGeV	Transverse mass spectra m _T
KaoS: Au+Au at E _{kin} = 1.5 AGeV	Effective temperature T _{eff}

p+p
$$E_{kin}$$
 = 3.5 AGeV, K_S^0

• K^0 and \overline{K}^0 form CP-eigenstates in K^0_S and K^0_L

• Transverse momentum: $p_T = \sqrt{p_x^2 + p_y^2}$

• Rapidity:
$$y = 0.5 * \ln(\frac{E+p_z}{E-p_z})$$

p+p $E_{kin} = 3.5 \text{ AGeV}$, rapidity spectra K_S^0

- Cross section calculated from properties of resonances
- $\sigma^{pp \to K^0 X} = 60 \mu b$ (SMASH)
- $\sigma^{pp \to K^0 X}$ = 103µb (HADES) (Agakishiev et al. Phys.Rev. C90 (2014) 054906)
- Dashed lines scaled by $\sigma^{pp \to K^0 X}$ ratio

p+p E_{kin} = 3.5 AGeV, p_T – spectra K_{S}^{0}

SMASH $E_{kin} = 1.7$ AGeV, Multiplicities

 Filled bars: without Fermi motion

 Transparent bars: with Fermi motion

Heavy – ion reactions

Au+Au $E_{kin} = 1.5 \text{ AGeV}$

- Number of participants depending on impact parameter
- → Number of participants decreases with $\bigvee_{150}^{\frac{1}{10}}$

Au+Au $E_{kin} = 1.5 \text{ AGeV}$

- Number of K⁺ and K⁻ rises with A_{part}
- In comparison to KaoS : at high participants SMASH overshoots

(A.Forster et al J.Phys. G31 (2005) no.6, S693-S700)

Au+Au $E_{kin} = 1.5 \text{ AGeV}$

- Number of K⁺ and K⁻ rises with A_{part}
- In comparison to KaoS : at high participants SMASH overshoots

(A.Forster et al J.Phys. G31 (2005) no.6, S693-S700)

18/01/17

ÖMÜR ERKINER

Ar+KCl E_{kin} = 1.76 AGeV, m_T – spectra K⁺

HADES = Ar + KCISMASH = Ca + Ca

Transverse mass distribution has been determined in six rapidity bins, ranging from:

 $-0.75 < y_{cm} < -0.15$

18/01/17

18/01/17

System	Observable	Results
HADES: p+p at E _{kin} = 3.5 GeV	$\frac{d\sigma}{dy}, \frac{d\sigma}{dpT}$	K ⁰ _s : Lower multiplicities, same shape
SMASH: Au+Au, π^- + C, π^- + W at E _{kin} = 1.7 AGeV	Ν	Waiting for HADES data
KaoS: Au+Au, Ni+Ni at E _{kin} = 1.5 AGeV	$\frac{\mathrm{K^{+}}}{\mathrm{A}_{part}},\frac{\mathrm{K^{-}}}{\mathrm{A}_{part}},\frac{\mathrm{K^{-}}}{\mathrm{K^{+}}}$	In central collisions: → Overshooting
HADES: Ar+KCl at E _{kin} = 1.76 AGeV	m _T	Good agreement
KaoS: Au+Au at E _{kin} = 1.5 AGeV	T _{eff}	K ⁺ : Lower K ⁻ : Good agreement

Thank you for your attention!

18/01/17